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Glossary: Summary of notation employed for elasticity

Q = Emb*(#, R%) Configuration Space, with elements denoted by ¢ €0.

70 State Space; points in the state space correspond to configurations

and velocities and are denoted by (g, ).
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P=T*Q Phase Space; points in P correspond to configurations and mo-
menta and are denoted by z = (g, p).

(4, p) Configuration-momentum variations in 7,Q » T, P.

SO(@3) Special orthogonal group; orthogonal 3:<3 matrices with deter-
minant 1.

56(3) Lie algebra of SO(3); 33 skew symmetric matrices.

t(%) Infinitesimal generator; no(g) = nxe.

<y Dy Riemannian metric; for elasticity the inner product

(o, dga), = j Cres 01 Oy dV.
'

Fp) Locked inertia tensor; defined as
@)= [(el’ls ~¢ @) dV.
4

Alg) First elasticity tensor; defined as
Ay = I
Y = TF oFlr g’
J: P ->s0*(3) Angular momentum map; J(g, p) - 4 = <P, noly),.
K:P->R Kinetic energy.
V:Q—>R Potential energy.
H:P—-R Hamiltonian function; H = K + V.
H.: PxR*—R Energy-momentum functional (Routhian);
Hi=K+V—-{J—n)- 8.
£b Lie derivative of b in direction a.
2,eBl) Configuration dependent body force with potential L:Q — R,

§ 1. Introduction

The problem of the dynamical stability of mechanical systems has long been
recognized as a fundamental problem of mechanics. An important class of such
problems is concerned with the stability of steady motions. This type of problem
arises naturally in the study of rotating systems and includes problems in celestial
mechanics as well as classical problems in rigid-body mechanics concerned with
spinning tops, gyrostats and so on. Over a century ago, in his Adams Prize-win-
ning essay, RoutH [1877] investigated the subject of the criterion for dynamical
stability. In this now classic work he constructed a modified Lagrangian function,
which subsequent authors have called the Routhian, by appending integrals of the
motion and applying an ‘energy criterion of stability’. This fundamental work is
described in many standard references, such as WHITTAKER [1959], Pars [1965]
or GOLDSTEIN [1981], and constitutes the point of departurc of the modern theory
of reduction of mechanical systems with symmetry; see, e.g., ARNOLD et al.
[1988, Chapter 3], and MARSDEN & RATIU [1986] for recent surveys. Interestingly
enough, RouTH's work also played a significant role in stability analyses of classi-
cal linear control systems; e.g., the well-known Routh-Hurwitz criterion.

The modern point of view on stability of relative equilibria is initiated in the
work of ArRNoOLD [1966a] where explicit conditions for formal stability are given
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when the symmetry group coincides with the configuration space. This situation
encompasses classical rigid-body dynamics and incompressible perfect fluids
governed by Euler’s equations. Rigorous nonlinear stability results for planar
incompressible fluid flows are given in ARNOLD [1966b]. This method was subse-
quently formalized, extended and applied to additional examples, including fluids
and plasmas, in HoLM, MARSDEN, RATIU & WEINSTEIN [1985]) who coined the
expression Energy-Casimir method. Further applications of ARNOLD’s method
include the works of KRISHNAPRASAD & MARSDEN [1987] on rigid bodies with a
certain class of attached flexible appendages, and LEwis [1989] on self-gravitating
planar drops, among others. However, as noted in ARNOLD [1966a], in Simo,
POSBERGH & MARSDEN [1989] and in SiMO, LEWIS & MARSDEN [1990], hereafter
referred to as Part I, the extension of the Energy-Casimir method to more general
mechanical systems, even to cases in which the configuration space is isomorphic
to the symmetry group, encounters a fundamental difficulty: Casimir functions
and, in general, conserved quantities in the reduced (convective) representation,
for many simple mechanical systems of interest are difficult to characterize or may
indeed not exist at all. That this difficulty is not merely formal is illustrated by
the following examples where the existence of Casimir is not known: three-
dimensional elastodynamics, general three-dimensional (Cosscrat) rods, plate
and shell models, and three-dimensional incompressible fluid flow, (the only known
Casimir function is the helicity). By contrast, these examples possess well-known
conserved quantities in the material or canonical representation as defined by the
corresponding momentum maps. For three-dimensional elasticity, rods, plates
and shells these conserved quantities are the classical linear and angular momen-
tum and for the isotropic case, Eshelby’s energy-momentum tensor. For three-
dimensional isentropic flows the conserved quantity in the canonical description is
the circulation along closed loops, as a result of the classical Kelvin circulation
theorem.

The basic difficulty alluded to above constitutes the main motivation for our
approach to the stability of relative equilibria, which is formulated directly in the
material representation and exploits in a crucial manner the energy-momentum
mapping. This approach, referred to as the energy-momentum method, is intro-
duced and applied to examples including rigid bodies with attached flexible
appendages in SiMO, POSBERGH & MARSDEN [1989], and homogeneous elasticity
in LEwis & Simo [1990]. Geometric aspects underlying the method are discussed
in a general abstract setting in MARSDEN, SiMO, LEwis & POSBERGH [1989]. An
essential aspect in the application of the method is a result which states that a
block-diagonalization of the second variation of the energy-momentum map can
always be achieved by a suitable choice of coordinates which separates the rigid
body modes associated with the action of the symmetry group from the inter-
nal vibrational modes. This block-diagonalization leads to particularly tractable
stability conditions and is examined in detail in § 2.E of Part L.

For simple mechanical system with symmetry in the sense of SMALE [1970],
the energy-momentum method can be reformulated in an alternative form, di-
rectly in terms of SMALE's amended potential, which achieves three crucial proper-
ties: (i) The stability results are optimal (sharp). (ii) Maximal reduction of
dimension, as far as stability analysis is concerned, is achieved: The method
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operates only in terms of configuration variations; in contrast with our original
formulation of the energy-momentum method, variations in momenta play
no role in the analysis. (iii) The enforcement of the conserved quantities is
accomplished without explicit use of Lagrange multipliers. These propertics, in
particular, the maximal reduction of dimensions in the stability analysis, motivate
the term reduced energy-momentum method coined in Part I of this work.

In this paper we consider the concrete application of the reduced energy-mo-
mentum method to an infinite-dimensional and highly non-trivial example: three-
dimensional elasticity. Two main objectives motivate this work. First, we provide
a detailed illustration of the abstract setting discussed in Part I of this paper in a
concrete example which has a strong interest of its own. Second, we demonstrate
that the application of the method to an infinite-dimensional example leads to
explicit and readily tractable stability conditions, which can be implemented by
means of numerical analysis techniques or modern symbolic computations. In
particular, our analysis leads to the following results:

i. We provide a complete characterization of the possible relative equilibria of an
anisotropic nonlinearly elastic body possessing a general form of stored energy
function.

ii. We derive sufficient conditions for formal stability of the relative equilibria by
exploiting in a crucial manner our block-diagonalization theorem for general
simple mechanical systems with symmetry in the context of the reduced energy-
momentum method.

iii. We provide a concrete mechanical interpretation for one set of stability con-
ditions; namely, we show that stable stationary rotations are about the maxi-
mum axis of a certain locked inertia dyadic associated with the relative equili-
brium. Furthermore, we give a constructive procedure for the remaining set of
stability conditions in terms of a straightforward eigenvalue problem. This ap-
proach can be readily implemented in a numerical analysis context using a
Galerkin finite element projection,

iv. We give a concrete mechanical interpretation of the block-diagonalization
procedure and discuss in detail the structure of the symplectic two form in the
context of elasticity. In particular, we show that the block diagonalization proce-
dure also puts the linearized dynamics in normal form.

In contrast with the finite-dimensional case, in the present infinite-dimensional
context our stability results are only formal. The reason for this formal nature
of our results is the current siatus of existence theory in nonlinear elasticity, as
summarized in CIARLET [1988, Chapter 7] or MARSDEN & HUGHES [1983. Chap-
ter 6]. We remark, however, that the present analysis gives conditional stability
results for the relative equilibria by appealing to arguments discussed in detail
in BALL & MARSDEN [1984]. This conclusion rests on the following considera-
tions. First, relative equilibria are characterized as minimizers of the amended
potential ¥, . Second, the amended potential consists of the potential energy
associated with the stored energy function, assumed to be polyconvex, plus a
term which gives the potential energy of the loading associated with the centrifugal
loading in stationary rotation. Accordingly. the results of BALL [[977], and BaLL
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& MARSDEN [1984] apply, provided that the loading potential is continuous as a
mapping from W!?(%#) to L*(#). Such a requirement appears to hold in view of
the structure of the locked inertia tensor in three-dimensional elasticity.

§ 2. Notation: Configurations and phase space for elasticity

In this section we summarize some basic notions of threc-dimensional clasti-
city. For further details we refer to MARSDEN & HUGHES [1983] and CIARLET
[1988).

§ 2.A. Configuration and phase space

We denote by # CR* the reference placement of an elastic body, and
assume that 2 is open and bounded with smooth boundary ##. We let

0 :={gp: B —~>R3?|det [Dg] > 0} Q.1

be the configuration manifold. Typically, for elastodynamics, one assumes that
Q C HY(#) with s> %— <+ 1. The wvelocity phase space, i.e., the space of config-
uration-velocity fields, is the tangent bundle, defined as

TQ := {V, = (p, 6¢) | € Q and S € x(%, R3)}, 22

where x(#,R?) := {d¢ : & — R3} is the space of smooth vector-valued functions
on B. The canonical phase space P is the space of configurations and momenta:
the cotangent bundle P = T*Q. We shall use the notation

T*Q = {z, = (¢, P) |9 € Q and p € Den ()}, (2.3)

where Den (2) is the space of one-form densities on # (i.e., one forms times the
volume element). TQ and 7*Q are in duality via the L,-pairing denoted by ¢-, ->
in what follows. The canonical symplectic structure on P is induced by the symplec-
tic two-form, Q2:TPxTP—R, defined by the standard expression

Q(Z) ((le, ‘szz) = <6P25 6¢1> - <6Ph 6p2>, (2-4)

forany 8z, = (d¢p,, dp )€ T.P, (x = 1, 2). The state space and the phase space
are related through the Legendre transformation FL:TQ —> T*Q defined by
the standard formula

P = Qret‘¢9 (25)

for (¢, ) € TQ. Here ¢ = &¢p/ot is the material velocity field, and g, : Z >R
the mass density in the reference placement 4.

Classical three-dimensional elasticity is an infinite-dimensional Hamiltonian
system with canonical phase space (P, £2), and Hamiltonian H: P—R equal to
the sum of potential and kinetic energy, defined by the expression

H=K-+V:=14 [|p|*oxtdV + [ W(X, Dg)dV. (2.6)
£ E-4
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Here K:P->R is the kinetic energy, and V:Q —R is the potential energy
defined in terms of a stored energy function W:%3XxXGL¥(3,R)—~>R, which
depends on the motion locally through the deformation gradient F := D¢, We
assume that W is frame-indifferent in the sense that

W(X, F) = W(X, AF) for all AcSO@3), Xc# and FeGL*3,R). (2.7

Equivalently, the stored energy function W is left-invariant under the (lefi-) action
of SO(3). Given any ne€R? wedenote by #no(p) € T,Q the infinitesimal genera-
tor of the SO(3)-action, defined by

d . -
noly) := Zlmo expsogy [enly = g 1= yXxeq, (2.8)

where so(3) is the Lie algebra of SO(3). Recall that so(3) is the lincar space of
skew-symmetric matrices whose Lie bracket is the ordinary matrix commutator
denoted by [, -]. The Lie algebra (so(3), [, -]) is identified with (R3, x), where
x denotes the ordinary cross product, in the standard fashion via the Lie algebra
isomorphism °:s0(3) >R*® defined by (2.8). One has the standard relation

(& i) =Exn,  for all &, neRS. 29

With this notation at hand, the differentiation of the invariance condition (2.7)
with respect to the group action and the use of (2.8) yields the relation

AF: 0 W(X,F) = ij: 6,W(X,F)FT =0, for all n€R3,  (2.10)

where the symbol ““: " denotes the inner product of two rank-two tensors. This
relation implies the classical symmetry condition on the Kirchhoff stress tensor:

t:=0W(X,F)FT =27, @.11)

Of course, (2.11) is equivalent to the local form of balance of angular momentum.

§ 2.B. Momentum maps

The Hamiltonian H: P— R defined by (2.6) is invariant under the left action
of the orthogonal group in the sense that

H(A-2)= H(z), for all (z, A)¢ PxSO(3). (2.12)

where the (symplectic) left action of SO(3) on P is defined by A -z := (A, Ap)
for z = (¢, p). The invariance property (2.12) follows from the assumption of
frame-invariance on the stored cnergy function and the fact that rotations are
isometries relative to the Euclidean dot product.

By the classical Noether theorem, associated with the invariance property
(2.12) there is a conserved quantity called the momentum map, denoted by
J: P—s0*(3), and given by the abstract formula (see, e.g., ABRAHAM & MARs-
DEN [1978, p. 285))

JG) 0 =P, nglg)>  for i€ so(3). @13

™
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Here, s0%(3) is the dual of the Lie algebra so(3) identified with R? via the Euclid-
ean dot product and, in the present context, <{-,-> is the L,-pairing. Since
7o(¢) = nXe, the abstract formula (2.13) gives

J(z) g =$f X -pdV =g -wf((pxp)dV, 2.19)

for any € R3. Consequently, the associated momentum map as a function
J:P—R? is given by the explicit expression

J@) = [oxpadV, @.15)
o

which, as expected, is the classical definition of rotal angular momentum of the
system.

From expression (2.6), it follows that the Hamiltonian function for elasticity
is also invariant under the group of translations in phase space, i.e., under map-
pings (¢, p)> (¢ -+ ¢, p), forany c€R3. The associated conserved quantity is
the momentum map J: P—R? defined via the general formula (2.13) by the
expression

Jz) = [padv. (2.16)
@

As expected, J defined by (2.16) gives the total linear momentum of the system.
Notc that the two momentum maps derived above correspond to the left action
of the Euclidean group realized as the semidirect product R3xSO(3).

According to the preceding discussion, we view classical three-dimensional
clasticity as a particular instance of a Hamiltonian system with symmetry. The
symmetry arises through the (symplectic) action of the Euclidean group on the
canonical phase space, and gives rise to the conserved quantities (momentum
maps) (2.15) and (2.16). Our next objective is to characterize explicitly particular
solutions of Hamilton’s equations known as refative equilibria, a terminology due
to Poincaré, and examine their stability under finite perturbations of the initial
conditions.

§ 3. The energy-momentum functional: First variation

By definition, relative equilibria are dynamic solutions of Hamilton’s equations
which are also group orbits. For SO(3) these are uniformly rotating states. It
is a general fact that the relative equilibria of a Hamiltonian system with sym-
metry are critical points of the energy subject to the constraint of constant mo-
mentum map. This is the content of the general Relative Equilibrium Theorem
in § L.B of Part I. As discussed in § 2.B, for elasticity the symmetry group is the
Euclidean group acting on the left and the momentum maps (the conserved quan-
tities) are the total linear and angular momentum. According to this constrained
variational characterization, the relative equilibria can be conveniently computed
by the classical method of Lagrange multipliers as stationary points of the energy
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momentum functional H,. :Px [R3xR3*]—R defined by
Hy g i=H—§ (J—p)—1u-J—1). @G.)

Here, (1, §)€R3*xR> are the Lagrange multipliers, (s, l,)€R*xR3 are
the total angular momentum and linear momentum at the relative equilibrium
z. € P, and J(z) and J(z) are the total linear and angular momentum maps com-
puted in § 2.B. Note that the identification so(3) &~ R? is used in the preceding
expression. The explicit computation of the stationary points of (3.1) (i.e., the
relative equilibria) is considered in detail below.

§ 3.A. The effective potential: First variation

Our first step is to reformulate the energy-momentum map in an alternative
format better suited for our subsequent stability analysis (see Proposition 2.1
and 2.2 of Part I for the general result). To this end, recall that the kinetic energy
is associated with a Riemannian metric {-, -), on the state space 7@ which, in
the context of elasticity, is simply the L,-inner product weighted by the density
function; i.c.,

{8y, 823 1= [0rer 8py - Op, AV, (3.2
E-

for all 8¢y, d¢p, in T,Q. Further, recall that £p(ep) := Exe is the infinitesimal
generator of the left action of G = SO(3) on Q.

Either by a direct computation, or from the general result in Proposition 2.1
of Part I, it follows that the energy momentum function (3.1) can be written

HI‘e-‘e = 1/5-“ + Ki,ll + § iy + u: lc' (3'3)

Here, V:,:QXx[R3xR3)—R is the augmented potential function defined in
terms of the kinetic energy metric (3.2) by

I/slu = V+ L:

O

where (.4
Le () = =% [ 0ur |4 - Exg* dV,
¥

whereas K;,: PX[R*xR3] =R is the augmented kinetic energy. given by the
expression

Kf.u(z) = % f IP - Qrcl‘(u + §><‘P) |2 Qr:i! dv. (35)
k4

It will be explicitly shown below that each of the functions V; and K, indepen-
dently has a critical point at a relative equilibrium. This fact constitutes the
main motivation for rephrasing the energy-momentum map as (3.3).

To compute the first variation of (3.3) we introduce some notation. Let

]
g, 1= (p-+£dp)€ Q beacurve in Q with ¢,|...o=¢, and —(};l g. =0g;
a0
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so that dg € T,Q. This curve induces a curve in T*Q = P obtained by setting
er>z, i=(, p + £0p)E P, (3.6)

so that (d¢, dp) € T.P. We shall use the following notation for the directional
derivative

H(z,). 3.7
(U

DH(z) - 6z = %L

We shall also denote by (6 H/dz) (z) the functional derivative, which is defined in
the standard fashion as

DH(z) - 6z = <6z, 61;—22)/, 3.9)

where (-, *> denotes the duality pairing chosen, in the present context, as the
L,-pairing, and not the metric pairing (3.2).

With the preceding notation in hand, substitution of (3.6) into the potential
energy part of the Hamiltonian (2.6), use of (3.7) and integration by parts yields

DV(ep) - dp = J@;W: V(dg)dv
= — [dg-Div@W)dV + [dp-[oWINaV.  (39)
@ o2

After making use of a standard vector-product identity, we can write the first
variation of the potential function L;, defined by (3.4), in the form

DL, () - b = — J rer(EX0) - (u + Exep)dV
= [dg g dEx(u + Sx@)dv. (3.10)
3

On the other hand, substitution of (3.6) into (3.5) and use of (3.7) yields the first
variation of the augmented kinetic energy function as

DKf.u(z) c0z = f dp — Qrcfgxd'p) -[p— Qrel'(“ - §><‘P)] Q;I! dv. 3.1

4

The classical optimality conditions for (z,, §, #)€ PxR3*xR?* to be a critical
point of H, , requirc that

6 b3
‘Tant.lt(ze’ Ses u,) =0,
3.12
s 5 (3.12)
a_g Hue.l,(zm 'Y ue) =0, and E Hu,.le(zcv §¢'7 ue) =0.

The last two conditions simply tell us that J(z,) = u, and J?z,) = {,. From
expressions (3.4), (3.5) and (3.3) it follows that the optimality condition (3.12),
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holds if and only if
éKfe’"c

0z

Soutte

oep

(g.)=0 and (z) =0, (3.13)
which, in view of (3.9), (3.10) and (3.11), result in the following relative equilibria
conditions:

pP. = Qn:flge Xpe + u,]

. in &, 3.14
Div [81"We] = geXQrcf[ge X, + ue] } ( )

along with the stress-free boundary condition [8:W,] N[ = 0. Here N:&%#
— §2 denotes the unit-outward normal to &2, where S ={¥€R3: x| =1} is
the unit sphere in R3,

Conditions (3.14), which characterize the relative equilibrium configuration
¢, € Q as critical points of the augmented potential V,,, and characterize the
momentum p, € T,;CQ (defined by (3.14),)) as a critical point of Kj,, are of course
consistent with the general result in Propositions 2.1-2.2 of Part I

An interesting question is concerned with the existence of solutions to the
boundary value problem (3.14). In general, this is a problem to which the tech-
niques of BALL {1977] may be applied. In this context, the problem reduces to
the existence of minimizers for V;, (or ¥, : see § 5.D for further details). Alter-
natively, if §€R3 is small so that the relative equilibrium is near the reference
(stress-free) state, the methods of CHILLINGWORTH, MARSDEN & WaN [1983]
show that there exist slowly rotating smooth relative equilibria in a neighbor-
hood of the reference state.

§ 3.B. Interpretation of the relative equilibrium conditions

Conditions (3.14) result in the following mechanical interpretation of the pos-
sible relative equilibria associated with the action of the Euclidean group (realized
as R3xS0O(3)) on the phase space P.

Theorem 3.1. Let z, = (¢.. p.)€ P be a relative equilibrium. Define the total
mass and the position of the center of mass by

. 1
M= J Orer dv, ‘[72 v ercr‘I’.- dv. (3]5)
a M4

Then the following results hold:
i. The total linear momentum at equilibrium, J(z,) = 1., is given by the classical
formula

= M2, with §x1,=0, (3.16)

ii. The center of mass, with position vector 2, moves with constant velocity

¢° = u, + E. % = constant. 3.17)
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iii. The angular velocity §,€¢R3 at equilibrium (for given angular momentum u.)
satisfies the relation

" = febc l q',cxleﬁ (3-18)

where F9:R*— R?* is the locked inertia tensor relative to the center of mass
of the relative equilibrium configuration ,, which is given by

I =S, — MliglP 15 — ¢! @ ¢2).
where (3.19)
Ie 1= f(’rer[|'l’¢|2 L —¢. Q@ldV
&

and 1, is the three-dimensional identity tensor.
iv. The total linear momentum and total angular momentum satisfy the condition

uxl, + &xu, =0. (3.20)

v. The vector §,€R3, which defines both the axis of stationary rotation and the
angular velocity of the relative equilibrium satisfies the condition

§¢X'¢2§c =0 ‘:] and only ’:f jg;e = rbe (3'21)

Therefore, &, must be aligned with a principal direction of the locked inertia tensor
IO (relative to the center of mass).

Proof. i. Integration of (3.14), over # and use of the divergence theorem and
the stress-free boundary condition yield

§x [p.dV =0, (3.22)
4

which in view of (2.16) and (3.12), is equivalent to (3.16),. To prove (3.16), we
differentiate (3.15), with respect to time and use the Legendre transformation
to obtain

[ oo dV = [ podV =:1 = M. (3.23)
k] E4

ii. To prove (3.17) we integrate (3.14), over A, and use (2.16) and (3.12); along
with (3.15) to obtain the result

L= Mlu, + & xgll. (3.29)

Differcntiation of this expression with respect to time and usc of (3.16) yields
— 1 = §,x Mgl = §.x1, = 0. (3.25

Hence, I, = constant, and (3.17) follows from (3.24) and (3.16),.
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iii. By making use of (2.15), (3.12), and (3.14),, we can compute the equilibrium
value u, = J(z,) as follows:

e = ¢ ch
I wfprP

= f [‘rc X (Qbe X‘rr) - e X ue] Crer dv
X

= {J [Iq)clz 1, — Qe ® ‘/’e] Ocer dV} §‘- + {J OcerPe dV} Xu,. (3.26)

The substitution of definitions (3.19) and (3.15), into (3.26) results in the ex-

pression
f. = F.5 + Mg xu,. 3.27)

Now we use (3.24) to write the the second term in (3.27) as
Myl xu, = —MgQx (& xq?) + g2 xl,
= =Ml 1y — ] @ gl & + g <. (3.28)

By combining (3.27) and (3.28), and using (3.19), we obtain cxpression (3.18).
iv. To prove (3.20) we recall that the left SO(3)-invariance condition (2.11) on
the stored energy function implies the relation

3
A):_,I @ xT' =0 where T*:=[6.W]E". (3.29)

Here {E*} is the standard basis in R3 and T4 is the nominal traction vector. By
the divergence theorem, the invariance requirement (3.29) along with the stress-
free boundary condition results in the relation

3
[ xDiv W 1dV = [q.»[6WNIdV — 3 [ xT!dV =0. (3.30)
3 e A-1 A

The substitution of (3.14) into the left-hand side of (3.30) yields the equivalent

expression
[ e x[§exPeldV = 0. (3.31)

ES

By making use of Jacobi’s identity, the equilibrium condition (3.14),, and (3.24)
we find that

0= 5x(funpav)+ [ px(Exg)av
o £}
= § X, + f et (S X G + U)X (Ee X @) dV
o
= §ex He + U X fﬂ’ref(gc \’“f‘e) dav
2

-

S.xpe+ux [p.dv
o

i

= E, X, i u,xl,, (3.32)
which proves (3.20).
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v. To prove (3.21) we use (3.18) along with (3.17), (3.16) and Jacobi’s identity
to obtain

Sxp = Ex I + E.x(@?x1)
= §. X I, — @dx(,xE) — L. x (5. x¢)
= §.x I — L.x(¢2 —u)
= & X I, — uxL, (3.33)

which in view of (3.20) implies (3.21). [

Remarks 3.2. 1. Since the center of mass moves with constant velocity, and I, =
J(z,) is constant, without loss of generality we may assume that

@2 =0 implies ¢?=0. (3.39)

This requirement amounts to sclecting a reference frame with origin at the center
of mass of the equilibrium configuration. Relative to this coordinatc system one
has

u,=0, and JS°=.,. (3.35)

One then speaks of a center-of-mass reduction. In what follows we shall assume

that this reduction is made and drop the subscript (i.e., H, , = H,, etc.)

2. Condition (3.20) is the concrete version of the abstract condition adgc.u,_, =0,

(see Proposition 1.2.ii of Part I) since for G = SO(3) one has ad_:cp‘. = §. X u,.
We conclude this section by providing a mechanical interpretation of the

effective potential V;_ in the context of elasticity. As remarked above, we assume

throughout that a center-of-mass reduction has been made so that (3.35) holds.

The relative equilibrium condition (3.14),, and the stress-frec boundary con-
dition, which constitute the optimality conditions for the effective potential V; ,
lead to the following boundary value problem for the relative equilibrium con-
figurations: Find the configurations ¢, € Q such that

Div [0:W(De.)] + oreeBlg) =0 in &,

(3.36)
[0W(Dg)IN =0 on 64.

Here, g B:Q— R? is an equivalent configuration-dependent body force given
by

CrerB(.) 1= Orer |§c|2‘7’el »
where 3.37)

(P} =P — (. * §.) lg_clzv

which has the physical interpretation illustrated in Figure 3.1. The body force
o..¢B(¢p.) gives the centrifugal force, acting on a configuration ¢, € Q in a rela-
tive equilibrium, corresponding to a stationary rotation about the axis §./|5, |
with constant angular velocity |§,|.
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‘Center off ;.7
. TMossTCh

ere B02

Axis of rotation

Fig. 3.1. Interprelation of the loading term g, B = p 15,12 ¢}
as a centrifugal force,

Note that the centrifugal force o, B(¢q) is a configuration-dependent con-
servative body force with potential function given by L. :Q-»R. Making use
of a standard vector-product identity, we can writc (3.4), as (recall relation
(3.35)2)

L ()= -} & SF(p) &, (3.38)
where
Iy = J el P 1s —¢ RgldV. (3.39)

That Lsr(tp) furnishes the appropriate potential for the loading term g,.B(ep) in
(3.36) is the result of (3.10).

§ 4. The pure traction boundary value problem for the relative equilibria

In this section we consider the structure of the boundary valuc problem for
the relative equilibrium configurations. By examining the left-invariance proper-
ties of the augmented potential under the (left) action of the proper orthogonal
group, we develop a crucial decomposition of the tangent space of variations,
which plays a fundamental role in our subsequent stability analysis. We consider
first the general case of the pure traction boundary value problem in elastostatics
in which the configuration-dependent loading at an arbitrary configuration does
not possess full invariance under the left action of SO(3). Subsequently, we specialize
our results in § 4.C to the the boundary value problem for the relative equilibrium
configurations.

§4.A. The pure traction boundary value problem in elasticity
with partial SO(3)-invariant, configuration-dependent loading

Consider the following general Neumann boundary valuc problem: Find the
configurations ¢, € Q such that
Div [2, W (D¢ )] + 0,Blg) =0 in 4,

4.1
[exW(Dg )IN =0 on é%. @.n
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Here g,B:Q—>R3 now denotes a configuration-dependent body force which is

assumed to be derived from a general potential L:Q — R according to the rela-
tion

—DL(p.) - dp = (O, 0B(p.)y for all dpe T, Q. 4.2

In view of the definition (3.8) of the functional derivative, this condition is equi-
valent to

oL
anB(rl;e) == Fp (‘pe)9 4.3)

and thus boundary value problem (4.1) may be re-stated as

&
P
The weak form of the boundary value problem (4.1) is given by
G(per 0p) 1= [ [6rW(Dep)): V(o) AV — [ oceB - Op dV, 4.4)
# &

for all dep€ T, Q.

Next, we record the necessary conditions for the existence of solutions to
boundary value problem (4.1).

i. Let d¢ = constant which, in view of (2.2), is in T, Q. Since V(dp) =0,
we conclude that

. L
[ouBgdav =~ [S(g)dv=0. 4.5

ii. Let ¢ = Lo(gpe) = & X, be a superposed infinitesimal rigid-body motion,
which, in view of (2.2), is also in T%Q. It follows that

Violpd) = EDg.- 4.6)
Since 7, = 8:W(De,) [Dep.} is symmetric by (2.11), we have

G(‘f)ﬂ go(‘fc)) = jj[ [EFW(D(’)e) D‘hT]i ng— .J‘ Qrch(¢v) * gx(pe av

=-£- f‘f'e XQreI'B('pe) dv =0, (47)
o
which must hold for all §€R3; hence

[ q’errefB(q’e) dv = 0. 4.8)

#

Conditions (4.5) and (4.8) are the statement of force balance and moment balance
Jor the body force at equilibrium,
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An equivalent formulation of condition (4.8) in terms of the potential L is

= - J ereeBlge) * Soly.) dV

oL
- <6_q>, . Lol

= DL(.) - Solere)s 4.9)
which, upon using the definition of Lie derivative (denoted by £), leads to
EoL) (g) =0,  for all £€ so(3). (4.10)

The preceding conditions are therefore equivalent to the requircment that the
loading potential L:Q — R be infinitesimally left-invariant under the action of
the Euclidean group at an equilibrium solution ¢, € Q. Assuming that transla-
tional invariance holds, we are led to the requirement that

L(¢,) must possess full infinitesimal SO(3)-invariance at @, € Q. @.11)

The crucial observation to be made is that while L must possess full SO(3)-
invariance at an equilibrium solution ¢,€ Q of the boundary value problem (4.1),
in general, L:Q-—~R need not be invariant for all ¢ € Q; Equivalently, the
loading term g..cB(¢.) need not be fully SO(3)-invariant, even at the equilibrium
point .. As we shall see below, this is the case for loading which results from
centrifugal forces in a stationary rotation of the body.

Our objective in this section is to provide a precise characterization of the
space of admissible variations for boundary value problem (4.1), and to introduce
a split of this space that plays a crucial role in our subsequent analysis. This
characterization is intimately related to the invariance properties of the loading
term g.B(e.). To motivate our discussion, we start out by considering the case
of a potential function L:Q~>R which possesses full SO(3)-invariance at any
@ € Q. The more important case of interest in which L is only partially SO(3)-
invariant (away from equilibrium) will be considered subsequently.

4.A.1. The case of full SO(3)-invariant loading. Assume that L:Q —R is
SO(3)-invariant at any @ € Q, not necessarily an equilibrium solution of boundary
value problem (4.1). This assumption means that

L(Ap) = L(g), for all p€ Q and A€ SO(3). “4.12)

Differentiating (4.12) we find that it implies objectivity of o, B(¢) at ¢, € Q.
ie.,

A0, B(Ag.) = 0,cBlgp.).  for all A€ SOE3). (@.13)

By taking A = exp [eq] for any 5 € so(3) and differentiating (4.13) at £ = 0
we obtain its infinitesimal counterpart, i.e.,

d -
EnglowerBD (90) := — L5XP [(—ef]l oeeBlexp [enl¢) = 0. (4.19)



BN

8>

Stability of Relative Equilibria in Nonlinear Elasticity 77

With the preceding observations in mind, we examine the characterization of
those trivial solutions associated with a given solution to the boundary value
problem (4.1). Let ¢, € Q be a solution of (4.1). Consider an SO(3)-orbit of con-
figurations:

@t = Aq,, for AeSO(3). 4.15)

One writes ;" € {SO(3) - ¢.]. Since the stored energy function is, by assumption,
objective we have 9 W(ADg) = A 8cW(Dep). Therefore

G, dq) = [[A2W(Dp)):V (dp) dV — [ o.cB(Aep,) - Sep AV
E4 o
= [ 0wrAB(q.) — B(Agp,)] - o dV, (a.16)
£

which vanishes for all ¢ € T, Q if and only if the condition of objectivity (4.13)

holds.

The preceding (standard) argument shows that any configuration given by
(4.15) in the orbit SO(3) -¢. of a solution ¢, € Q is also a solution of boundary
value problem (4.1). Trivial solutions associated with a given solution to (4.1)
arc therefore eliminated by restricting the admissible configurations for problem
(4.1) to the orbit space:

€ := Q/SO(3). 4.17)

That is, configurations ¢, € @ modulo rigid rotations of the form ¢; = Aep,,
for A€ SO(3), are identified by the choice of € in (4.17). The space of admissible
variations, denoted by 77, is then simply the tangent space to the quotient mani-
fold ¥; i.e.,

¥ =T, Q/lso(3) -], (4.18)
where
[50(3) ) = {mo(p) = nxe. € T, ,Q | 7 € s0(3)}. (4.19)
An explicit realization of ¥~ is obtained through the identification
¥V 2 {dp € T, 0 | (39, no(ge), = 0, n€ R}, (4.20)

where (-, -), is the Riemannian metric defined by (3.2).

4.A.2. The case of partially SO (3 )-invariant loading : Decomposition of the space
of variations. Now consider the case of interest for which the loading term g,¢B(¢,)
is only partially SO(3)-invariant. In view of condition (4.10) this assumption means
the existence of non-zero elements 7)€ so(3) for which (£,, ewcB) (9.) + 0.

Consequently,
G = {£ € 50(03) | (EcplorerB)) () = 0} C 50(3) @.21)
is no longer the full Lie algebra so(3). Using standard properties of the Lie deri-

vative one can easily show that ¢ is, in fact, a Lie subalgebra of so(3), since
[£,p)€% for S, € 9F. Let G be the associated symmetry group; i.c.,

G~= {A € 80(3) | A1érefB(/l(f’f) = QrefB(‘pe)}' (422)
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As in the case of a fully SO(3)-invariant loading, the configuration manifold is
now taken as

€ :=Q/G. 4.23)

The tangent space of admissible variations, now given by T,,‘_Q/[?;’ ‘@.], is then
isomorphic to the constrained subspace

V1= (€T, 0 | <09, Lolpdd, =0, for all &€ G}. (4.24)
Next, we introduce a splitting of ¥~ of the form
¥ =Y ric ® Vinr (4.25)

by means of the following construction:

i. The tangent space of rigid body variations ¥ g;c. We define a subspace
@1  s0(3) by the orthogonality condition

L = (€ 503) | {no(@e), Sol@e)e = 0, for all &e @) (4.26)
Note that from the definition of infinitesimal generator and (3.2), we have
<'IQ(‘I’¢)9 ;Q(‘po)>x =558, (4.27)

where ., is the locked inertia tensor at the relative equilibrium configuration
¢. defined by (3.19). (Recall that #, = #2, since a center-of-mass reduction is
assumed throughout). Since .7, is pos:tlve-deﬁmte (4.27) defines an inner product

on €. Moreover, since ¥ @ 91 = so(3), we have
(£4pl0erB]) (ip0) + 0, for all dj€ G (4.28)

ie, 9L C so(3) generates those rigid body variations for which the loading is
not SO(3)-invariant. We set

Y'ri 1= {nolp) €T,,Q | H€ g1} 4.29)
From (4.24) and (4.26) it follows that ¥ g, C ¥'. To motivate the defining

condition of the subspace ¥,y given below, we first observe that the following
result holds.
Lemma d.1. For any #€ % and €9 one has
{(e @) = —<(E, onB 0. (43
\\Fio ) e Cole) ) = —Eip2erB) (), Lol9e)re = (4.30)

Proof. From relation (4.3) and the definition of the Lie derivative we have

( "0 3¢ ) (Pe) = —(£,52:B) (9)

exp [—en) o eBlexp [eijlq,)

-‘E =0
= 02eB(g.) = 0ces VB() 17 (4.31)
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Since VB(¢p,) = —V2L(¢,), it follows that

oL,
U022 (s £660 ) = [ ool - VLR o)
\ 59” / a2

+ '}QrefB(‘Pc) * ‘;xq’e] av. (4.32)
Using Jacobi’s identity on the second term of (4.32) we obtain
oL . R
{(er0 35) @ S0) = = [ 10l VB . — EBGI) Y
- erefB(wc) ) ['I/X;] ¢.dV
£

= — [ no(g.)  (E;p2eeB) (7) 4V

&3

- erel‘B('pe) ‘ ['77 5’:]0 ((pr) dv. (433)

S

By definition of ¥, (£;,0rB) () =0 for {¢ @. On the other hand, by the

invariance condition (4.10), we have
- erch(q7¢) * [739 é:]Q (q%) dV = DL(‘rc) b [ij’ S:]Q (‘f/e) =0, (4'34)
4
so that (4.33) vanishes, and the result holds. []

ii. The tangent-space of internal deformations ¥ jyr. Loosely speaking, the
oL
result in the lemma above says that the loading term -5;(7/‘.), which is not SO(3)-

invariant as a result of condition (4.28), “looks invariant” when tested by varia-
tions £o(¢.) generated by ¥. We define the space ¥ yr C ¥ precisely by this
condition, but now enforced on %41, i.e.,

V’A’T = [a¢ E 1/.

oL .
<(£"06_fr) (90, 6!p> =0, forall 5€ fyl}. 4.35)
From Lemma 4.1 we conclude that ¥ g;6 N ¥'jnr = {0}. Furthermore
dim [¥ rig) = dim [@1] = dim [s0(3)] — dim [%]; (4.36)

since the number of constraints in (4.35) equals dim [¢-] it follows that ¥ =
V[u(; 2] VINT as requircd.

We show below that the preceding construction leads to the following crucial
result: The second variation of V + L block-diagonalizes on ¥ gig X V. Ob-
serve that by assumption, V + L has a critical point at ¢, € Q and, therefore, the
second variation D2[V -+ L] (g.) is symmetric and makes intrinsic sense.

Remarks 4.2. 1. The space ¥ ;yr may be viewed as a constrained subspace of
T 0 obtaincd by enforcing the orthogonality condition {(d¢, Eo(p)d, =0
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along with the requirement in (4.35). The result in Lemma 4.1 then shows that
these two conditions are consistent.

2. Alternatively, one could define ¥";yr by the requirement that {zng(e), dpD,
=0 for ¢ g1, However, as shown in § 6.D, such a definition does not lead to
a block-diagonal structure of the second variation of [V - L]. This latter definition,
on the other hand, resuits in a diagonal structure of the symplectic two-form.
The structure of the symplectic two-form is examined in Section § 5.C.

3. The construction given above leads to the following decomposition of the
tangent space 7;, Q:

-— . 7
2= 1@ 9] ©Vme® ¥inr. 4.37)
—— —
SO(3)-invariant rigid infinitesimal
__body variations deformations

all rigid body variations

4, In general, the decomposition (4.25) is valid if the locked inertia tensor
is nonsingular or, more generally, if the Arnold form is non-degenerate; see
Part I, § 2 for a detailed discussion.

§ 4.8. The second variation:
Block-diagonalization in elasticity

Here, we examine the structure of the second variation at a relative equilibrium
. € Q. We show in the concrete setting of elasticity that the decomposition
(4.37) leads to a block-diagonalization of the second variation of the effective
potential V.

4.B.1. The second tangent of the internal energy. We start our analysis of the
second variation by recalling the standard expression for the second tangent
associated with the internal energy, namely,

D*V(g) 8@y, 8qpz) = [V(depy): Al@) : V(Sgp,) dV, (4.38)
@

for all d¢,, dgp, € T,Q, where A(g) is the first elasticity tensor at ¢ € O given

by
aw

A((p) = W v Dy . (4.39)

Observe that, except for dead loading, in general the first variation of the internal

energy term, V:Q — R, does not have a critical point and, therefore, the second

variation does not make intrinsic sense; see ABRAHAM, MARSDEN & RATIU [1988,

p. 113]. We shall, therefore, refer to (4.38) as the second tangent to V(¢p) at ¢ € Q.

Next, we recall that the frame-indifference condition (2.7) implies that

W(X,F) = u_/(x, C) where C:=F'F is the right Cauchy-Green tensor. We

use the notation C(¢p) := D¢’ Dep. From definition (4.39) of the clasticity tensor
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A(p), we obtain the relation
V(dpy): Al@): V(8¢2) = V(dg1): [V(d¢g2) S]
+ 4 [DC(p) - ip1]: Cp) : [DC(g) - Op2).  (4.40)

Here S := F ' & W = 2acu7 is the symmetric (second) Piola-Kirchhoff tensor,
and
aorw
Clq) i=d—7= 441
) 8C &Clc.. by Tpy (441)
is the second elasticity tensor. Furthermore, we have
DC(y) - dep := Dy” V(8¢) + [V(d¢))" Dep. (4.42)

Formulac (4.39)—(4.41) are standard; see, e.g., MARSDEN & HUGHES [1983, Chap-
ter 2].

At a relative equilibrium ¢, € @, the second tangent of ¥, as a bilinear form
evaluated on (o(@.), d¢) € ¥ g X ¥, is given by the following

Proposition 4.3. At an equilibrium configuration ¢, € Q, the second tangent of V
is

D? (ep.) (‘5% 'lQ('fc)) = f o - '}Qtefa(q’c) dv, (4‘43)

Jor any dqp €V and ny(y,) € ¥ gic.

Proof. First observe that since #o(ep) = 1 x¢p we have V(ng(g)) = 5F, where
F = De¢. Relation (4.42) then yiclds

DC(¢p) - nolg) = FTyF + FT4'F = 0, (4.44)

since 5+ 5’ =0. Hence, ker [DC(g,)] = [s0(3) ‘¢.]. Consequently, if
no(9e) € ¥ ri» then by (4.38), (4.40) and (4.44) we have

D*V(g.) (89, no(9)) = J’f V(@) : [V(no(pe)) Sel 4V (4.45)

Using the divergence theorem, the stress-free boundary condition and the fact
that V(no(eg.)) = #F,., we reduce (4.45) as follows:

D*V(gp.) (8¢, no(e.) = gf V(ég): [9F.S.1dV
= — J o9 -Div[i @:WJ1dV
+ [ yx[0W.N)dA4
=— a}’ dep - ) Div [2sW,]dV
= xf :w * owesB(gpe) AV, (4.46)

which completes the proof. []
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4.B.2. The second tangent of the loading potential. Now consider the potential
term L:Q-—R. We have

Proposition 4.4. At a relative equilibrium o, € Q:
D’L(p.) O, no(¢)) = — [ 0 - 0 VB(e,) 119(ep.) dV, 4.47)
E

Jor all yo(p.)€ ¥V pig and dpe ¥,

oL
Proof. Recalling that 6—9) = —p.cB we have
DL(¢p) - 6¢p = — [ 0,(Blep) - 0 dV, (4.48)
Ed
so that

DIDL(g.) - 5] * ng(epe) = — [0 - 0rec VB(p) miplep) 4V,  (4.49)
£

which proves (4.47).

As alluded to above, ncither D*V(g,) nor D*L(¢p,) make intrinsic sense
(independent of the coordinate chart) since these functions do not possess a critical
point at ¢, € Q. However, V -- L does have a critical point at ¢, € Q and its
second variation defines a symmetric bilinear form. Furthermore, this bilinear
form possesses the following crucial property:

Theorem 4.5. (Configuration Block-Diagonalization Theorem). Let ¥ g, and
¥ inr be defined by (4.29) and (4.35), respectively. Then

D[V + L) (g.) * (no(ep.). dp) = 0, (4.50)
Jor S € ¥ yr and no(.) € ¥V pic.

Proof. Combining the results in Propositions 4.3 and 4.4, and making use of the
definition of the Lie derivative we obtain

Dz[V + L] (‘T)c) ' ("Q((pe)’ 6"’) = df 6(17 ) grcl'['— '}B(q)r) -+ VB(%) ' ‘s‘l’] dv

d - -
== [op: d—l exp [~ 9recBlexp [l dV
E4 € le.0

== _/j[ dp - (£':Q9refBD (po) dV
oL
= <(£,,Q %) (7). 6rp>. @.51)

)
Thus, if o,.B = —;Tp is SO(3)-invariant, the second variation of V + L

vanishes identically when cvaluated at (9o(@,), d¢) € ¥ gig X ¥". On the other
hand, if g..cB only possesses partial SO(3)-invariance, result (4.50) follows from
(4.51) and the defining condition of ¥y, in (4.35). O
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§ 4.C. Application: Centrifugal body force in a stationary rotation

We now apply the results of the preceding sections to the boundary value
problem for the relative equilibrium configurations ¢, € @ formulated in § 3.B,
[see (3.36)-(3.37)]. Here the potential function for the external loadingis L:: 00X
R3? >R defined by (3.4),. We have

i. The Lie algebra % C SO(3) associated with the symmetry group of L: at
a configuration @€ Q is ¥ =9, , defined by

9., = (5€500) | Ex § = 0} = {£€5003) | [§, &1 = 0. 4.52)

This result follows from the computation below which uses the fact that SO(3)
acts by isometries:

(£:QL$,) (p) = —<£cQ(rp) Eeo(®)s Seo(PDe
= —[&, &1o (P): Seo(®)s
=0, for [&, {)=0. (4.53)
It follows that dim [¢.]= 1. Cleartly G, = G C SO(3) is the group of rota-
tions about &,.

ii. At a relative equilibrium z, = (¢., p.) € P, with total angular momentum
ne = Jz.), 9, coincides with G, , the Lie subalgebra invariant under the co-

adjoint action, i.e.,
g, :={E€ s0(3) |ad(,) = Exp. = 0} (4.54)
Furthermore, the subspace @’Elf coincides with the orthogonal complement .‘6’,{‘, in
the standard Euclidean inner product, i.e.,
gt ={fes03)|n- & = 0}. (4.55)

This conclusion follows from the equilibrium condition #.§, = A§,, expression
(4.27) and definition (4.26).

iii. At a relative equilibrium configuration . € Q, the loading is equilibrated
in the sense that conditions (4.5) and (4.8) hold. Equivalently, by (4.10), L. (¢.)
is infinitesimally left-invariant under the full group SO(3). The abstract proof of
this fact is contained in Part I.

With these results in hand, we consider the explicit characterizations of the
spaces ¥, ¥ gric and ¥ vy for boundary value problem (3.36). We have

Proposition 4.6. A relative equilibrium configuration ¢.€Q is a solution o f
the weak form (4.4) of the boundary value problem (3.36) with tangent space of
admissible variations given by

vV = {6V € TtreQ I §. -gf Qrecpe X Oep AV = 0}' (4.56)
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Moreover, V" splits as V" = ¥ g1 ® V' iny, Where

Yric = {olpe) = yx@. € ¥ | HEG; e, n- & =0}, (4.57)
and
Viny = {0 € ¥ | - ident: (3¢) = 0, for all fj€ Yi} (4.58)
where
ident;, (09) := [ 0uerl2E Xp)X 09 — E X (X0 dV.  (4.59)
#

Note that the condition in (4.58) is equivalent to requiring that ident; (0p)e9,,
Jor all dep€ ¥ ypy.

Proof. The characterizations in (4.56) and (4.57) follow from the definitions (4.24),
(4.29) and (4.26) along with (4.54).

To prove (4.59) we compute the defining condition in (4.35). Using the defi-
nition of Lie derivative and the fact that g,B(9,) = —g,ec&. X (§. X¢p.), We have

oL, d ) )
( "0 bep )(%) = _Zl exp [—en] geB(exp [en] )

= Qref{" XB(¢0) - VB(U X(pv)}
= —ree{ 1 X [E: X (5 XPe)] — & X [E. X (nxp )]}, (4.60)

Making use of standard vector-product identities, we reduce (4.60) to

oL,
(E'IQ 8 )(‘I’e) = ’("w X ')) XPe — [(be X 'I)X bc] X OrerPes (4'6l)

where P, := 0,8, X¢,.. Therefore, the condition in (4.35) yields

oL
(. (20 5) 00} = Gox - [ Rpoxdy — &xeudyx gl av

=(§xn)- ident; (d¢) = 0. (4.62)
Since §;/£ 5+ 0 lies in %, for any j€ %} . the result is proved. [J

Remarks 4.7. 1. The cxpression (4.57) agrees with definition (2.26) of Part 1 for
ident; : ¥ — ¢*. In fact, from (3.19) we have

ident;_ (8¢) := —D[H(ep,) - 0p) &,
=-D [ f‘PeXQrer(ge X‘Pc) dV] ) 6(’7
¥ ]
=— J' [0 X 0rer(§e XPe) + Pe X 0rer(Ee X Op)] dV.  (4.63)

Using Jacobi’s identity and rearranging terms we recover (4.57).
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2. Expressions (4.57) and (4.58) for ¥ ¢ and ¥, respectively agree,
therefore, with the general definitions in Part I, namely, equations (2.34) and
(2.35).

3. There is also a block-diagonalization result on variations in phase space;
see PartI and § 6 below.

§ 5. Stability analysis by the reduced energy-momentum method

In this section we examine the stability of the relative equilibria characterized
by Theorem 3.1 using the reduced Energy-Momentum method discussed in
the general setting of Hamiltonian systems with symmetry in § 2 of Part I. The
method exploits a reformulation of the energy-momentum map H, . which has
two remarkable properties:

i. Enforcement of conservation of total angular momentum is built at the
outset into the Hamiltonian, which now coincides with the energy-momentum
map, thereby bypassing the need for Lagrange multipliers.

ii. The second variation test for formal stability of the relative equilibria
is formulated solely in terms of the configuration variables. Equivalently, the
method operates on the configuration space Q and not on the full phase space
P = T*Q and leads, therefore, to a substantial reduction of the original problem.

As discussed below, the crucial idea is to introduce a change of variables in
the original Hamiltonian via a shifting operator which projects the phase space P
onto the level set J-'(0). In terms of these shifted variables, the restriction to the
level set J='(0) of the original Hamiltonian can be easily enforced at the outset,
and leads to a particularly convenient expression involving an amended potential
introduced by SMALE [1970a, b] but having its origins in early work of RIEMANN
(1860] and RoutH [1877]. In this setting, the critical points of the kinetic energy
correspond to zero values of the momenta, and the critical points of the amended
potential define the relative equilibrium configurations. Furthermore, the test
for definiteness of the second variation reduces to a test for definiteness of the
amended potential at the relative equilibrium configuration.

§ 3.A. The reduced Hamiltonian and Smale’s amended potential

The reparametrization of the energy momentum function possessing proper-
ties (i) and (ii) summarized above is constructed according to the following steps:

Step 1. The shifting map. Introduce a map X: P— P which projects the
phase space P onto the level set J-'(0) C P by means of the formula

() = (g. p — FL(F ' (¢) I (9))
= (¢, P — 0rerF () J(2) X@). .0
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where J(z) is the total angular momentum. Note that .#~'(¢) J(z) gives the angular
velocity associated with the angular momentum J(z). That the map defined by
(5.1) does in fact project P onto J~'(0) can be verificd by the following calculation
(see Proposition 2.2 of Part | for the general proof):

J(Z(@) = Jfﬁ X [P — oI~ g) ) xq ) dV

=9 ~ [ Jewliv 1s — ¢ @ 71V | (#-1() de)
— JG) — I@) S @) IE) = 0. 5.2)

The shift term g F~(¢) J(z2) X@ can therefore be interpreted as defining the
momenta of an ‘equivalent’ rigid body with shape defined by ¢ € Q and total
angular momentum J(z). One speaks of the ‘locked systen’ at configuration .

Step 2. Reformulation of the energy-momentum map. In terms of the shifting
map Z:P— P, the original Hamiltonian H = V 4 K, where V and X are
the potential and kinetic energies respectively, can be expressed as

H(z) = Vyilg) + K(X(2), (5.3a)
where
Vi) == V() + 1 J(2) £~ (g) J(=). (5.3b)

This result can be verified by a direct calculation using definition (5.1) (see
Proposition 2.2 of Part I). Restricted to the level set J='(u,) C P, the cnergy-
momentum function and the Hamiltonian coincide. From (5.3) we therefore con-
clude that

H, ()114p = HOlrsp = Vo g) + K EE) -6 X))
where V,(¢):Q—R is Smalc’s amended potential defined by (5.3b) with
J(z) = pte.

Step 3. Change of variables. Finally, we consider the Hamiltonian H|;-i,,»
defined by (5.4) as a function of the shifted variables

2 =(g.P) = (0, P — 0et(I () 1) X 7)€ T7(0). (-5

This change of variables leads to a Hamiltonian function 4, :J-'(0) R,
referred to as the reduced Hamiltonian in what follows, and given from (5.4) and
(5.5) as
h, () =V, (¢) + K(P.).
Vilo) == V(g) + tu. I7(p) ne.

The preceding construction results in a (reduced) Hamiltonian function in which
the restriction to the level set (e.g., the constraint of constant angular momentum)
is replaced by the requirement that = be in the level set J='(0). This proves par-
ticularly convenient in calculations. In particular, in terms of these shifted vari-

(5.6)
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abies, the relative equilibrium conditions take the following form. From (5.6),
the first variation of 4, is given by

Dh, )+ 83 = DV, (¢)- 8¢ + [o:slp - dpdV. 5.7
£

Making use of the well known cxpression for the derivative of the inverse of a
tensor, we can express the first term in (5.7) as

DV, () dp = DV(¢p) - d¢ — § I () 1, - [D-F(p) - 05p] I~ p) p1.. (5.8)

In view of (3.4), (3.9) and (3.10) (recall that u = 0 since a reduction to the center
of mass is assumed at the outsct), it follows from (5.7) and (5.8) that the critical
points of h,,e are characterized by the conditions

"o
o
where §.:= #~!(¢,) gr.. Conditions (5.9) are equivalent to conditions (3.13) and

therefore equivalent to the relative equilibrium conditions (3.14) since, by the
change of variables (5.5), we have

(SVSL' ~
(¢) = Fs (p)=0 and p.=0, (5.9)

p.=0 if and only if p, = 0,5 X, (5.10)
which is the relative equilibrium condition (3.14),. In summary, the relative
equilibrium conditions (5.9) associated with the reduced Hamiltonian 4,, are
identical to those associated with the energy momentum map H, derived in § 1.

For the general statement of this result, essentially due to SMALE [1970a, b], see
Part I, § 2. To simplify our notation in what follows we shall write & in place

of g = j_l(¢e) Hy-
§ 5.B. The second variation of the reduced Hamiltonian:
The reduced test for formal stability

We start our analysis of the second variation by characterizing the space of
admissible variations at a relative equilibrium z, € J-'(0), denoted by &, C T: P

in what follows. First, any dz¢€ &, must lic in ker [J-'(0)]; equivalently,
DIG)- 8z = [[S8qpxp. +q.xpldV = [g,x8pdV =0, (5.11)
a4 #
since p, = 0. By taking the dot product of (5.11) with any £€R3?® we obtain

<8P, Lolq)y = J Eolee) dpdv =0 (5.12)
k4

- —
for all &€ so(3). Hence, admissible variations dp are L,-orthogonal to infinitesi-

mal rigid body variations of ¢,. Equivalently, 5; must lie in the annihilator
(relative to the L,-pairing) of the tangent space so(3) - ¢, to the orbit SO(3) - ¢,
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denoted in what follows by [so(3) -¢.]%. Second, admissible variations (d¢, 67)')
€ ¥, must be taken modulo directions along which the second variation of .,

vanishes identically. These directions are precisely superposed infinitesimal rota-
tions with axis §€R3. The preceding two conditions lead to the following con-
crete realization of the space ¥,:

pa— —_—
FLo :={(dep, 8p) | dg € ¥ and (8p, So(g.)y = 0 for all L€R3). (5.13a)
Equivalently, &, is given by
Lo =V @ [50(3) -] (5.13b)

Next, we compute the second variation of the reduced Hamiltonian /, .
Differentiation of expression (5.7) for the first variation gives

Dzhl’c(gt') (6:’1, (s.‘z'z) = DZ ‘/Ile((pt‘) (6"’]. 6([’2) '*‘ fg;f‘] 6?[ N dpz (1V. (5.]4)
B

The second variation of the amended potential V), is readily obtained from (5.8)

as follows. Using the chain rule, the relative equilibrium conditions, and the fact
that ident; (d¢) := —D{I(¢,) §] - d¢p, we obtain

D2V, () (O0py, 6¢p2) = D*V(p,) (0¢p,, Oepa) — & - [D2F(p.)  (Oepy, 6p2)] &
+ ident; (3py) - F~'(¢p.) ident, (5p,). (5.15)

In view of (3.4), and (3.10),, the first two terms in (5.15) give the second variation
of Vi¢,), which can be recast in the compact form:

D*Vq.) (bqpy, qp2) = D*Vig,) (O, O2) — f(’refgx(s‘f’l *Sxdg,dV. (5.16)
#

The second variation D2V, then takes the final form
D2V, (g.) (6py, 6p2) = D*Vilep,) (Ogpy, bep2)
+ idcnts (6”’[) . j-l((p‘.) ident‘: (()Wz). (5‘7)

In view of (5.17), it is apparent that expression (5.14) does not involve terms
p— —

coupling d¢ and dp. Furthermore, the term involving dp is the second variation

of the kinetic energy, which is clearly positive-definite. Therefore, it follows that

definiteness of the reduced Hamiltonian restricted to the constrained subspace

& holds if and only if definiteness of V,, restricted to ¥~ holds (see Part I. § 2

for a gencral proof). To summarize:

DV, (p)ly xy > 0= z, = (¢, P) € P is formally stable. (5.18)

Thus, as pointed out above, the reduced test (5.18) for formal stability involves
only configurations and configuration variations. Furthermore, the constraint that
the total lincar and angular momentum be conserved is automatically enforced.

"
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§5.C. Implementation of the reduced stability test:
Block-diagonalization of the amended potential

The implementation of the reduced test (5.18) for formal stability of a rela-
tive equilibrium relies crucially on the fact that D? V. (v.) block-diagonalizes on

¥ ric X ¥ inr. A concrete proof of this result in the context of elasticity is given
below, and rests on the following identities.

Lemma 5.1, Let 7€ s0(3) and d¢ € ¥". Then, the Sollowing identities hold:
i
D*V(ep.) (g, 0p) = £ 5 - ident, (3¢p). (5.19)

ident:(0p(9.)) = —yxp, — F(Ex ). (5.20)

Proof. To prove (5.19) we make use of the general result (4.50). From expression
(3.37) for the body force in a relative equilibrium, the definition of Lie derivative,
and repeated use of Jacobi's identity we obtain

_(£r109r:I"B) ('Te) = Qrcl‘{_ yx [§>< (§ X‘Pc)] -+ § X [‘.E X (" X(Ft)]}
= Orerl(§ X)X (% &) -+ Ex [(§x p) xep.]}
= ed2EX ) X (§XPe) — [(Ex W) x §) <@}, (5.21)

Substitution of this expression into (4.51) and comparison with (4.59) in Lem-
ma 4.6 yields (5.19).

Making use of (4.59) and repeated use of Jacobi's identity, we obtain

ident: (no(.)) = [ 2P X (%) — 2re §X (e X (<))} AV
K

= [{{=0x(gexP) ~ e (P. X W]

K4

= treal(BXp) X (5Xe,) + &< (g, < (xp )} dV
= f {_ X (q‘e Xpr)"*' OrerPe X [(g :\"[’e) < 'l]

F )

+ O X [EX (g xp )} dV
= [{=0xX(FeXP) — 0restpe X [(§ % ) xep} AV
E 4

= —yxp, — F(Exy), (5.22)
which proves (5.20). O

Note that relation (5.20) follows directly from the abstract result in Propo-
sition 2.3 of Part I [eq. (2.38)] merely by observing that ad¥ p, = yxp, for
G = SO(3). The preceding lemma immediately yields the following block diago-
nalization result,
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Proposition 5.2. (Block-diagonalization for elasticity). The second variation of
V, at ¢.€Q equals zero on ¥ gpigX Vnt, i€,

Vy‘.(‘pc) ('Io(‘l’.-)' 'S‘P) =0, for ("» ”‘P) € 9}',{' VNt (5'23)

Proof. '_]‘hat D*V(p.) (nolep.). dp) = O follows from (4.59), (5.19) and the fact
that n}x\g‘ € (ﬁ,}c for 5€ (9’,{;_. a result also in agreement with Theorem 4.5, On
the other hand, by (5.20) we have

ident: (d¢) - F'(p,) ident; (3¢) = ident, (dgp) - [F (g x ) + nXx 5l (5.24)
Next, we observe that #~'(yxg,) isin 4 }. since

§- 5\ (yxp)=F'§ yxp,
=y, nxXp, =0, (5.25)

Thus, (5.24) vanishes by the characterization of ¥"yr in (4.59), and so (5.23)
follows. [

As a result of the preceding block-diagonalization theorem, the reduced test
(5.18) for formal stability of a relative equilibrium is equivalent to the following
two uncoupled conditions

D*V, (PIly gy x>0 and DV, (9o i npxyynr > 0. (5.26)
These conditions for formal (orbital) stability agree with the abstract results in

§2 and § 3 of Part I, and lead to the following explicit results.

5.C.1. Stability conditions associated with ¥ g;g. Combining expressions (5.17),

(5.19) and (5.20). and using the equilibrium condition p, = F(¢.) 5§=1248
we obtain

DV, () (i), 1)) = —F 4 (pe) nx . - ident; (wo(@e)
nx, [F7(p) [rxp] + §Xv]
yx, [ F ) — A7 1 vxp,. (5.27)

i

i

Since pxpu, € g,{ for n¢ ’!v’,fr. we conclude that (5.27) cannot vanish, provided
that dim [span (§)] = |. Under this condition, it follows that (5.27) is definite
if and only if £€R?® is an axis of either maximum or minimum inertia of the
locked inertia tensor F(q,). We must choose the maximum value of 2, since the
kinetic energy term in the sccond variation of the reduced Hamiltonian is always
positive-definite.

5.C.2. Stability conditions associated with ¥ ;yy. The second stability require-
ment (5.26), involves a test for positive-definiteness on the constrained subspace
" ,n7 defined by (4.58). We show below that condition (5.26), can be recast in
terms of an eigenvalue problem formulated in the entire (unrestricted) tangent
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space of variations T, Q, which is amenable to a straightforward implementation
in concrete applications.

First, we recall that the block-diagonalization theorem implies that ¥ g6
and ¥7;yr are in fact orthogonal with respect to the second variation D? v, at

P €0, ie,
O € ¥ vy if and only if DV, (p.) (3, no(,)) =0  for all f€ L.
(5.28)

Also recall from Lemma 5.1 that D*V, (¢.) (8w, &o(e.)) = 0 for any dp€ T, Q.

Next, we select a particularly convenient basis for a// rigid body variations
in s0(3) ‘¢, namely, the principal directions of the locked inertia dyadic .#.
Accordingly, let &4 4 = 1,2, be such that

FEA — j = A, (5.29)

where, we also assume that no added symmetries are present to that the eigen-
values A are distinct. Set
Y, = '.E(I)x'f’ev Y= 5(2) Xq’e’ Wi = §X'P¢-’ (530)
so {y,, ¥, ¥} is an orthogonal basis which spans [so(3) ‘¢,]. Let B, T, 0%
T,,@ —R be the bilincar form induced by D*V, at ¢.€Q, ic.,
Bc(.' ') == D? Vﬂe(‘,}c) (" ')' (5'31)

Note that B.(vs, v;) = 0. Our implementation of conditions (5.26), is formulated
in terms of the modified bilinear form B,:7, OXT, Q —R defined as

-
-

B( 2 — CYy - Be(wm ) ® B‘-('.U,h )
86 = Bl = 2, B W)

(5.32)

where B.(y,, *): T, Q0 — T, Q is the lincar operator associated with the bilinear

form, B, and w4 € {s0(3) -¢.). The modified bilinear form Ec is the unique ex-
tension of the operator B, from ¥ ;X ¥ inr tO T,, X T,, with the following con-
venient property.

Lemma 5.3. The bilinear form B, has the canonical form

0
| ° 0 0 }s"(” "o (5.33)
0 Eclfﬁl‘\vrx f‘JNT : VlNT

s0(3) ¢, Y Inr
where

B i, . =B, .
B.ly INTXVINT Bf!’ INT*¥INT® (5.34)
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Proof. That Ec(drp,, w4) =0 for any dgc T, Q follows dircctly from (5.32)
since

B, wa) = BLOG w.) — BOp, ) =0; for all dp€T, Q. (539

Consequently, dim [ker B,] = 3, and the diagonal structure in (5.33) holds. Fur-
thermore, again from (5.32) along with the orthogonality condition (5.28), we
have

2 Bc('&'A& "‘7’) Br('l’d’ 'l’)

Ee ) s = Be 4 i) -
(' (l) W) ( (r 'p) AE:I Be('l’Aa W/l)

= Bc(éq,‘ W) for all ¥y, 6"7 € 1/-INT7 (5'36)
so that (5.33) holds. [J

We show below that the preceding resuit reduces the test for orbital stability
on the subspace ¥,y to the solution of a standard eigenvaluc problem. In par-
ticular, if a standard Galerkin finite-element projection is introduced; sce, e.g.,
CiaRLET [1978], the test for stability merely reduces to the computation of the
lower part of the spectrum of a symmetric matrix. From a numerical analysis
standpoint, this task is straightforward and can be easily accomplished by using
well-known algorithms for the standard symmetric eigenvalue problem; see, e.g.,
GoLus & VaN LoaN [1989] for a recent overview.

The unrestricted eigenvalue problem. The stability test on ¥ vy X ¥ ;y7 reduces
to the following unconstrained test: Find the four lowest eigenpairs (4, w)eR
xT, Q such that

Ec(drp, y) = IO, p>p (). (3.37)

Lemma 5.3 ensures that {y,, y,, y,} are eigenvectors of B, associated with the
zero eigenvalue A — 0. The stability conditions (5.26), then reduces to testing
whether the next eigenvalue of problem (5.37) is positive. If the condition

- B,(8¢p, b¢p)
i, = min = s 0, 5.38
Bev L)~ 0 (0P, O¢ >, () 39

holds, then we conclude formal stability on ¥,y X ¥ 1n7-

§ 3.D. Polyconvexity and conditional stability

In this scction we discuss some of the severe technical difficulties involved in
a rigorous rather than merely formal stability analysis of relative requilibria.

Definition 5.4. A relative equilibrium z,€ P is conditionally stable relative to
a G, -invariant metricd if for all initial data z € P near to z, (in the metric d), the
solution of the initial value problem with initial condition z remains near to the G,,-
orbit of z. for as long as it is defined in a given function space.



Stability of Relative Equilibria in Nonlinear Elasticity 93

We assume that a function space, typically a Sobolev space, has been chosen
for the existence and uniqueness thcory. Furthermore, we assume that in this
function space conservation of energy has been established (or at least that the
energy is a non-increasing function). For example, one possible choice of function
spaces is that in HUGHES, KATO & MARSDEN [1977]. It should be noted, however,
that the metric d usually involves a topology that is weaker than the topology
for which current existence and uniqueness theory is known. This is, however,
the best one can hope for, given the state of the art in existence theory. One
would expect that with the addition of dissipation one can say more since, with
our definition of formal stability, such an addition will move the spectrum of the
linearized equations into the left half-plane and thus be helpful to the existence
theory. For example, in the case of rods, one should be able to use this to prove
global existence of smooth solutions near a stable solution.

There is a method for establishing conditional stability based on Theorem 4.9
of BALL & MAaRsDEN [1984]. This result is given for equilibrium (rather than
relative equilibrium) solutions of nonlinear elasticity. It states that if the equilibrium
satisfies certain technical conditions [(HI)-(H7) of that paper with p > 3],
which include, for example, constitutive relations discussed in BALL [1977] and
CIARLET & GEYMONAT [1982], and if the equilibrium is a strict local minimum of
the stored cnergy function in a metric d induced by the W''-topology and
finiteness of the energy, (see BALL & MARSDEN [1984], p. 270) then the equilibrium
lies in a potential well with respect to the metric d. In particular, if these conditions
hold, then one has conditional stability. The metric d can be replaced by a metric
¢ which is related to the W!'”-norm (loc. cit. p. 274).

Onec of the important assumptions that examples in BALL & MARSDEN [1984]
show is not casy to omit, is the assumption that the equilibrium is a strict local
minimizer. Certainly formal stability is necessary for this, but the cxamples show
that it is not sufficient. This is an unfortunate obstacle to a satisfactory theory.
The example constructed in BALL & MARSDEN [1984] is actually a homogeneous
equilibrium (in fact, the identity in a natural state) for which the second variation
of the energy is positive-definite in the W!-topology, yet it is not a local minimum
in the W' -topology intersected with the C°-topology for any r<1 - (3/p).
This is not a contradiction because the energy function is not differentiable on
these spaces. One cannot, on the other hand, use a stronger topology in which
calculus does guarantee a local minimum since it is known that there is no
potential well in these cases. Of course at a global minimum of the cnergy, the
minimum condition is automatically satisfied, and so one has conditional sta-
bility. In summary, the quoted result of BALL & MARSDEN may be useful for
establishing conditional stability, but one is left with a fairly nontrivial hypo-
thesis to check (that the equilibrium is a local minimizer). The examples show
that it is not obvious how to make use of the positivity of the second varia-
tion to establish this condition.

There are several ways out of this apparent dilemma which warrant further
investigation in the future. First, one could take advantage of dissipation; the
formal stability results will then guarantee that the spectrum moves into the left
half-plane, and one can attempt to use this fact to get an improved asymptotic
stability result. Second, one can truncate the system by a finite-element model,
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for example, and argue that this is stable and that the high-frequency modes cut
out by this process are not of interest anyway. Third, one can employ special
arguments for particular materials, such as the convexity arguments used in
fluid mechanics (see HoLM et al. [1985]) to show by methods other than calculus
methods that one has a local minimizer. Then again one has conditional stability.
A successful application of this last approach to the stability of planar rotating
liquid drops is contained in the work of LEwis [1989]. For elastic rods with stored
encrgy function of the Saint Venant-Kirchhoff type, see SiMO, POSBERGH &
MAaRsSDEN [1990].

In our context, all of the above arguments must, of course, be modified to
take into account the fact that we are dealing with a relative equilibrium and
not a truc cquilibrium. Notice that the modification required in the transition
from the stored energy function to the amended potential involves terms that are
algebraic in the deformation, and so do not affect the technical potential-well
arguments. Another point that requires further attention is the sense in which
any of the relative equilibria of LEwis & Simo [1990] are also equilibria of the
full three-dimensional elasticity problem. By contrast, the situation is far more
clear in classical hydrodynamics; see, e.g.. CHANDRASEKHAR [1977].

§ 6. Block-diagonalization and symplectic structure

The decomposition ¥ = ¥ ;yr @ ¥ gig at the configuration level defined
above induces in a natural manner decompositions at the phase-space level rela-
tive to which both the Hamiltonian and the reduced Hamiltonian block-diagona-
lize. The simplest proof of these results uses the following two-step construction:

i. First, on the level set J-!(0) of zero momentum, define the split &y = Pornr
@& Porig Of the tangent space &, given by (5.13), so as to achicve a block-dia-
gonal structure of the reduced Hamiltonian A, . As shown below, the space Fopi6
consists of rigid configuration variations (in ¥ g;5) with zero momentum. This
choice defines the entire construction.

ii. Second, map forward the result in i to thc tangent to the level set J='(p,)
using the tangent to the (inverse) shifting map restricted to level set. This restric-
tion, denoted by X.':J-'(u)— J-'(0). is defined from (5.1) as

S p) =(p. P+ Pu): where  p, = (lF(PV" n)xg. (6.1

We show below that this construction does in fact yields a split of the tangent
to the level set J-'(u,) relative to which the second variation of the original
Hamiltonian block-diagonalizes.

§ 6.A. Block-diagonalization on the zero-momentum level set

We definc the space Fypic C Fo of rigid variations simply by appending
zero-momentum variations to the space ¥ gy of rigid configuration variations.
With this definition and view of the characterization (5.13) of the space &y, the
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only possible choice is to define the space Fo;nr C Sy merely by appending all

pr—
possible momentum variations 8p € [so(3) -¢.]? to the space ¥";yr. Accordingly,
we set

Loric = ¥V ric D {0}’ and Loy := ¥V inr D [50(3) "Pe]" . 6.2)

It follows from (6.2), that dim &g, = dim ¥ g, = 2. Moreover, again from
(5.13) and the fact that ¥ = ¥ g;c @ ¥ ;xr Wwe have

Lo = Loric B Lot (6.3)

as required. Finally, inspection of expression (5.14) for the second variation of
the reduced Hamiltonian along with (5.13) and definition (6.2) of the split, yields
the following block-diagonal structure

¥ riG Y inr [so(3) - ¢ ]?
"D? Vl‘cl"’RlG »7'RIG o o
Dz"u,. o <0 = 0 D’ Vl'el"mr”'"mr 0 . (6.4)
o o LOrer *s >

Each column of the matrix of (6.4) lies in the space shown above it. Observe

that the definition of Fgg,6 in (6.2), determines the entire construction leading

to the block diagonalization result (6.4). The mechanical motivation for (6.2),

is clear: If oy is to model rigid-body variations about the cquilibrium
ppa—;

Z, = (. 0), then dp = 0 is the only possible rigid body momentum variation
consistent with the constraint of zero total angular momentum.

§ 6.8B. Block-diagonalization on the p.-momentum level set

Let & C T, J-'(p) be the tangent space of admissible configuration-mo-
mentum variations associated with the relative equilibrium point =z, = (¢, p.).
Variations in & satisfy the linearized constant angular momentum condition modu-
lo infinitesimal rotations about the axis g, (which must be parallel to §). Formally,
we thus have:

& = ker [DJ(z,))/[s0(3),, " ¥l (6.5)

In the developments that follow, however, it is more convenient to characterize &
simply as the image of &, under the linearization of the inverse of the restricted
shifting map .!7,,’(‘ : J7Y0) — J-'(ye,) defined in (6.1). It is clear from (6.1) that
this map is one-to-one and onto. The split & = L) ® F;nr is then defined
merely as the image of the split of &, according to the diagram:

Dx; 1z,

= S =Fhic D Lric- 6.6)

yo=y’omc@9’oma

If we set (dep, Op) = D.Z‘,;'(E‘,) - (0rp, 6'_p’), a direct computation from (6.1) that
uses the relative equilibrium conditions (3.14); and the relation ident; (d¢) =



96 J. C. Simo, T. A. PosBerGH & J. E. MARSDEN
—D[F(¢p.) - dp] § (see (4.63)) yields the result

5P = 3P -+ 0 X Oep + 0rer S5 [ident; (66p)). ©6.7)

This expression leads to an explicit characterization of the variations in &pq.
denoted by Az = (de, Ap), which is useful in computations. In fact, since
variations in Sorsi are of the form 3 x¢, with 5+ § = 0, from (6.6), (6.7) and
(5.20) along with Jacobi’s identity, we conclude that

Adg = nxeg,  and  Ap = oI B 9] + yxP.. (6.8)

The block-diagonalization result (6.4) for the reduced Hamiltonian h, . along

with definition (6.6) of the decomposition & = P ® L ny, determine an
analogous block-diagonalization result for the restriction H|,-., , of the original

Hamiltonian to the g,-momentum level set. The proof of this result rests on the
identity
H(Z,'G) = b, (3. YzeJ(0), (6.9)

which follows at once from (5.3) and (6.1). Differentiation of (6.9), and use of
the equilibrium condition D, (z.) - z = O along with the chain rule yields

1~ P IRt - — p—
D*H(Z,'(z,)) - (DX - 6z, DXTT - Az) = hy, (2,) * (82, A7), 6.10)

— . . — —
for all oz, Az € Fp. In particular, if we choose 6z € Pyny and Az € Foprg, it
follows from (6.6) that

p—
0z 1= DX ' - 0z€ Spyr  and Az = D! Aze L riG- ©.11)

Since D’h,,f(E‘,) . (('S_z', AB = 0, it follows from (6.10) that D*H(z.) - (dz, 212) = 0.
This result can also be checked by a direct computation using formula (6.8), as
in SiMO, POSBERGH & MARSDEN [1990].

§ 6.C. Block-diagonalization and the symplectic two-form

We conclude this section with a few remarks on the structure taken by the
symplectic two-form when the splitting & = & g6 @ S xr is introduced. Although
this structure is not relevant to the stability analysis of relative equilibria, it does
play a crucial role in the formulation of the linearized dynamics and in the study
of the possible bifurcations at the relative equilibrium.

Let Q:TPxTP—R be the canonical symplectic two-form defined by (2.4).
If the first entry is restricted to & grg, then 2(z,)|sp, .- becomes

2z (42, 82) = — [oedExq) - S dV =: —{Lo(q.). dgd,  (6.12)
&

for any oz = (d¢, 0p) in & and any 4z in &gy as given by (6.8), where we
have set & := .#(p,. X 1). This result can be checked by a direct calculation as
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follows. Substitute (6.8) into (2.4), and identify the explicit expression for DJ(z,)
to obtain

Q(z,) (42, d) = Q[ [(n %) - 8p — (@cerE <. + X P, - Sp] dV
=0 [lg.X0p + dpxp))dV — - [ xSpdV
* #
= - [DNz)  6z] — &+ jf OrerPe X Op dV. (6.13)

Equation (6.12) then follows merely by noting that oz restricted to & satisfies
the condition DJ(z,) - 6z = 0. It should be noted that the symplectic two-form
restricted to & = P D & nr does not block-diagonalize since the coupling
term in (6.12) does not generally vanish. Accordingly, we have the following
structure:

L ric &Nt
rigid rigid-internal ]
compenent coupling

Q(z,) (4z, 8z) = (6.14)

_ [rigid-imgrnal] [ internal I *

For elasticity this is a particular instance of a general result pointed out in
Remark 2.8 of Part I. The preceding observations suggest at least two possible
options to define the split & = Fg6 B Finrt

i. Define #,yr according to the diagram in (6.6). Then, the sccond variation
becomes block-diagonal restricted to &;yrX Fpic but, in view of (6.14), the
symplectic form is not block-diagonal.

ii. Define ¥";yr by the orthogonality condition
{no(pe), O, = 0, for 8 € V' jyr and §)€ F} . (6.15)

Then, the second variation restricted to &;ar X Fri¢ is not block-diagonal,
but the symplectic form now block-diagonalizes on %;yrX Ppsc-

Clearly, option i above is the most convenicnt one from the point of view of a
stability analysis of relative equilibria.

§ 7. Summary and concluding remarks

The Relative Equilibrium Theorem characterizes relative equilibria as ex-
tremals of the energy subject to the constraint of constant angular momentum.
In § 3 this constrained variational principle is transformed into an unconstrained
variational principle, which involves only the configurations, by using Smalc’s
effective potential. The associated momenta play no role, and can be computed
explicitly from the relative equilibrium configurations. For elasticity, we have
shown that the effective potential is merely the total stored encrgy in the body
augmented by the potential of the centrifugal loading. Formally, the associated
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Euler-Lagrange equations lead to a Neumann boundary valuc problem in elasto-
statics with configuration-dependent body force defined by the centrifugal potential,
as discussed in detail in § 4. Although a fairly complete qualitative characteriza-
tion of the relative equilibria is possible (see Theorem 3.1), explicit solutions in the
general case may only be obtainable numerically.

Our main contribution lies in the explicit characterization of the formal sta-
bility conditions for relative equilibria in nonlincar elasticity, along with a frame-
work for future development of bifurcation analysis. First, the constrained test
for formal stability dictated by the energy-momentum map is reduced to an
essentially unconstrained test formulated in terms of the amended potential V, o

which involves only configuration variations. Second, the implementation of
the final stability test is remarkably simplified by introducing the decomposition
V = ¥ i ® ¥ inr relative to which the second variation of the reduced
Hamiltonian becomes block-diagonal, i.e.,

2 -
b Vl‘e!" RIG* 7 RIG o 0
2 — 2 - -
D*H, |y v = o DV, lyyrxrinr - O
0 o <0tef ) '>
configuration variations momentum variations

The conditions for formal stability can be read off dircctly from this expression.
In fact, as shown in § 5.C.1, the conditions associated with the ¥ g,6-block are
explicit and generalize the classical rigid body conditions. On the other hand, as
shown in § 5.C.2, the stability conditions associated with the ¥7,yr-block reduce
to the computation of the lowest eigenvalue of a standard self-adjoint eigenvalue
problem. This computation can be easily implemented numerically.

In addition to these stability results, for purposes of bifurcation theory, it
is remarkable that the same choice of coordinates leading to our block-diagonal-
ization result also brings the symplectic form, and hence the linearized equations
of motion, into normal form. See LEwis, MARSDEN, RaTiu & SiMo [1990] for
more information on this point.
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