§0.

§ 1.

§2.

‘Arch. Rational Mech. Anal. 115 (1991) 15-59. © Springer-Verlag 1991

Stability of Relative Equilibria.
Part I: The Reduced Energy-Momentum Method

J. C.Smo, D. LEwis & J. E. MARSDEN

Communicated by P. HOLMES

Contents
Introduction . . . . . . . ... 17
0.A. Background and motivation . . . . . . . . . . . .. .. 17
0.B. Summary of main results and outline of thepaper , . . . . . . . . . 19
Relative equilibria in Hamiltonian systems with symmetry . . . . . . . . . 20
1.A. Hamiltonian systems with symmetry . . . . . . . . . . . .. ... 2
1.B. Relative equilibria. Energy-momentummap . . . . . . . . . . . . . 22
1.C. The augmented potential and the locked inertia tensor . . . . . . . . 25
The reduced energy-momentum method . . . . . . . . . . . . . . . .. 29
2.A. Motivation: Reparametrization of the energy-momentum map . . . . . 30
2.B. The reduced energy-momentum map and relative equilibria . . . . . . 31

2.C. The reduced energy-momentum method and Smale’s amended potential . 33
2.D. Block-diagonalization of the amended potential

........... 36
2.E. The split of &: Block-diagonalization of Hy,, . . . . . . . . . ... 41
§ 3. Homogeneous elasticity and pseudo-rigid bodies . . . . . . . . . . . .. 45
3.A. Homogeneous elasticity: Governing equations . . . . . . . . . . . . 45
3.B. Hamiltonian structure of homogeneous elasticity . . . . . . . . . . . 46
3.C. Relative equilibria and the rigid-internal decomposition. . . . . . . . 48
3.D. Thesecond variationof ¥,, . . . . . . . . . ... . ... ... .. 50
3.E. Isotropic equilibria . . . . . . .. . . . . . ... ... ... 53
§4. Concluding remarks . . ... . . . . . . . . . . ... 57
References . . . . . . ... L Lo L, 57

Glossary: Simple mechanical systems with symmetry

Q Configuration space, with elements denoted by ¢ € Q.

0 State space. Points (g, g) € 7Q are configurations and veloci:
ties. :

P =T*Q Phase space. Points z = (g,p) € P are configurations and

momenta. .
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Configuration-momentum variations; where dg € T,0, and
op € TFQ.

Non-degenerate duality pairing between 7,Q and T;‘Q.

T.ie group acting freely on Q on the left. The action of G on
P is symplectic, obtained by cotangent lifts.

Lie algebra of G, with bracket denoted by [-, 1.

Dual of ¢, with duality pairing denoted by a dot. Thus
p-neER, V(g p)€IXIE s

Adjoint action of G on ¢; Ad, 5 = —;—i—-’ glexp (em) &~
0

g=

Coadjoint action of G on %*; (Ad¥.. p)- 5 = p- Ady-. 7.
Infinitesimal adjoint action of 4 on ¥;

d
adv'] - [1’, ']] - %’

Ad(eXP(sV)) 7.
=0

3

Infinitesimal coadjoint action of ¢ on #*
(ady #) - 4 = p-ad, 7.
exp (%) * q.

. d
Infinitesimal generator; np(g) = d_|
£

Momentum map; J{(g, ) * § = <P, 19(@)>-
G-invariant potential energy.

G-invariant invariant kinctic cnergy.
Hamiltonian function: H(z) = V(q) + K(2).
Energy-momentum functional:

H, (z,8) = V(¢) + K(z) — (J(2) — n.) " §.

Positive-definite form on Q associated with the kinetic energy.
Legendre transformation; <FL(v,), w,> = {v,, W, ,.

Locked inertia tensor defined as

& Fg) n:=<npl@), Egl@),, V1, € F.

Shifting map: 2(q,p) := (g, p — P,(q,p)), where

P(q,p)) :=FL([F(q) 4(g, P)lg(@))-

Augmented potential.

Amended potential. , _

Reduced Hamiltonian: A, (z) =V, (g) + K(@@).

Isotropy subalgebra of u, € * under the coadjoint action.
Orthogonal complement to ¢ e with respect to .#(q,) at a given

9. C Q-
Space of admissible configuration variations modulo variations

generated by ¢, . Thus, g €T, Q is-in 7" if and only if
(g, np(g)yg =0 forall ned,.

 Space of ‘rigid’ configuration variations

P ric 1= {ng@) | n € 9L}

(Minus) linearized ' ‘angular’ momentum in the direction
dq € v for fixed locked velocity €€ ¢, i.e., '

ident, (9q): = — [D#(q.) - 6q] - €.
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Vg C ¥ Space of ‘internal’ 'conﬁguration variations
Viny i=1{0g € ¥ | 5 ident; (8g) =0 V y€ i}

& C TzeP ' ' Space of admissible configuration-momentum variations mod-
- ulo variations generated by @Me. The variation 6z = (dg, op)
€T, P is an element of & if and only if T, J: 0z=0 and

) dgev, ‘
D © Vector tangent map; given a map ¢ : M — ¥V from a manifold

M to a vector space V, Dé(g) : T,M — V is given by D¢(q) - o¢
d

de |,

&(q,) for any curve g, tangent to dq at gq.
0

§ 0. Introduction

§0.4. Background and motivation

A general mechanical system with a Hamiltonian that is the sum of the kinetic
and potential energy is said to possess symmetry if the Hamiltonian function
is invariant under the action of a group acting on the canonical phase space by
canonical transformations. In the terminology of SMALE [1970], one speaks of
a simple mechanical system with symmetry. A central problem in classical mechanics
is the stability analysis of the relative equilibria of a simple mechanical system.
Relative equilibria are particular svlulions for which the dynamic orbit generated
by Hamilton’s equation coincides with a one-parameter group orbit. A classical
example is the stability of rotating self-gravitating fluid masses restricted to affine
deformations, a problem in celestial mechanics considered by NEWTON, JACOBI,
LiouviLLE, DIRICHLET [1861], RiEMANN [1861), POINCARE and CARTAN among
others; see e.g., CHANDRASEKHAR [1987, Chap. 1] for a historical review. RIE-
MANN’s treatment of rotating gravitating fluid masses is particularly relevant
to our work due to his geometric approach, which emphasizes symmetries and
associated conservation laws.

Another classical example of crucial importance is the stability of rotating,
inviscid, incompressible (perfect) fluids considered by RAYLEIGH [1920] and
ARNOLD [1966]. A direct precedent of our stability results is found in the pioneering
work of ARNOLD [1966], which constitutes the point of departure of modern
geometric methods in hydrodynamics. ARNoLD derives an explicit stability con-
dition for mechanical systems in which the configuration space is a group which
coincides with the symmetry group of the mechanical system. This situation is
relevant to both classical rigid-body mechanics governed by Euler’s equations and
classical hydrodynamics governed by the incompressible Euler equations. In the
former example, the symmetry group and configuration space coincide with the
proper orthogonal group, whereas in the latter example the relevant group is
the group of volume-preserving diffeomorphisms. ARNOLD’s nonlinear stability
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result reproduces the classical stability conditions for a rigid body and shows
that RAYLEIGH’s linear stability criterion for planar rotating perfect fluids con-
stitutes, in fact, a nonlinear stability theorem.

Unfortunately, the framework set forth in ARNOLD [1966] is too restrictive
to accommodate most simple mechanical systems of interest, for which the con-
figuration space does not coincide with the symmetry group. Typical examples
include classical three-dimensional elasticity and generalized models of the Cos-
SERAT type, as discussed in ERICKSEN & TRUESDELL [1958], TouriN [1964],
ANTMAN [1976a, b] and references therein. Attempts to extend this approach
have resulted in the Energy-Casimir method, which is described in HoLm, MARS-
DEN, RATIU & WEINSTEIN [1985], where the technique is applied to fluids and plas-
mas. The Energy-Casimir method is applied to study the stability of certain ro-
tating structures in KRISHNAPRASAD & MARSDEN [1987], and POSBERGH, KRisH-
NAPRASAD & MARSDEN [1987], and to axisymmetric three-dimensional fluid flow
in Szer1 & HoLMEs [1988]; see also MCINTYRE & SHEPARD [1987] and FINN &
Sun [1987] for further examples and references. A crucial difficulty, however,
makes this method unduly restrictive: Conserved quantities in the reduced space
(the Casimir functions) may be difficult to characterize explicitly or, in fact, may
not exist at all. A main objective of this paper is to present a general approach
to the stability analysis of relative equilibira which results in explicit stability
conditions applicable to any simple mechanical system.

An alternative approach to the problem of relative equilibria is considered
by SMALE [19704a, b] for a class of simple mechanical systems. (SMALE does not
address the case in which the group action fails to be free, i.e., in which there
are symmetric configurations.) There, it is shown that the relative equilibria of a
simple mechanical system coincide with the critical points of an amended potential
function, denoted by V), . As noted in ArNOLD et al. [1988, p. 103], this result

has been used in concrete situations by several authors; the amended potential
already appears in the fundamental work of RIEMANN [[1861]. A cornerstone of
the theory of symmetric mechanical systems is the work of RoutH [1877], which
treats the general case of a mechanical system which is invariant under spatial
rotations about a fixed axis (i.e., a left ST action). Although a systematic procedure
for the actual computation of the relative equilibria is effectively contained in
SMALE [1970a, p. 322] and SMALE [1970b, p. 51], explicit and implementable sta-
bility conditions comparable to those contained in ARNOLD [1966] appear to
be lacking. As pointed out above, one of the main goals of this paper is precisely
to develop such techniques. : _

A crucial result employed in our work is a block-diagonalization procedure
which decouples, as far as the stability analysis is concerned, - ‘rotational’ pertur-
bations generated by the symmetry group from a complementary space of ‘in-
ternal’ (deformation) perturbations, which are precisely defined below. The iden-
tification of the defining conditions on the space of variations leading to this block
diagonalization result is by no means obvious, since rotational and vibrational
modes are typically dynamically coupled. The stability conditions associated
with the rotational variations are explicit, do not depend on the potential energy
of the system, and recapture the stability result of Arnoip [1966] for the case
in which the configuration space coincides with the symmetry group. The stability
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conditions associated with the internal modes, on the other hand, can often be
cast in terms of a standard eigenvalue problem for the second variation of SMALE’s
amended . potential. The preceding block-diagonalization procedure was intro-
duced in SimMo, POSBERGH & MARSDEN [1989] and LEwis & SiMo [1990], where
the extension of the method to account for further symmetries of the Hamiltonian
is considered. Further geometric aspects of this approach are addressed in the
general context of Hamiltonian systems with symmetry in MARSDEN, SIMO,
Lewis & PosBerRGH [1989]. _

The approach presented in Part I and Part II of this papet, referred to as
the reduced energy-momentum method in what follows, constitutes a significant
improvement over these techniques in the sense that it involves only the con-
figuration space, not the full phase space. Aside from the reduction in dimension
of the problem (which may be of practical importance for large systems), the
method automatically enforces the constraint of constant (angular) momentum
without resort to Lagrange multipliers. As a result, many of the more tedious
computations involved in the case-by-case application of the original energy-
momentum method have been -eliminated in the current approach. (Of course,
the final stability conditions obtained by the reduced energy-momentum method
are identical to those obtained by the earlier method.) Athough the geometric
constructs of Hamiltonian mechanics are used extensively in the derivation of
the method ; they are not required for the application of the method. Consequently,
the present method is more closely related to the techniques of ARNOLD [1966]
and SMALE [1970a, b] than our previous work alluded to above. In fact, it can be
viewed as a synthesis of the results of ARNOLD [1966] and SMALE [1970].

§0.B. Sunimary of main results and outline of the paper

Our main result is an explicit and readily implementable criterion for rigorous
nonlinear stability of relative equilibria which is formulated exclusively in terms
configuration variables. For this purpose, the amended potential ¥, introduced
by SMALE plays a key role. We remark that momenta (and momenta variations)
play no role in the final result. Furthermore, the symmetry of the mechanical
system, induced by the action of a group G, is exploited in a crucial manner to
split the tangent space of variations into ‘rotational’ and ‘internal’ modes.

A main implication of the preceding result is the separation of the rotational
and internal modes present in a coupled mechanical system near a relative equi-
librium. This has long been recognized as an important problem in mechanics
(see, e.g., WILSON, DEcius & Cross [1955] and JeLLinex & L1 [1989]). There-
fore, we believe that the techniques developed in this work will play an important
role in a number of related areas such as bifurcation of relative equilibria and
geometric phases.

The outline of the paper is as follows. In Part I, we formulate the method
in full generality in the context of simple mechanical systems with symmetry in
the sense of SMALE [1970], making use of modern geometric methods. In § 1 we
summarize some basic results in the geometric theory of Hamiltonian systems
with symmetry, and discuss the notion and characterization of relative equilibria.
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In § 2 we introduce and motivate the reduced energy-momentum method. In § 3
we apply the method to a concrete, nontrivial example considered by LEwis &
SiMo [1990]: homogeneous elasticity. In this example we have attempted to illus-
trate the abstract geometric concepts in a concrete setting, and explain the actual
implementation of the method. For another nontrivial application of the energy-
momentum method, we refer to the thesis of PATRICK [1990], which contains an
analysis of thc dynamics of two non-symmectric coupled rigid bodics.

In Part 11, we illustrate in detail the formulation and application of the meth-
od in the specific context of classical three-dimensional nonlinear elasticity.
An attempt has been made to correlate the concrete results in Part IT with the
abstract constructions introduced in Part [. However, either part may be read
first, depending on the interests of the reader.

§ 1. Relative equilibria in Hamiltonian systems with symmetry

In this section we provide a concise summary of some basic results on the
geometry of Hamiltonian systems with symmetry and the notion of relative equi-
libria. Our presentation is deliberately brief and restricted to those notions needed
for the discussion of the basic method and its subsequent application to elasticity.
For comprehensive treatments of the subject, we refer to ABRAHAM & MARSDEN
[1978, Chap. 4], ArNoLD [1978, App. 5] and ARNOLD et al. [1988, Chap. 3].

§ 1.A. Hamiltonian systems with symmetry

In what follows, we shall be concerned with an abstract mechanical system
with configuration manifold Q and canonical phase space the cotangent bundle
P — T*Q_. The phase space is endowed with the sypmplectic structure induced by
the canonical symplectic two-form 0.

We assume that the mechanical system under consideration is Hamlltoman,
with Hamiltonian function denoted by H: P— R ; H represents the total energy
of the system. Let Xz : P—> TP be the Hamiltonian vector field associated with
H; i.e.,

DH(z) - 0z = 82(z) (Xy(2), 0z), for all z€ P and dz€ T,P. (L.1)

If F,:[0,T]xP— P denotes the flow of Xy, then Hamilton’s equations take the
following abstract form '

d ~ _ : .
at F(z) — X(F(z)). (1.2)

We assume that the Hamiltonian system possesses symmetry induced by a Lie
group G, with Lie algebra ¢, which acts on P by canonical transformations.
Denoting by ¥,: P— P the action of G on P for each g€ G, we thus assume
that

H(P(2) = H(z) for all g€G. ' (1.'3_),
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We denote by ¢ an element of the configuration manifold Q and let p€ T;Q
be the associated momentum. The tangent space T,Q at g and T, Q are in duality
via a non-degenerate pairing denoted by -, ->. We identify the pair (g, p)€
OXT}Q with the element z€ T*Q. We shall restrict our attention to systems
for which the symplectic action ¥,:P — P is the cotangent lift of an action
(& gr>g-qof Gon Q, for (g q)€ GXQ (see ABRAHAM & MARSDEN [1978] for
a precise definition of this construction). Associated to the action of G on Q are
the infinitesimal gemerators, given by the standard expression

. d
So(@) r= —-[exp [e5] - gli=o  for (€, )€ ¥ <Q. (1.4)
We use the notation

G-q:={ol9 |59 CTQO (1.5)

to denote the tangent space to the group orbit G :q. We assume that G acts
freely on Q; it follows that G - g ~ G. This implies that £,(g) = 0 if and only
if ¢ = 0. For systems possessing material frame-indifference, the relevant group
G = SO(3) is the special orthogonal group, % = so(3) is the Lie algebra of
skew-symmetric matrices with Lie bracket the ordinary matrix commutator, and
the group action is left matrix multiplication. As discussed below, an element
§5(q) of ¥ -q is interpreted as a superposed infinitesimal group motion on g¢.
In the context of elasticity, the duality pairing {-, > is chosen as the L,-pairing
(up to boundary terms).

Let 9* denote the dual of the Lie algebra 4. We denote by J: P> %* the
momentum map for the action of G on P. The momentum map, as shown in Part I1,
reproduces as special cases the usual angular and linear momenta in the context
of three-dimensional elasticity. The following facts regarding the momentum map
will be used in our subsequent development of the energy-momentum method.

i. For cotangent lifts, the case of interest here, the function J is determined
by the formula

J(2) - § =<p, §p(a)) (1.6)
for all £§¢ %, where a dot denotes the duality pairing between 4 and %*.

ii. The momentum map associated to the lifted action on a cotangent bundle
is equivariant in the following standard sense. The group G acts on %* by the
coadjoint action Ad*:Gx¥*— ¢* with infinitesimal generator denoted by
ad*: ¥ x4* — @*, Equivariance means that the following diagram commutes.

J
P—%*
Y,V ) AdE,
P> g*

J .

Equivalently, ‘
J(P,(2)) = Ad}-.(J(z)) for all g€@. (L.7)
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iii. For any Lie algebra element {€ %, the infinitesimal generator &p:
P— TP of the G-action defined by (1.4) is a Hamiltonian vector field with
Hamiltonian function J:: P— R defined in terms of the momentum map by
the relation

J(2) i=J@) 6. (1.8)
Therefore, as in (1.1), we have DJ(z) - 0z = £X(z) ({o(2), 0z).

Warning: When. referring to various group-related constructs, we shall use
the terminology appropriate to. the rotation group SO(3), e.g., angular momentum
and rigid motions, even though our results are applicable to a general Lie group
G. By doing so, we hope to emphasize the natural mechanical interpretations of
these abstracts constructions.

§ 1.B. Relative equilibria. Energy-momentum map

Next, we recall the notion of relative equilibria, a terminology due to PoIN-
CARE. A point z, € P is a relative equilibrium of a Hamiltonian system with sym-
metry group G if the trajectory of Hamilton’s equations through z, is given by

F(2) = Yexpe,(z0)  for some &, €9, | (1.9)

a condition which states that the dynamic orbit through the point z, coincides
with the orbit through z, of the one-parameter subgroup exp [¢&,]. Differentiation
of (1.9) with respect to time, combined with Hamilton’s equations (1.2) and the
definition of the infinitesimal generator, yields the condition

Xulz,) = (§e)P(Ze)’ v (1.10)

which constitutes the infinitesimal-counterpart of (1.9).

In classical rigid-body dynamics, relative equilibria are statlonary rotations
ahont the principal axes of inertia. For elasticity, possible relative equilibria are
characterized in Part II. The following result, known as the relative equilibrium
theorem, provides a convenient variational characterization of the relative equi-
libria. Early accounts of this well-known result can be found in SMALE [1970a, b]
and MARSDEN & WEINSTEIN [1974]. See also- ARNoLD [1978, p. 380], ABRAHAM
& MARSDEN [1978, Chap. 4], and Arnorp et al. [1988, Chap. 3].

Theorem 1.1. z,€ P ‘is a relative equilibrium of a mechanical system with Ha-
miltonian H and momentum map J for the symplectic action of a Lie group G on
the phase space P = T*Q if and only if there is exists a §,€ 9 such that (z,, §,)
is a critical point of the energy-momentum functional H, :Px% —R, defined
as

H,(z, = H(2) — (J@) — 1) - &, IR T

where p, = J(z,) is the value of the momentum map at z,. (u, zs assumed. to be
a regular value of J.)
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Thus, relative equilibria are the stationary points of the Hamiltonian H
restricted to- the level set J—(u,) C P; i.e., subject to the constraint of having a
constant momentum map. The energy-momentum functional H,, in Theorem 1.1
is then simply the associated Lagrangian, in the standard sense of optimization
theory, namely, the objective function H(z) plus the constraint function (J(z) —
u.) + &, where the Lie algebra element & is a Lagrange multiplier. We remark
that the determination of the multiplier &, at equilibrium is part of the optimiza-
tion process. . '

According to the method of Lagrange multipliers, the second variation of
the constrained variational problem is definite if the second variation of the
Lagrangian for the associated wunconstrained variational problem is definite on
the subspace & of variations satisfying the linearized constraint. However, in
the present context, even the constrained second variation fails to be definite
due to the invariance properties of the energy-momentum function. In particular,
since H is G-invariant, the neutral directions of DfH”e(ze, &,) are precisely the
intersection of the tangent space ¢ - z, to the group orbit G - z, with ker [T J].
A result of MARSDEN & WEINSTEIN [1974] shows that this intersection is given by

Y, 2 =9 zNker [T, J]. ’ 1.12)

Here gﬂe - z, denotes the tangent space to the orbit G, 'z, where G, denotes
the isotropy subgroup of g, under the co-adjoint action, with Lie algebra

9,, = {£e ¥ |adf u. = 0}. (1.13)
Note that for any »€ % and (€ 9,

ad¥p, - C=p, [, 6= —p, 16, ]l = —adf p, -y =0. (114

T
all infinitesimal rotations

J ()

orbit z(t)
explté] - 7

infinitesimal rotations about &

Fig. 1.1. Geometric illustration of the reduction lemma
of MARSDEN & WEINSTEIN [1974].
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Relation (1.12) follows immediately from the equivariance condition (1.7):
Choose g = exp [¢§] for an arbitrary §€ % and differentiate (1.7) to obtain

d
J 8(z) = J (Pexpreci(2e)

e
i
ds

Adexp[ er1 (J(ze)) = adf p,. (1.15)

Thus, Ep(z,)€ % -z, is in ker [T} J]if and only if adf g, =0, ie.,if §¢ Y.,
hence (1.12) holds. A geometric illustration of (1.12) is given in Figure 1.1. The

finite (group-action) version of (1.12) is the fact that the level set J-(,)is invariant
under the action of Gy,

Before stating the precise definition of the subspace %, we summarize the
main invariance properties of the energy-momentum functional H, under the
action of G.

Proposition 1.2. 1he following invariance properties of H, :¥XxX%—R hold:
i. Let G act on PX% by g-(z, §) 1= (¥(2), Ad; §). Then H,  is left-invariant
under the action of G

ii. At a relative equllzbrzum z, € P with generator &, and miomentum ye = J(z,),
i.e., at a critical point (z,, &) of H,

ad?‘e g, =0, ’ (1.16)

so that &, ¢ Gy,
iii. Let G act on PX 9 by g-(z, §) := (Pe(2), §). Then the function H, |- )xe

obtained by restricting the energy-momentum functional to the level set J"l(ye)
is G invariant.

Proof. Consider arbitrary elements g€ G, z¢€ P, and §¢ %. By assumption,
H:P—R is G-invariant, so that H(¥,(z)) = H(z). The equivariance condi-
tion (1.7), along with the definition of the adjoint action, thus yields
¥ (2), Ad, §) = H(z) — (A J(2) — p) - Ad, &
= H, (z, §) + (Adg= p. — 1) - §. (1.17)
Hence, H, (¥ (2),Ad, §) = H,(z, §) for all ze P and §€% if and only
if Ad}- p, = p,, which proves i. To prove ii, take g = exp [¢£] in (1.17),
differentiate (1.17) with respect to ¢ at ¢ = 0, and use (1.6) to obtain
DH, (z, §) - £p(z) = J(z) - ad; §
=—J(2)- _ads £ _ ‘
= —adf J(z)- &. o (L18)
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At a relative equilibrium, DH, (z., £) = 0. Since [€ & is arhifrary, ii follows
from (1.18). Property (iii) results directly from the equivariance of J, since
J(V,(2)) = Ad;-(J(2)) = Adj-: u, = p, for z€ J'(p,) and g€ G,,. [

Since Hﬂel 7@y 18 G, -invatiant, we have D’H, (z,, £,).((4z,0); (62,0)) =0
for any Azc &, -z, and dzc T, J'(u,). Hence, a relative equilibrium can-
not be a strict local extremum of the energy-momentum functional; however,
it may be a local extremum modulo the symmetry group G,,. To explore this
possibility, we introduce the concept of formal stability. A relative equilibrium
z, is formally stable if the restriction of the second variation D*H, (z,, &) to a
subspace & C T, P associated with the constraint J(z,) = pt, is definite. The
constraint subspace & is characterized by the following two conditions:

i. & is a subspace of the tangent space to the level set J-1(u,) C P; equivalently,
& Cker [T, J].

ii. Neutral directions of D*H, (z,, &) in ker [T, J] due to group invariance of
H,, are eliminated from &.

Condition (ii) above and result (1.12) imply that & is isomorphic to the quo-
tient space

& > ker [T, I, z). (1.19)

The test for formal stability of the relative equilibrium, i.e., stability modulo
perturbations induced by the group action, then reduces to the following test for
definiteness of the second variation D?H, on the constrained subspace &:

z, € P is formally stable <
D*H,, (z., &.) * ((9z, 0), (2, 0)) > (<) 0 for all dz€ &. (1.20)
If appropriate technical conditions are satisfied, definiteness of the second vari-
ation of the energy-momentum functional on the subspace & implies that the

relative equilibrium z, is nonlinearly stable modulo the action of the isotropy
subgroup G, . Finally, observe that definition (1.19) implies that &, regarded as

a subspace of T, P, satisfies
codim [¢#] = codim [ker [T, J]] + dim [, ] (1.21)

provided that ¢, is finite-dimensional. For elasticity, we shall see in Part II that
codim [¥] == 4.
§ 1.C. The augmented potential and the locked inertia tensor

In what follows we restrict our attention to simple mechanical systems; i.e.,
Hamiltonian systems with Hamilionian H = ¥V + K the sum of potential and
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kinetic energy, which are denoted by V:0-—+>R and K:P-—R. respectively.
We further assume that the kinetic energy is a positive-definite quadratic form in
the velocity field, and hence is associated with a Riemannian metric on Q denoted
by {:, *>,. (The subscript g is introduced to dls’ungulsh the metric pairing from
the duality pairing.)

The metric {- -», induces a inner product on the fibers of T#Q, denoted by
<:, “7g-1, and constructed as follows. First, we define the Legendre transformation

FL:TQ-> T*Q by the relation

(FL(dq), vy :={0q,v,>, for all v, € T,0. (1.22)
Then, we define (:, -),-: by the expression
P, Prg-1 := <FL *(p), FL* (D)), (1.23)

for all p, pe T*Q. The kinetic energy is then given by K = p, bp>,-:. For
finite-dimensional systems we have, in coordinates,

K := 4P, P>y = L pig"(q) p;,
P=FLQ@) & pi=2g;q4q,;, (1.24)

where g(q) = g;(q) dg' ® dg’ is a given Riemannian metric on Q, and g%(q)
is the inverse matrix of g;(g).

We assume that G is the symmetry group of the simple mechanical system
under consideration in the following sense:

i. The potential energy V:Q >R is left-invariant under the action of G on Q
i.e.,

V(g-q) = V(q), for all g€ G and g€ Q. (1.25)
ii. G acts on Q by isometries relative to the metric (j,v->g.

For simple mechanical systems, the energy-momentum map H, :Px%g—>R

can be expressed in an alternative form, which is central to our subsequent
developments. '

Proposition 1.3. Given §¢ %, let V,: Q>R denote the augménted,pbtential
defined by

Vg) ' =V(ig~3§-#@ 8, , (1.26)

where the locked inertia tensor #£(q): ¥ — %* is defined by
F(q)v := J(q, FL(vo(a)), . (1.27)
ie.,
n- @)= {np(q). vo(@),, Yy veY. (1.28)

Further, define the augmented kinetic energy function K: P—>R by the expres-
sion

K@) =4 |p — FL(&0() - )
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Then
H, (2, §)=Vd2) + K@) + p. " §. (1.30)

Proof. From definition (1.6) of the momentum map and expression (1.22) for
the Legendre transformation, we have

—J@) * § = —<p, §o@) = —<P, FL(50(@)>s-
= —<{P, FL(5o(9)>¢+ + § <FL(Eu(9)), FL(£0(9)))5-

— 3 <S0(@)s S0(@)s- (1.31)

Inserting (1.31) into (1.11) and completing a square yields the result. []
Observe that #(g): 9 — ¢* is an isomorphism, with inverse denoted by
F 1, since the action of G on Q is assumed to be free. The augmented potential ¥V
was introduced by SMALE [1970b, Theorem 1.1] in a general context, although
in concréte situations it appears to have been used earlier by various authors;
see ARNOLD et al. [1988, pp. 88 and 103]. Expression (1.30) provides a rather

practical means of computing the relative equilibria. In fact, we have the following
result:

Proposition 1.4. The critical points z, = (q,, P.) of H,, are characterized by the
optimality conditions

=0 and D= L&), (1.32)
where the multiplier §,€ % is given by

§, = IYq) J(z.). (1.33)
A critical point z, of H,, satisfies

K(z) =0 and J() = p..
Proof. That K, , as defined by (1.29), is a quadratic functional in p — FL((&.)p(9))
yields (1.32). Using the definition of momentum map and (1.32), we obtain
J(Z) - & = {Pes 50(q.)> = <FL((5)(qe)), So(4.)>

é <(§e)Q(qe), gQ(qe)>g = g : ](qe) ge (134)
for any £€ %, which implies (1.33). []

In the result above, BVEe/&q denotes the functional derivative of V defined
in terms of the duality pairing by the standard expression

’ 1%
DV, (q) - 6q = <5q, “\ for all g€ Q. (1.35)
q

5 /
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Se
dq
dimensions, however, we may wish to use a variety of spaces in a given duality
with 70 in place of the abstract dual space. In this case, the functional derivative
oVe, ’

og .
vative DV, does not. We shall see specific examples of this in Part II.

In finite dimensions, coincides with the vector of partial derivatives. Ininfinite

depends on the particular choice of dual space, while the directional deri-

Propositions 1.3 and 1.4 suggest a compelling mechanical interpretation. of
the locked inertia tensor illustrated in the following examples.

i. For rigid-body mechanics (&., u.) € ¥ x %* are the spatial angular velocity
and the total angular momentum (at equilibrium) of the uniformly rotating
state (q,, P.),» ¥(q.) is the (equilibrium) inertia dyadic in spatial coordinates,
and (1.33) is the standard relation between angular velocity and angular mo- -
mentum.

ii. For nonlinear elasticity, the pair (&, p,) corresponds to the angular velocity
and the total angular momentum of an ‘equivalent’ rigid body with shape de-
fined by ¢, € Q; i.e., the elastic body ‘locked’ at the equilibrium configuration
q.. The locked inertia tensor then becomes the inertia dyadic associated with this
‘locked’ rigid body. Formula (1.33) is in agreement with the preceding mechanical
interpretation. An essentially identical interpretation holds for a general simple
mechanical system.

The preceding results can be effectively exploited in specific stability analyses,
as suggested by the following observations.

1. In general, it is possible to give a precise estimate of condition (1.20) on
the subspace of superposed group motions; this leads to sharp stability require-
. ments that generalize the classical stability conditions for a rigid body in stationary
(steady) rotation. The precise statement is given in § 2.D.2, and can be viewed as
a generalization of a result of ARNOLD [1966].

2. It is also possible to give a precise estimate of the term D*V; (g.) on the

subspace of configuration variations by means of a generalized Poincaré type of
inequality which involves the solution of a classical eigenvalue problem. However,
a precise estimate for the term D?K; (z,) requires an explicit determination of
the coupling between configuration. and momentum variations induced by the
momentum constraint. Direct computation of the induced coupling is tractable
only in special cases; see for example LEwis & Smo [1990]. A non-optimal esti-
mate of condition (1.20) can, nevertheless, he obtained as follows.

From expression (1.29) and the relative equilibrium condition. (1.32), it fol-
lows that D?K; (¢.) = 0 In particular,

DK (z.) (0, 6p))*> = |6p 2. > 0 o (136)

for 8p 4= 0. Consequently, D*H, (z,, &) can be bounded from below by the
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second variation of thc augmented potential:
D*H, (z., §&) = D>V (q.) - 1.37)

Thus, positive-definiteness of D>V (g.) ensures positive-definiteness of D*H, (z,,5,)
This criterion, however, is unduly conservative and only provides a sufficient con-
dition for formal stability, which need not be necessary.

3. The ‘reduced’ energy-momentum method developed in the next section
bypasses the difficulty alluded to above, and leads to sharp and tractable conditions
for the stability of relative equilibria.

§ 2. The reduced energy-momentumn method

In this section, we present a stability analysis of relative equilibria which
offers important advantages in comparison with the procedure outlined in the
previous scction. In particular:

1. One works directly with the configuration manifold Q, rather than the
phase space P = T*Q. Explicit consideration of the momenta is circumvented
by exploiting the a priori known positive-definite character of the second variation
with respect to momentum perturbations of an appropriate configuration-depen-
dent functional. This feature makes the method particularly attractive for systems
in which the dimension of Q is large and explicit numeric or symbolic compu-
tations are necessary, e.g., finite-element approximations to infinite-dimensional
Hamiltonian systems. The present technique also avoids the inversion of the matrix
associated with the metric <, ->, which defines the kinetic energy of the simple
mechanical system. For large finite-dimensional systems the need for this inversion
is often viewed as a disadvantage ol the Hamiltonian versus the Lagrangian
formalism.

2. The space of admissible configuration variations can be decomposed into
two subspaces, of dimensions dim G —dim G, and dimQ —dim G, with
respect to which the second variation of the energy-momentum functional block-
diagonalizes. This crucial result makes the method particularly easy to apply to
concrete examples. A nontrivial application is presented in § 3.

3. The application of the method discussed below does not depend on the
explicit characterization of conserved quantities in the reduced space (Casimirs),
thus by-passing the difficulties associated with the application of ARNOLD’s
Energy-Casimir method to infinite-dimensional examples, such as nonlinear elasti-
¢ity, rods or shells.

4. In contrast with the full energy-momentum method, in the context of
the reduced energy-momentum method the second variation D*K; (z.) (with a
structure discussed in detail below) can be precisely estimated, leading to sharp
stability conditions for relative equilibria.

Before considering the formal development of the reduced energy-momentum
method, we first motivate the central construction underlying the method.
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§ 2.4. Motivation: Reparametrization of the energy-momentum map

The key idea in the development that follows is the reparametrization of the
Hamiltonian H: P—R in terms of the momentum map J: P— %* by means
of the mapping :

2€ P> §():= #(q) TR €Y, @1
which possesses the following crucial properties:

i. In view of (1.33), the mapping (2.1) gives the value of the Lagrange multiplier
at a relative equilibrium, i.e., &(z,) = &,. This property is exploited to effectively
eliminate the Lagrange multiplier from the energy-momentum functional.

ii. The mapping (2.1) has a compelling mechanical interpretation. It point z =
(¢, P) € P has total angular momentum J(z), then §(z) gives the corresponding
angular velocity of a locked (rigid) body with angular momentum J(z), with shape
defined. by the configuration g, and with ‘equivalent’ inertia dyadic determined
by the locked inertia tensor #(q).

iii. In view of the preceding interpretation, at a point = = (g, p) € P the mapping
(2.1) determines a locked velocity field with associated momenta defined via the
Legendre transformation as

zZ= (q5 P) = (q’ PJ(Z)) s (2‘2)

where
ps(2) 1= FLIEG)o (9] € T7Q. | 23)
The reparametrization of the Hamiltonian in terms of the momentum map then

takes the following form:

Proposition 2.1. The Hamiltonian H:P—IR can be expressed as
H(z) = V(@) +4J@) - £ @ J@) + 3P — pAD 5. QY

Proof. Using the definition of the momentum map along with the expression for
the Legendre transformation, and expanding the last term in (2.4), one obtains

3P — Ps) B = 4 [P L — Py £ @) + 162D @) 2
=311pf — I - §6) + 1 §) - #(9) §@)
=3[Pl — $4) - 79 ). (2.3

Rearranging terms yields

Wg)+ 3@ I @D IE + 3 P — P = V@ + 1 pfs Q6

i.e., the Hamiltonian H(z). []
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© As pointed out above, the key constraint condition zC J-!(g,) can be
enforced at the outset by exploiting the preceding reparametrization. In fact,
the substitution of (2.1) and (2.4) into expression (1.11) yields

H, (2, §2)) = H(z) — [J2) — u.]* &z)
= V(@) + [n. — 3 I+ &2 + % |p — 0D 3. 2.7

Hence, if z€ J'(u,), the energy-momentum functional takes the form:

H,(2, &) =V, (@) + % [Ple,

V@) = V() + L .- F7(q) 1., @8
where P := p — p;(z). Observe that the multiplier &€ % does not appear
on the right-hand side of expression (2.8);. The functional V, (g) is referred to
as Smale’s amended potential and plays a central role in our subsequent develop-
ments. In particular, we show below that a complete stability analysis of relative
equilibria can be carried out by considering only the amended potential. The
last term in expression (2.8); plays no role in the implementation of this stability
analysis. Consequently, the reduced energy-momentum method, which is based
on a systematic exploitation of the propertics of the amended potential, operates
on the configuration space Q and not on the phase space P = T*Q; the momenta
play no role in the stability analysis.

More importantly, the stability analysis is remarkably simplified by a block-
diagonalization procedure that gives explicit closed-form stability conditions for
those configuration variations associated with the action of the symmetry group
on the configuration space. These stability conditions contain, as a particular
case, those first derived by ARNOLD [1966] for the case in which the configuration
space coincides with the symmetry group (for example, the Euler equations for
an incompressible inviscid fluid).

§ 2.B. The reduced energy-momentum map and relative equilibria

The mapping (2.1), which defines the locked velocity field with associated
momentum defined by (2.3), can be interpreted geometrically in terms of a shifting
map X:P— P defined by

(g, p) := (¢, p — p,(2)). 2.9

We shall refer to p := p — py(z) as the shifted momenta. The terminology
‘shifting map’ assigned to (2.9) is motivated by the following result:

Proposition 2.2. The map X: P— P shifts P onto the level set J-'(0) C P of
zero total (angular)y momentum; i.e.,

Z(P) = J-1(0). (2.10)
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The values of the Hamiltonian at the shifted and unshifted variables are related
as follows

HE) = HEE) + 3 7@) - 7-(0) I6). @.11)

Proof. Consider an arbitrary »€ ¢, and let z = (g, p) ¢ P. From (2.9), along
with expression (1.6) for the momentum map, we have

J(2(@) - v = <P, vo(9)>
= <P, vo(@)> — {Ps(2), vo(2)>
= J(z) - v — <FL([F(q) J(2)]g (1)), vo()>- (2.12)
Relations (1.22) and (1.27) then yield

J(Z(2) v = J(2) v — [F(q) J(2)]g (@), vo(q)),
=J@)-v—F@v (F@I)) =0, (2.13)

for any » € %; hence J(Z(z)) = 0. Expression (2.11) follows at once from (2.4)
and (2.9). [

With the preceding interpretation in hand, we summarize below the conse-
quences of the reparametrization induced by the mapping (2.1) when the Hamil-
tonian (and the energy-momentum functional) are restricted to the level set asso-
ciated with a prescribed value u,€ ¢* of the momentum.

i. The restriction 2, of the shifting map to the level set J—*(u,) is invertible,
with inverse X ': J='(0) = J'(n,) given by

2, (g, P)= (¢, P + . @), (214
where ‘
P.(@) :=FL(I (@ pe)o (@] » (2.15)

In mechanical terms, for each g€ Q, the map (2.15) gives the momenta of an
‘equivalent locked (rigid) body’, with shape defined by g and inertia dyadic
#(q), possessing the prescribed (angular) momentum g,.

ii. Oq the level set J='(g,), the ITamiltonian and the cnergy-momentum func-
tion coincide and are given by expression (2.8). Furthermore, we can regard
Z = (g, p)€ J-U(0) as a new independent variable and view (2.8) as the defini-
tion of a reduced Hamiltonian hﬂe : J71(0) — R on the level set of zero momen-
tum; i.e., :

1, @) = V(@) + % Pl @19

Note that this function is identical to the reduced Hamiltonian arising in the
context of reduction of simple mechanical systems; scc ABRAHAM & MARSDEN

[1978, p. 347].
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iii. Given any z = (g, p) C J1(g,) and its image z :— X(z) = (g, P) C J“lb(O)
under the shifting map, the functions H(z), H, (2), h, (z) and v, (@) are connected
by the following relations '

HE) = H, (2,8 = V, (@) + Bl = b, (), 2.17)

which hold for any &€ 9. These relations are central to the block-diagonaliza-
tion result presented in § 2.E.

We are now in a position to discuss in detail the proposed method for the
stability analysis of relative equilibria associated with any simple mechanical
system with symmetry.

§ 2.C. The reduced energy-momentum method and Smale’s amended potential

It was pointed out in § 2.A that the stability analysis of relative equilibria
can be carried out solely in terms of the amended potential V., The objective of

this section is to provide a detailed step-by-step justification of this statement.

2.C.1. Step 1. Relative Eguilibria. In view of (2.16). the critical points of
h, (z) are defined by the conditions

dq
These conditions are related to conditions (1.32) in Proposition 1.4 by noting that
DV, (q.) - 0g = DV(q.) * 6q — % (F~(q.) ) - [DF(q.) * 091 (F~(q0) 1)
= D¥(q.) - 0q — } & - [DF(q.) - 9q] &,
= DV¢ (¢.) - 04, (2.19)

since §, :— #—1(g,) p,. Ilence the critical points of V4, coincide with the critical
points of V. and conditions (2.18) are identical to conditions (1.32).

=0 and p, =0. (2.18)

2.C.2. Step 2. The space of admissible variations. Since H is G invariant,
all infinitesimal group motions correspond to neutral variations of H. Here, we
are concerned only with the restriction H, i, > therefore, we need only consider

group motions that preserve J~'(u,). Equivariance of J, defined by (1.7), implies
that given ze¢ J-1(u,)

g zeJ () © g€G,,. (2.20)
Consequently, we define the space of admissible configuration variations ¥~ C
T,,0 as the tangent space to the orbit space Q/Gﬂe at gq,. This space can be re-
alized explicitly as the orthogonal complement to 4, - ¢,; relative to the metric
oy dgs 1€,

To 0%, 4 = ¥ = (g€ T, 0| {bq, Lol@)>s =0 V §€9,}. (21)
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As shown in §3 and in Part II, for frame-indifferent systems, i.e., for mechanical
systems invariant under the left action of SO(3), g, is the total angular momen-
tum at the relative equilibrium z,, and G, is the subgroup of rotations about

u.. In this context, 9,," Z. consists of superposed infinitesimal rotations of z,

with axis p,, whereas & - z, is the space of all superposed infinitesimal rotations
of z,.

We now characterize the space of variations for the shifted momenta p. Let
Z, = (¢ Py € J (1) be a given relative equilibrium with shifted value

—
Z, i = X(z,) = (y,, 0) € J7'(0) and let é_zl = (¢, Op) be an admissible variation
—_—
of z,. Accordingly, 6z€ T; P must satisfy the linearized constraint condition

pp—
0z € T;J-'(0) which, sincc thc momentum map J is lincar with respect to the
momenta p, implies

[15.J - (3¢, 3P)) - ) = J(des OP) = 1 = <8P, 1p(g)y — O (2.22)

for all ne 4. Consequently, the constrained subspace of admissible variations,
denoted here by the symbol &,, is given by

Fo =15, 8p) € ¥ XT}Q | (8P, molg)y = 0 for me @) (2.23)

pra—
Observe that the condition on 8p in (2.23) is equivalent to the requirement that

:S-IJE Tq*eQ be in the annihilator to the tangent space. 4 - g, to the orbit G - g,

denoted in what follows by (¢ - ¢,)1. Therefore, expression (2.23) is equivalent
to the characterization of &, as

Porn ¥V ® (% q). (229

Observe finally that codim[(% - ¢,)*] = dim [% - ¢.].

2.C.3. Step 3. The second variation of h,,. The expression for D’hye(Ze)
is computed from (2.16) and (2.18) as

D?h, (2) - (62,32) = D*V,, (¢,) (04, 0q) + |Op [z« (2.25)

—
for all dz¢ &5. In actual implementations. it is- more convenient to recast the
second variation D*V, (¢.) in terms of the second variation of V¢, to avoid in-

version of the locked inertia dyadic away from the relative equilibrium. For this
purpose, define the map ident; :¥"— ¥* by ‘

ident (0g) := —[D#(g) - 0q) - &~ (226)

for 6g€ T, Q. The chain rule gives

[DF-(q) - 0g] p, = F-1(q,) ident;, (5q). @)
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Differentiation of (2.18), along with the equilibrium condition- g, = #(q,) &.,
then yields the desired result: i.e.,

DZV/ee(qe) (0q, 6q) = D*V (q.) (59, 6g) + identc, (3q) - F~'(q.) ident, (5g).
(2.28)

“This is the most convenient expression of the second variation of v, for appli-
cations to specific examples, as illustrated in § 3.

2.C4. Step 4. Formal Gue—orbital stability. To assess farmal stability of
a relative equilibrium z, = (q,, 0) € J-1(0) it suffices to show that D?h, (z.)
is definite (either positive- or negative-definite) on the constrained subspace
Fo=Y ®(%-q)*. Two situations may arise:

i.dim [(%-¢)"]> 0 (hence dim Q >> dim G). In this case, there exists :5—1-; +=0
—
such that (0, 8p) € &#,. However, since

D?h,(z.) (0, 3p), (0, 6p)) = [8p 3+ > 0, (2.29)

it follows that Dzhﬂe(EL,) cannot be negative-definite,. We therefore conclude
that D?h, (z,) is definite if and only if D> V. (gc) is positive-definite on 7.

ii. dim [(¢ - ¢.)*] = 0 or, equivalently, dim Q = dim G. In this case, the con-
strained subspace &, collapses to

Lo = {8, 0) | dgec ¥ (2.30)

Since there are no nontrivial momentum variations, positive-definiteness of the
kinetic energy does not guarantee the existence of positive second variations.

D?h, (z,) is positive- (negative-) definite on &, if and only if D? V. (qc) is
positive- (negative-) definite on ¥, '

To summarize, we have proved that positive-definiteness of DZV,,e(qe) implies
Jormal stability of the relative equilibrium z, = (g,, p,) € P; i.c.,

DV, My xw >0 = 2z, =(q,p)E P is formally stable.  (2.31)

If dim Q = dim G, then definiteness (either positive or negative) of D2 Vo (9)y v

implies formal stability. We refer to SiMo, POSBERGH & MARSDEN [1990], and
the thesis of PATRICK [1990], for a discussion of the notions formal and orbital
stability. '

The implementation of this test is remarkably simplified by introducing the
following block-diagonalization procedure.
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- § 2.D. Block-diagonalization of the amended potential

The goal of this subsection is the simplification of the stability test (2.31) for
the second variation D>V, (g.) through the exploitation of the symmetry properties
of the amended potential. As alluded to in the introduction, the key idea is the
decomposition of the configuration-variation space ¥ into rigid (group) and
internal variations :

Y = Yric ® ¥inr> (2.32)

which we shall specify below. Relative to these subspaces, the second variation
D*v, (q.) takes a block-diagonal structure that results in a substantial simplifi-
cation of the stability analysis. In fact, the stability conditions associated with
¥ ric can be stated in an explicit form that is independent of the potential V. In
addition, the actual computation of the stability conditions associated with ¥
is substantially simplified if use is made of alternative expressions for the form
D*V, (g.) given below that only involve inversion of the locked inertia dyadic

#1 at the relative equilibrium configuration ¢,.

2.D.1. The decomposition of the space ¥". Our first cbjective is the explicit
construction of the decomposition (2.32) of the space ¥” of admissible con-
figuration variations which decouples, in the precise sense described below, ro-
tational modes from internal (vibrational) modes of the system. To motivate
our developments we remark that for G = SO(3) with the usual left action, the
space ¥ pie C ¥ corresponds to the subspace of infinitesimal rigid body varia-
tions of the equilibrium configuration ¢, ¢ Q. The subspace ¥y C ¥7, on the
other hand, spans those variations in ¥” not contained in ¥ z;g, Which can be
interpreted as the internal deformation modes of the system.

i. The subspace ¥ pic of rotational modes. In the general case, the space ¥ g
is defined as follows. Let g,%e C % be the orthogonal complement of %, with
respect to the locked inertia metric at the equilibrium configuration g, i.e.,

gt ={ned|n J@)5=0 VEedg,) (2.33)

sothat ¥ =9, ® 54,}2
Recall that an infinitesimal G-variation at g, is of the form #y(q.) € T,,Q
for some n€%. Thus, in view of (2.21) and (2.32), we set

YV pic 1= {UQ(QC) € quQ | ne {ﬁfe}
= {nQ(qe) € chQ l<nQ(qe), gQ(qe)>g = Oa v ge gﬂe}' : (234)

Note that the requirement that 5 € % ensures that ¥ i C 7.

ii. The space ¢ ny C ¥ of internal vibration modes. The subspace ¥ jyr is chosen
as a certain ‘energy orthogonal’ complement to # g, in the sense that variations
of an appropriately defined energy functional decouple with respect to ¥ z;c and’
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v ,NT; Specifically, - | : |
| Vinr i=1{0g € ¥ | 5 -ident; (89) =0 V nc g}, (2.35)
where idehtge (*) is defined by (2.26). Equivalently, we have
Vine = {0 €V | F7(q.) ident5e (6q) € g,,e}- ‘ (2.36)

For frame-indifferent continuum systems,' with G = SO(3), ¥ ;yr may be char-
acterized by the property that the restriction of the body force 6V /dg(q.) to

v “locks objective”. (See Part IT and SiMo, POSBERGH & MARSDEN [1990],
for a discussion of this interpretation of ¥ ;yr.) .
Next, we determine the form of ident, (dg) for dg = 7y(g.) € ¥"gse in order

to to apply formula (2.28) and compute the second variation of ¥, restricted to
7V ki- | |

Proposition 2.3. The Jfollowing relations hold for all nc %:
i. For all vy €% and all q€ Q,
- (DI@q) (@) v = [@, 9] F(gv + v, n]- FPo. (237

ii. At a relative equilibrium q,€¢ Q:

) identfe (nQ(qe)) = ad:;‘ u. + j(qe) [na §e] (238)
and

0 = &, - ident;, (1o(4.)). (239)

Proof. Given 7€ %, define the curve g, := exp [¢#] ' ¢.. Using the facts that
G acts on Q by isometries and that the map taking the Lie-algebra element
to the vector field e, on Q is a Lie-algebra anti-homomorphism, we find that

d
w - (DF(q) - no(q)) » = . AN A

= <$anQ(q)’ ”Q(q)>g + <wQ(q)9 "gﬂQvQ(Q)>g

= {[w, nlp (), vo(9)>¢ + <np(q), [¥, nlo (D),
= [w, 5] - F(@v + [v, n]- FQo, (2.40)
which proves (2.37). Here % denotes Lic differentiation.

According to definition (2.26), we have
idente_(ng(4.) *» = —[D#(a.) - 6q1 &,
= —[&, n]- F@)v — F7(q.) & [v, 1]
= (F(Ye) [ &1 4 ady p,) v 241

Since » € ¢ is arbitrary, expression (2.38) follows.
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To prove (2.39), observe that setting » = &, in (2.41) gives
identée (’TQ(‘Ie)) ’ §e = 2ad: (270 ge =0 (242)
according to (1.14) and Proposition 1.2.ii. []

The preceding relations along with the explicit chatracterization of the space
¥ inr given in (2.36) lead to the following block-diagonalization result:

Theorem 2.4. Let ¥ g, V' inv C ¥ be defined as above. Then
‘D2 Vﬂe(qe) ('IQ(qe)a 6q> = 0 for (nQ(qe)s 54]) € VRIG X ’VINT' (243)

Proof. First, we compute D? Vée(qe)l“fmc x¥ g From (1.26), G-invariance of
¥V, and (2.14), we obtain

D? Vé'e(qe) (’29(%), 6q) = _% géq(ge ’ (Dj(q) ' '12(‘1)) §e)|q=qe

= _[§ea ’1] - (Dj(qe) ) 6q) ge
= [&, n] - ident;, (3q). (2.44)
Substitution of (2.44) and (2.38) into (2.28) then yields

DV, (a.) (no(q.), 89) = [£., n] - ident,,, (5q)

+ (ady e + F(q.) [n, &) - £ (q.) ident,, (39)
= ad’y, - I 4q.) ident; (dg) =0, (2.45)

since dg € ¥ jnr and (2.36) imply that F—1(q,) ident; (3g)€%,. O

2.D.2. The amended potential test: Stability conditions. In view of Theo-
rem 2.4 the second variation of the amended potential block-diagonalizes relative
to the decomposition (2.32) and the test (2.31) for formal stability of a relative
equilibrium is equivalent to the uncoupled conditions

DV, @)y gy w9 mpe > (<)0  and DV, (g, > 0. (2.46)

)lVINTXV INT
As discussed in 2.C4, if dim Q > dim G,. L., il the space ¥y is nontrivial,
then formal stability is possible only if D?V), (q.) is positive-definite. However,
if dimQ = dim G, then ¥gc =% and D>V, (q.) may be either positive-
or negative-definite on ¥°. A familiar example of this latter situation is afforded
by the classical stability conditions of a rotating rigid body (for which- Q = G
— S0(3)).

Next, we focus our attention on the explicit implementation of the two un-
coupled conditions in -(2.46), which ensure formal stability'

i. Stability conditions in ¥ giG. Expresswn (2.45) implies that the second
variation of Ve restricted to ¥ gye is

Vie(de) (mo(qe), vg(qg)) = —ad* fe f‘l(qe) ident;, (vo(q.)). = (247)
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The use of expresswn (2.38) for ident, () yields

D? Vﬂe(qe) (n0(@:), vo(@)) = ad p - F~(g) adf . + adf g, - [v, &1 (248)

for any 7, v ¢ @,,ie. Expréssion (2.48), introduced by ARNOLD [1966, eq. (2.44)],
will be referred to as the Arnold form. In the case that Q ~ G, definiteness of
the Arnold form is a sufficient condition for formal stability; this condition is the
generalization to an arbitrary Lie group G of the rigid body stability conditions

for G = SO(3). (See Remark 2. for the derivation of the rigid body stability
conditions from (2.48)).

Remarks 2.5. 1. The bilinear form D2V, (¢,)ly ;o7 pres 2 given by (2.48) is,

of course, symmetric. A direct check of this property rests on Jacobi’s identity;
e.g.,

adn [TJ? §e] = _[gea [na 'D]] - [1), [ge’ 71]]
= —adg [n, v] + ad, [n, &]. (2.49)

which leads to symmetry of the second term in (2.48).

2. Asindicated above, for Q = G = SO(3). definiteness of the Arnold form
(2.48) reproduces the classical rigid body stability conditions. To see this, recall
that the equilibrium condition g, = #(q,) §,, along with the invariance condi-
tion adg‘e £, — 0, implies that

SexXpe = §,x.2(@q) & =0. (2.50)

Hence, the angular velocity at equilibrium is an eigenvector of the locked inertia
tensor #(q,) at the relative equilibrium configuration. Expression (2.48) then
reduces to the stability condition

D?*V, (q.) (Mo(4e), vo(4e) = (e X 1) - [F2(q.) (. xv) + v X &,]
= (u.xn) - [FUg,) — 2. 1] (u, xv), (2.51)

where p, — #(g,) §, — 2, §.. Definiteness of (2.51) reproduces the classical result
that rotations about the smallest or largest axis of #(g,) are formally stable.

ii. Stability conditions on ¥ iyr. It follows from (2.28) and (2.46) that the
positive-definiteness of the second variation of V,, on ¥ requires that

DV, (4e) (04, O9) = DV (q.) (Og, 0g) + identg, (6q) - F *(q.) ident, (69) > 0,
| (2.52)

for all dg¢€ ¥ yr. As explained in detail in Part IT, in the context of elasticity,
condition (2.52) can be precisely estimated in terms of a classical eigenvalue
problem closely related to that defining the natural frequencies of the system at
the relative equilibrium ¢, € Q. We remark that the crucial difference between
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the sharp condition (2.52) and the estimate (1.37), which arises in the context of
the energy-momentum method, is the presence of the additional term

ident,_ (3q) - #~'(g,) ident; (3g) = 0. (2.53)

To complete our analysis of the reduced energy-momentum method, we es-
tablish the precise conditions under which the split " = ¥ g;e & ¥y holds.
The result is given in the following

Proposition 2.6. et DZVMe(q()I,ARIGK,fRIG be definite. If either 4, is finite-
dimensional or the map o :%—~ % given by
o = 97 (g.) ad} p. (.54

is elliptic (so that the Fredholm alternative holds), then V" = ¥ piec ® ¥ v
Proof. We first show that ¥nr N ¥ g = {0} il D*V, (9o)ly pyox9 rig = O-
Assume that there exists a » € %}e such that »y(g,) € ¥ nr. According to (2.36),
vo(q.) € ¥ vy implies that ident,, (vp(q.)) € %,, and hence -

0 = 7 -idents, (vo(q.)) = 1 - (ad . + F(q.) [v, &) (2.55)
for all ne g,}e. In particular, (2.48) implies that

D? Vue(qe) (vO(qe)5 vO(qe)) = ad:k u: j_l(qe) ad;k K. + ad:: [ 27 adv gp =0,
(2.56)

Thus, we have proved that
v9(9.) € ¥V 'ric N Vinr = D*V, (4.) (vg(qe), volg.)) = 0. (2.57)

In the case that %} is finite-dimensional, the result now follows from a straight-
forward argument based on a dimension count. In fact, dim ¥ x;; = dim g,{e,
since 7)9(q,) = 0 for all n€ #. Since the subspace ¥y of #7 is defined by a
set of d equations where d = dim %, it follows that codimy,- ¥y < dim G .
Thus

dlm VRIG + dlm VINT g dlm'V —_ dlm (’VRIG /\ VINT) - dim V (2.58)

and ¥ = ¥ pic DV iny. I 4., is infinite-dimensional, the more technical argu-

ment given below is required to show that ¥ = ¥ z16 ® ¥ vy
Our first step is to show that if the map «/ is elliptic with respect to the inner
product induced on ¢ by #(q,), then . maps % onto ?,ie. From (1.14) we have

() F(g) E=ad;p-5=0 (2.59)

forall €% and £€9, ; hence o/ fna_ps % into %; . o is skew-adjoint with
respect to the metric induced by .£(gq,), so ellipticity of o/ implies that

%, ® Yi =% = ker o/ @ range . - " (2.60)
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Since .#(q.) is invertible , ker .of = %,, and, hence, range .of = @F%e Now define
the map ¢:%; — %} by

Hn) := P, (F71(q.) ident, (15(4.)))
= #7q.) ad} p. + Py [, 5.1, - @)

- where P, denotes the orthogonal projection P, :%—4%,. To show that the
map ¥ is, in fact; an isomorphism assume that there exists zn¢ g,fe such that
Hn) = 0. From (2.45) and (1.14) we then conclude that

D2 V,ue(qe) (nQ(qe)9 MQ(qc)) = —ad:l; He " j_l (C[e) idéntfe (nQ(qe))
= —ad] #, - )(no(q.)) = 0. (2.62)

Hence definiteness of D? Vﬂe(qe)].yanGx.leG implies that & is one-to-one. To show
that & is surjective, assume that there exists 5 ¢ {ﬁ; such that 54 Im . By re-

normalizing if necessary, we can assume that 5 - #(g,) 9(n) = 0. Since 7 is
surjective and ker of = P there exists a v € fﬁ,ﬂ; such that n := o/v. The

calculation given in (2.62) shows that D2V, (q.) (vo(q.) (vo(q.), ¥o(g.)) = 0;
thus if DV, (qo)|y g;ox¥gie 1S definite, then & is an isomorphism.
Next, we now show that ¥ g6 @ ¥ vy = ¥". Given dg€ ¥, define

1 1= 0-1(P, (F~1(q.) ident; (3¢))). (2.63)

—_
By construction, 7€ {4,{;, s0 No(g.) € ¥ 'rig. Now define dq := dq — np(q.);
using (2.61), we see that

P, (F7(g,) ident;, (39) = P, (F-'(q,) idente, (3¢)) — (m) =0. (2.69)

Thus £-1(q.) identge(gq) €9, and hence 5q € V" inr- 1t follows that ¥ g6 +
¥ v = ¥, which implies the result. []

§ 2.E. The split of &: Block-diagonalization of H,

The decomposition described in the preceding sections is closely related to
a decomposition of the space & C T, P, defined by (1.19), which appears in the
original energy-momentum method. In fact, the rigid-internal decomposition was
originally developed in this context.

The constrained subspace & can be explicitly realized as the following sub-
space of ker (7. J1:

& 1= {dz = (3q, Op) € ker [T, J] | 6g € ¥'}. (265

We shall show that the decomposition ¥ = ¥ ;¢ ® ¥ ;nr induces decomposi-
tions & = Pric ® Finr and Fiyr = Winr © Wiyr relative to which the
second variation DZHﬂe(ze, §,) block-diagonalizes. For G = SO(3), Pric is

interpreted as the space of superposed rigid body variations (modulo motions



42 J. C. Simo, D. Lewis & J. E. MARSDEN

about g,) which satisfy the linearized constant angular momentum condition.
& nr is interpreted as the space of internal or ‘deformation’ variations; # jxr
and ¥ 5 correspond to the spaces of internal configuration and momentum
variations, respectively.

We first decompose the space &, of admissible: variations of the reduced
Hamiltonian 4, . We define the spaces For;¢ and # oyr of pure configuration
variations by lifting the clements of the spaccs ¥ gpe and ¥ jyr to &g

FLorig = {(4g,0) | 49 € ¥ ric}, (2.66)
Wot 2= (64, 0) | 6 € ¥ nr}. (2.67)

The space # ¢;yr of pure momentum variations is defined by lifting the element
of the annihilator (% - ¢q,)? to %,:

Winr =10, 8p) | 3p € (@ - g.)1. (2.68)

Using (2.16) and Theorem 2.4, we see immediately that D*h, (z,) block-diagonali-
zes with respect to the spaces Pygius # oine> and # &nr
The space & of admissible variations satisfies & = T;EZ';B L., ie.,

P (T2 87 |6z 20} (2.69)

Hence we can define a decomposition of & by taking the images of the subspaces
of &, under the mapping T;EZH;. Specifically,

Fric = Te 2, - Forie = (T2 - (Ag, 0) | Ag € ¥ pghs (2.70)

Winr = Tz 20 Wone = (T2 - (8¢, 0) | 0q € Vinr) 2.71)

Winr i— Tz;_Z'M_el W sine — W oinr- (2.72)

Note that the subspace &g is parametrized sdlely in terms of elements of

¥ ri- Put in mechanical terms: If the configuration variations are restricted to be
group variations (e.g., rigid body variations), then the linearized constant angular

momentum condition completely defines the corresponding momenta variations.
Consequently, we have

yRIG 28] VRIG S g)[e. : . ‘ (2.73)

The space &y of all internal variations consists of elements of & with configu-
ration component in ¥ jyp:

Linr ' =Winr ® Winr = {0z = (8q, 6p) € & | 0g € Vinr}. - (2.74)

Conceptually, Finyr ~ T*(Q/G), where Q/G is often referred to as the shape
space. If the Arnold form (2.48) is nonsingular, then ¥ = ¥ "z;6 © ¥ nr IM-
plies that :

,SP = S ® Pt ' (275)
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" We how show that the second variation of the energy-momentum functional
block-diagonalizes with respect to the subspaces Pz, # vr» and # Fyr. This
result is an immediate consequence of the block-diagonalization result for the
second variation of the reduced Hamiltonian Dh, (z.).

Theorem 2.7. (Block-diagonalization theorem). Let z,€ P be a relative equili-
brium and let S g, Lints W inr, and W iyr be constructed as above. Then

D*H, (z, &.) ((4z, 0), (62, 0)) = 0 (2.76)

Jor all pairs (A4z, 62) € P ric X Lint 0F Wint X W tnr. Equation (2.76) implies that

S RiG WINT WiNT
Ve~ 9%,  Vinr @ q.)
Form 0 0
azHue(Ze: §e)|yxo = o 62 V,ue(qe) o . (277)
(8] (2] o Dt

Each column of the matrix of (2.77) belongs to the space above the column
in the first row of spaces. These spaces can be respectively identified with the
model spaces in the second row.

Proof. Given variafions Az and 8ze &, define _;1-; =T, % -4z and 5::
T.% - 0z. Then h, = H, -Z,! and DH,(z., &) =0 imply that

DZHME(Ze, ) ((AZ, 0), (0z, 0))
= D*H, (5 @), &) (T55,,! 4z, 0), (Tz2;1 - 62, 0))

ZeT He

2

+ DH, (5;71G,), &) - (T2 Z1(4z, 52), 0)

e Fe

= D%, ) (A, b2). 2.78)

In particular, the block-diagonalization of Dzh,,e(ée) with respect t0 Lorrc.
W oint> and Wy implies the block-diagonalization of DZHMe(ze) with respect
t0 Frigy Wint, and #iyr. O

As a consequence of the block-diagonalization theorem, the test (1.20) for
formal G, -orbital stability of a relative equilibrium z, reduces to two uncoupled
conditions

DZH,ue(Zea ghe)lijIG xleé > (<) Oa and DzH,ue(Ze: §€)'WINTX WINT > 03
(2.79)

It follows from equation (2.78) that these conditions are identical to those given
in (2.46). As before, if Q ~ G, then &7 is trivial and the condition for formal
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stability reduces to ‘the condition that D2H, (2es £l pyc srig De either

positive- or negative-definite; if &, is nontrivial,- then both blocks must be
positive-definite.

Remark 2.8. The linearized dynamics at a relative equilibrium z, are determined
by the second variation of the energy-momentum functional and the symplectic
two-form at z,. The decompositions used in our formal stability analysis can be
incorporated into the symplectic structure by identifying the canonical symplectic
structure restricted to the subspacc & with the Poisson structurc on the bundie
P, — Q/G. We refer to MARSDEN, MONTGOMERY, & RATIU [1984] and referen-

ces cited therein for the abstract computation of the bracket and to Smvo,
Lewis, & MARSDEN [1989] for the derivation of the bracket in this specific case.
The derivation makes use of the following chain of identifications:

F~Gy, ® Ve &G4 ~ 0, © Ty (Q/G) T}, (0/G),  (2.80)

where 0, is the coadjoint orbit of g,. If we define the map ¢ : fﬁe XY e X (% - q.)*
— % by

o(n, 6q, Op) := T2, ' - (no(q) + dq, op) - (2.81)
and define

Q,((n, g, 5p), (3, bg, 3p)) = 2(z,) (e(1. 4. Op), o, bq, p)),  (2.82)

then £, takes the form
(1, 84, 30), G, 2, 39)) — pe - (G w1l | [y 350)] - [, (b))
— — —~ :
+ <9p, 9q> — <{Op, 3q> + dxg (0g, 6q),  (2.83)

where &g :Q—>T*Q is given by oc(q) := (g, FL[(q)]) and cx:TQ—> g
is the simple mechanical connection given by

®(0q) := I (q) JFLOg). ‘ 2.84)

In the schematic notation of (2.77) we have

gl - ‘g . A
Yic, Yinr (9 4q.)
%
O, T (Q/G) Ty (Q/G)
Coadjoint Orbit Internal-Rigid’ o
[Symplectic Form]| - [ Coupling )
Tnternal-Rigid Canonical symplectic :
-Qo = 1 [ Coupling [ form plus a ] . (285)
‘magnetic’ terms :

o
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§ 3. Homogeneous elasticity and pseudo-rigid bodies

As an application of the reduced energy-momentum method, we present here
a treatment of the stability of the relative equilibria for a mechanical system that
can be regarded as a particular case of three-dimensional nonlinear elasticity.
The model in question is an extension to general elastic materials of the affine
fluid model studied by Tacorr, MaciAurin, and RIEMANN, among others. We
begin with a motivation and a brief summary of the essential terminology, then
examine the Hamiltonian structure of the model and finally discuss the stability
of relative equilibria. The main objective of this presentation is to provide a
detailed illustration of the abstract ideas discussed in the preceding section in the
concrete setting of a simple, yet nontrivial example.

§ 3.4. ITomogencous elasticity. Governing equations

Let # CR3 be the reference placement of an elastic body with smooth
boundary 4. 1ts particles are denoted by X € # and labeled by the position
vector . X cR?® relative to some fixed orthonormal frame. Further, let b: % x
[0, T]—R3 and t: 84 x [0, T]—=R3 be the body force per unit of mass and the
nominal traction vector on the boundary, respectively, with associated astatic
load tensor given by (see, e.g., TRUESDELL & NoLL [1970, p. 127])

vol [#] A(t) := fgob ® Xd# + [t R XdA, 3.1
# oR

where g, : # — R is the reference density, and [0, T is the time interval of inter-
est. We assume that the clastic body is homogeneous with frame-invariant stored
energy function W:GL*(3) =R, so that W(AF) = W(F) for all A€ SOQ).
Here GL*(3) is the subgroup of the general linear group consisting of real 3x3
matrices with positive determinant. Frame-invariance implies that W depends on
F through the right Cauchy-Green tensor C := F'F. We write W(F) = W(C).

The mechanical system of interest here can be approached from different per-
spectives, all of them leading to essentially the same governing equations. For our
purposes, it suffices to regard the present model as a model of homogeneous elas-
ticity obtained from general three-dimensional elasticity by restricting attention
10 affine deformations. Under this (strong) assumption the deformation gradient
F is independent of X¢€ 4, and the quasi-linear hyperbolic system of nonlinear
elastodynamics reduces to the following system of nonlinear ordinary differential

equations
F = IOE , '
- in [0, 1, (3.2)
IT = —FR0.W(F'F)] + A

where E is the convected inertia dyadic associated with the reference placement
4. Denoting by e the spatial inertia dyadic (associated with current placement
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of the body), we have the expressions

E:=[X® Xoo(X)d#, and e:=FEF", (3.3)
A .

One refers to I = FE € L(3) as the momentum associated with a configuration
F ¢ GL*(3), where L(3) denotes the vector space of 3 X3 matrices. The evolution
equations (3.2) can also be regarded as an extension of those governing classical
rigid dynamics; see e.g., SLAWIANOWSKI [1988], and the comprehensive exposi-
tion in COHEN & MUNCASTER [1988], who coined the denomination of pseudo-
rigid bodies.

With the preceding notation in hand, the kinetic energy K can be expressed
as

K:=1% [ FX-FXpo(X)d# = } tr [FEFT] = } tr [ITE-'IT7]. (3.4)
3

In view of this relation, we regard K as a function of IT¢ L(3) and use the
notation K(II) =1 <{II, IT>5 ., where <{-, ->g. defined by (3.4) is referred to as
the kinetic energy inner product. In the absence of external loading the astatic
tensor A = 0 and the total energy function takes the form

H(F, IT) := 3 <IT, M5+ - W(FTF). (3.5)

This completes our summary of the governing equations for the present model
problem.

§ 3.B. Hamiltonian structure of homogeneous elasticity

Equations (3.2) define the evolution of a dynamical system with basic variables
the deformation gradient F¢ GL*(3) and the momenta IT¢ L(3). From the
perspective of § 1, homogeneous elasticity then becomes a simple mechamcal
system with the following characteristics:

. Configuration manifold: Q = GL*(3) ;= {F:del [F]>> 0}. That is, Q is the
subgroup of the general linear group, GL(3), consisting of matrlces with posmve
determinant, (dim Q =9).

il. Canonical phase space: I'he phase space is the cotangent bundle P = T*GL*(3),
realized as P={(F, II):FcQ, and € L(3)}, (dim P = 18).

iii. Duality pairing: The pairing between T*GL*(3) and TGL*(3) is denoted by< >
and defined by the standard matrix inner product <{I7, V> = tr[HTV] for all
(F I e TEGLH(3) and  (F, V) € TrGL*(3).

iv. Symplectic two-form: The canonical symplectic form 0:TPXTP—R is
defined by the usual skew-symmetric form induced by the duality palrlng Note
that £ does not depend on the base point (F, IT)C P.

v. Canonical Hamiltonian: The Hamiltonian H: P—TR is defined by expression
(3.5), which is the sum of the kinetic energy and potential energy.

vi. Symmetry group: G = SO(3). The Hamiltonian H is invariant under. the
action of the rotation group; i.e., H(AF, AIl)= H(F, Il) for all (F, II)¢ P
and all A€ S0O(3). . ' ,
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One can readily show that for the simple mechanical system outlined above, the
abstract form (1.2) of Hamilton’s equa’uons yields the evolution equations (3.2)
of homogeneous elast1c1ty

3.B.1. Momentum map. The symmetry group G = SO(3) induces a momen-
tum map which coincides with the total angular momentum of the system and is
computed, in the abstract setting of § 1, as follows. Recall that the Lie algebra
¢ =s50(3) of SO(3) is the linear space of skew-symmetric matrices, which is
identified with R® via the isomorphism

» §€S0(3)|——> EcR? & §v= Exv  VveR3, 3.6)

where x denotes the ordinary cross product. Under this isomorphism the Lic
bracket bécomes the cross product:

[ésﬁ]Cso(3)|> ExnCR3, 3.7

Moreover, the dual of the Lie algebra, %* = s0*(3), can also be 1dent1ﬁed with
R3, and the co-adjoint action of 4* on % becomes

ady § = pux§, V(4 &€ s0*(3)xs0(3) ~R3xR3. (3.8)

With these standard conventions in hand, we note that in the present context
§o(F) = &§F. The momentum map J: P — s0*(3) ~ R3 given by the abstract

formula (1.6) takes the following concrete form:

J(F, 1) - & = (IT, EFy = (IIFT, & = (skew [ITFT], &, (3.9)
for all §€R?, where skew [A] := % [A — A”] denotes the skew-symmetric
part of A€ L(3). Therefore, the angular momentum vector is defined by

J(F, IT) = skew [ITF7]. (3.10)

This result agrees with the standard expression obtained by a direct computation
of the total angular momentum for homogeneous clasticity.

3.B.2. The locked inertia tensor. The %-orbit associated with a configuration
F¢ @ is given by

s0(3) - F = {£F: €€ 50(3)}. (3.11)

From a mechanical point of view, (3.11) defines all possible infinitesimal rigid
motions superposed onto a configuration with deformation gradient F. The ab-
stract formula (1.27) then defines the locked inertia tensor #(F):R3—R3
associated with a configuration F¢ Q by

£+ F(F) m = {&F, §F g :=— tr [§FEFTH] = —tr [EFEFT)].  (3.12)
Use of the identity #& = —[(n- 81— §®n] along with (3.3), yields the

result

F(F) = [tr[e] 1 — e] = Fltr [EC] C-* — E]FT,  (3.13)
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It is clear from this expression that #(F) is a spatial tensor. Observe that its
counterpart in the convected description, namely F-1.#(F) F~7, depends on the
convected metric C = FTF, which coincides with the right Cauchy-Green tensor.
This result is in agreement with the geometric setting of nonlinear elasticity; see
SiMo, MARSDEN & KRISHNAPRASAD [1988]. In keeping with the interpretation
of .# as a spatial tensor, we can realize the tangent space of admissible variations
at a configuration F¢ Q by right-translation of L(3)-as

TzQ = {0F = Of F: 6f € L(3)}. (.19
We shall refer to OF as a material variation, and call 0f = 0FF~! a spatial

variation of the configuration F¢ Q.

3.B.3. .The augmented and amended potentials, and the shifted momenta.

The specializations of expressions (1.26) and (2.8) for the augmented and amended
potentials to homogeneous elasticity are

Vi(F) == WEF) — 4 & S(F) &,
VF) := WETF) + L - 5(F)

where #(F) is defined by (3.13). The Legendre transformation FL:TzQ — T5Q
defined by formula (1.22) becomes

FL(OF) — OFE = [6f e] F~ 7. | (3.16)

(3.15)

Consequently, the momentum component II, of the map «, : Q—J(u,)
defined by the abstract formula (2.3) is '

I, (F) := (5F) " p) FE = [(SE) " p) o] 7. (3.17)

Tn view of (3.17), the shifted momentum (F, IT)€ J-*(0) defined by (2.9) now
becomes .

fi— 11— I, — [HFT — (S p) el FT. (3.18)

This expression is consistent with the following alternative characterization of
II. According to.the general theory, (F, II') must lie in the level set of zero mo-
mentum. This condition is ensured by setting IT = sF~T, for some symmetric

3

matrix s = sT, since then f(F, I ) = skew [lfFT] = skew [s] =0.

§ 3.C. Relative equilibria and the rigid-internal decomposition -

According to Proposition 1.4, relative equilibria are critical points of the
augmented potential ¥, which, as shown in § 2, coincide with the critical points
of the amended potential ¥, . Therefore, from (3.15), and (3.13) we conclude that

F,€Q is a critical point of V; if and only if , ,
DV, (F,) - OF = <F 20 W(F,F) F] — (|&.]?1 - & ® &)e, 0fy =0 . (3.19)
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for all 8F = AfF. ¢ Tr,Q. This relation yields the following local form of the
relative equilibrium conditions _ :
7, = F20cW(CIFT = [|&. 1 — & ® &le,, (3.20)

where C, := F!F,, and 7, is the (symmetric) spatial Kirchhoff stress tensor. Use
of the symmetry condition 7, = 7! in (3.20) then yields the result that

e85, = A&, where 1, — Se - &5 >0. (3.21)

Thus, for homogeneous elasticity the angular velocity &, at a relative equilibrium
F,c Q must be an eigenvector of the spatial inertia dyadic e, := F,EFT and,
hence, of the locked inertia dyadic S(F,) defined by (3.13).

3.C.1. Decomposition of ¥ . First, we implement the abstract definition
(2.21) of the space ¥~ of admissible configuration variations by providing an explicit
characterization of the Lie algebra 9,, and its metric-orthogonal complement gje.
Recall that the subalgebra s0(3),, associated to the isotropy subgroup SO3),,

consists of the elements & € so(3) such that ad¥ g, = u,x § = 0. Note that result
(3.21), which requires that &, be an eigenvector of #(F,) and, hence, parallel to
H., 13 a particular case of this general equilibrium condition. Thus so(3)”e is

simply the one-dimensional space spanned by g,. Using this fact, we have the
characterization

s0(3)z, 1= {n€s0(3) | p. =& n=0}. (3.22)

Note that so(3)/s0(3),, ~ so(3)je. Now recall that the space ¥ C Tr,Q of ad-

missible variations is specified by (2.21) as the metric-orthogonal complement to
the space so(3),, - F,. Thus

¥ ={0F = 6f F,e€ T 0 | (df e, £ = 0}. (3.23)

From (3.11), (3.22) and the abstract definition (2.34), the space ¥ g, of rigid
variations becomes .

VRIG == {ﬁFe | 71 Uy, — 0}. (3.24)

Finally, to determine the space ¥ jyr of internal variations, we first compute the
first variation of the locked inertia tensor. From (3.13) and (3.3), we obtain

D#(F,) - OF = 2 (tr [6f e,] 1 — sym [df e,]). (3.25)
Therefore the mapping .identEe(-) 1Y — @* defined by (2.26) now becomes
ident, (8F) — —2 (tr [8f ¢, 11  sym [6fc,]) &, (3.26)

and the abstract definition (2.35) of the space of internal variations then specializes
to

Vv ={0fF, €7 | n-sym [6fe ] & =0 V¢ s0(3);}. (3270
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Since dim so(B)He =1, we have dim ¥~ — 9 — 1 = 8. Furthermore, dim ¥ g
= dim so(3),}e =2 and dim ¥y = 6. Thus, consistent with the abstract
setting, we have ¥ = ¥ p;c ® ¥ v7, provided that the second variation 62 Ve,
is definite.

§3.D. The second variation of Vi,

Let F, be a critical point of the augmented potential Ve, The test (2.46) for
stability of the relative equilibrium associated to F] requires the computation
of the second variation D? Vo (F) () ¥ x¥ —R by means of formula
(2.52). In the present context, we have

D? V,ue(Fe) (" ') = D? W(Ce) (': ) + DZLEE(Fe) ('9 ')
| + ident,, () - #-\(F,) ident;, (), (3.28)

where L. (F) := —}§, - #(F)§, can be interpreted as the potential associated

with the centrifugal force. The first two terms in (3.28) comprise the second vari-
ation of the augmented potential V, defined by (3.15),. For convenience, with

a slight abuse in notation, we shall often identify a variation 8F (or 4F) with its
right translation &f := 0FF— (or Af:= AFF-') in the computations
that follow.

i. Second variation of the stored energy function. Let C denote the spatial
elasticity tensor with components defined by the standard expression

; . *W(C
Ci* — AF FI F* F) @

A straightforward computation from (3.19) then gives the following result
D*W(F) - (8F, AF) — (F[46%cW]FT AF, 8Fy + { AF[20.W], 6F> -

— (sym [8f], Clsym [4f1]) + <z, o7 4f),  (3.30)
where © := F[20, W]FT is the spatial Kirchhoff stress tensor. Particularizing the
preceding result at a relative equilibrium configuration and using (3.20) yields

D*WI(F,) - (6F, AF) = (sym [8f], C,[sym [4f]]> |
FEPL—E @ &, & Aoy, (33D

1i. Second variation of the augmented potential. The second variation of the
centrifugal potential L, (F) is readily computed from expression (3.13) for the

locked inertia tensor. The result, expressed in the spatial description, takes the
form ‘

DL (F,) (OF, AF) = —{[5,* 1 — &, ® &, Of e, Af™>.  (3.32)
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Combining expressions (3.31)' and (3.32), we can write the second variation of
the ‘augmented potential Ve,= W+ L, as

D2V (F,) - (OF, AF) = (sym |0f|, C[sym | Af|]) + G(4F, of),  (3.33)

where the ‘geometric’ term G(Af, 8f) is defined by
G(4f, ) = {|&[P 1 — & ® &, OfT Afe, — Sf e, ATy, (3.34)
This expressioh can be further simplified by noting that

(1, 8fT Af e, — Of e, AFTS = 2 tr [skew [6f7 Af] e,] = O. (3.35)

Furthermore, the spatial inertia dyadic, e, can be replaced by (minus) the locked
inertia tensor since, from (3.13), e =tr [e]1 — %, and

8. ® &, OfT Af 1 — Of 1L Af") = 2(§, ® &, skew [8fT Af]y =0, (3.36)
By cémbi'ning (3.34), (3.35) and (3.36) we arrive at the final result
G(4f, 0f) = 2,(0f &) - (Af &) — (8f T &.) - FAf" &), (3.37)
where

. ge ’ je §(?

ﬂ.e = —-W (338)

According to Theorem 2.4 and the discussion in § 2.D.2, the test for formal
stability reduces to an independent test for positive-definiteness of the second
variation D? V,, on the subspaces ¥ g and ¥";yr. For homogeneous elasticity,

this test gives the following conditions.

3.D.1. Stability conditions on ¥ g;e. Consider arbitrary variations in ¥ g,
which, according to (3.24), are of the form OF = #}F, and AF = §Fe for
some 13, §€ %,}e. Inserting these expressions into (3.37), (3.33) yields

DV (F.) (OF, 4F) = 2,(nx £) - (Ex §) — (X £) - (6 E).  (3.39)

To compute the last term in (3.28), we restrict expression (3.26) to ¥ g to ob-
tain

ident;, (OF) = (fie, — e,7) £ = (F.7j — 7.4 &
= SXE) + pxn. (3.40)

This result agrees with the general expression (2.38) given in Proposition 2.3.
Using (3.40), we obtain

ident,, (6F) - £ " ident,, (AF) = (u, X 0) - £ (X §) — 22,(nx &) * (5% &)
T+ mxE) - FEXE). (3:41)
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Combining (3.39) and (3.41) according to (3.28) yiclds
D*V, (F) (OF, AF) = (u.xn) (S — 27" D) (u.x8). (342

It can be easily shown that (3.42) agrees with the result obtained by particularizing
the abstract expression (2.48) for the Arnold form to homogeneous elasticity.
In view of (3.42) we conclude that: A necessary condition for formal stability of
a relative equilibrium in homogeneous elasticity is that the rotation axis coincide
with the axis of maximal inertia of the equilibrium configuration.

3.D.2. Stability conditions on ¥ " ;yr. For the analysis that follows, it proves

convenient to define ;Sf := df e, sothat admissible variations in ¥y, defined
by (3.27), can be written as )

OF = 8fe; ' F,€ Viyr  where  Of =45, with negi. (3.43)

Here s := sym [6f] and # := skew [6f] denote the (unique) symmetric and
skew-symmetric parts of 8. The constraint condition in definition (3.27) of # jnz
is then automatically satisfied by requiring that s&, = 4,&, for some A,cR.
With this reparametrization of the space ¥y, the second variation of the amend-
ed potential takes the following convenient form.

i. We assert that the geometric term G(4f, 8f) defined by (3.37) depends

only on the skew-symmetric parts skew [(_Sf] and skew [4f]. In fact, a direct cal-
culation gives

G(4f, 6f) = —(&, ® &, e, 1 OfT Af — Of &' AfTS
| — —X'OF ) (AF &) + (OfT &) - e  MAFTE), - (3.44)

where ﬂ_.e is the eigenvalue of e, associated to the eigenvector §,. Thus, Vchoosing
OF = se;' F, with s = s (ands&, = A&, for some 2,€ R), we obtain

G(Afa 6f) = _Igl(lAge) . (Af §e) + (}'sge) : ee‘l(AfT §e) _"07 (345)

which proves the assertion. Thus, setting # = skew [Sf] and 5 = skew [Zf],
we find that :

G(4f. 8f) — ~(x &) (1 1— e (&)
=g & 1—e G ' (3.46)
ii. We assert that ident. (0F) restricted to ¥ jyr dependsv only on the sym-

metric part sym [5j] of (S—f To see this, note that OF ¢ ¥ ;yp implies that
idente, (0F) = A5, for some A€R. Hence, using (3.26), we obtain

ident;, (6F) = |&,| 2 (& - ident;, (OF)) &,
:_21§e‘_2<‘§e121_ §e® §e:l—sf> §e
= —2(Pq, sym [67]> §&,. B X))
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where Py 1= 1— 16,17 (6. ® &) isthe vrthivgonal projection matrix along the

direction defined by & €R3. Therefore, the last term in (3.28) can be written
as _ :

ident,, (OF) - #; " ident,_ (6F)
— KB, sym [8f1) (Pe,, sym [4f]) & - # ' &,
4 - _
= &2 5 (e, sym [f]) (Pe,, sym [4F]>. (3.48)
iii. In order to derive an explicit matrix expression for D*¥, restricted to

¥ Nt We assume, without loss of gencrality, that &, is parallel to % and introduce
the mapping S3:R* — Sym (3) defined by the matrix expression

Xy, x5 O
S3(%) i={xs x, 0], (3.49)
0 0 x;

relative to the standard basis in R?. The condition that §, be an eigenvector
of #(F,) implies that there exist vectors I and I in R* such that e, = S;(I) and
J(F,) = S5(I) :=tr[e,]1 —e,. Furthermore, the constraint condition on

variations in ¥ "jyr, which requires that §, be an eigenvector of sym [5f], can be
explicitly enforced at the outset by setting

— TN
Of = ((01, 62, 0) + S3(03, 5 (8, + 02), 1 (8; — 8,), 83)). (3.50)
For convenience, we identify of defined by (3.50) with a vector v €R¢ defined

as v = (0y, 05, 03, 04, 02, 03). Similarly, we identify Af with.a vector wcR?®
defined by the same convéntion. In view of these results, the second variation of
the amended potential can be written in matrix form as ’

D*V, (F.) (OF, AF) = (sym [6f], C, [sym [Af]]) + |&.[?v - Mw, (3.51)
where
: M — diag [B(e;! 271 1)k, 4271, 0, 0]. ' (3.52)

Note that if a basis has been chosen in which .#(F,) is diagonal, then M can be
completely diagonalized. The stability condition that D? Vﬂe(Fe)er be positive-

definite can be easily implemented by solving the 6 x 6 standard eigenvalue prob-

lem associated with (3.51). Specific examples are discussed next in the context
of isotropic elasticily,

§ 3.E. Isotropic equilibria

A homogeneous elastic material is isotropic if the stored energy function is
invariant under both the left and the right SO(3) action, i.e., if

o W(FQ) = W(F) = W(QF), ¥ Q¢ SO(3). (3.53)
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In this case, there exists a function @:R3—R such that W(C) = &, 1T, TTD),
where I = tr (C), II = cof (C), and III = det (C) are the principal invariants
of C. Note that the Hamiltonian H(F, II) = W(F'F) + L <II, II>5., need
not be right-SO(3)-invariant; the right symmetry of the kinetic energy term is
determined by the symmetry of the inertia matrix E. However, we shall see that
isotropy introduces additional structure even when the Hamiltonian is not right-
invariant. Without loss of generality, we can assume that the equilibrium inertia
dyadic is diagonal, i.e., that e, = diag [e,, e,, e3] for some positive constants
¢;, and that u, is parallel to k. The equilibrium conditions (3.20) then take the
form =, = |§,|? diag [e;, e, 0]. The assumption of isotropy leads to the following
consequences:

i. The relative equilibrium conditions imply that z, is diagonal ; since the princi-
pal directions of the left Cauchy-Green tensor B, := F,FT and 7, coincide by iso-
tropy, it follows that B, is diagonal. Hence B, = diag [A4], where the A, are the
squares of the principal stretches of F,.

ii. By the polar decomposition theorem, there is a unique rotation matrix Q, €
SO(3) such that F, = VBEQG. Recalling expression (3.3),, we conclude that
€, and E are simultaneously diagonalizable, since

C,= Qfdiag[4]Q, and E=QIdiag[E]Q,, . . (3.59)

€; s . T . . .
where £; = 1 Hence, a condition of equilibriumis that the left (or right) Cauchy-
i .

Green tensor and spatial (or convected) inertia matrix share a common eigenbasis.

We now express the equilibrium conditions in a form which explicitly deter-
mines the equilibrium values of the derivatives of the stored energy @ with respect
to the principal invariants in terms of the angular velocity &, and the eigenvalues
A; and E; of C, and E. By substituting this form of the equilibrium conditions into
the second variation, we shall obtain an expression for the second variation with
the following properties: First, the second variation possesses additional block-
diagonal structure beyond that guaranteed by the energy-momentum method;
in fact, with the exception of the 3x3 three block associated to variations of
the principal stretches, i.e., diagonal variations of F, the second variation can be
completely diagonalized a priori. Second, the explicit dependence of the second
variation on the stored energy function is minimized; the derivatives of the stored
energy appear only in the 33 block mentioned above. Thus, we obtain simple,
general stability conditions with natural physical interpretations.

The equilibrium conditions for a diagonal equilibrium deformation of an
isotropic material may be expressed as follows: Let

, &
e T A, — ) Uy — A (A, — 43)°

He

(3.55)

u:amfﬁm,xﬁzamrﬂ@. ~(3.56)
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Then F, is a critical point of the augmented potential V_ if the diagonalization
conditions given above are satisfied and
Dy — Hée(‘d%’;l - A%"z)s
Py = —"se(/ll"l — Ay3),
QIH == %-fe(xl - %2). (3.57)
Using equations (3.57), we can express much of the first term in (3.51) in terms
of the angular velocity & and the reference and current configurations. Speci-

fically, let ¥ express the stored energy as a function of the squares of the prin-
cipal strctches, i.c., define ¥ :R* — R by

Y(A) := W (diag [4]), (3.58)
identify the variation OF € ¥y given by
OF := (64, 02, 0) -+ S3(03, b1, 02, 05)) &, ' F, (3.59)

with the vectors o and 4 ¢ R3, and analogously identify Sie ¥ inr With the
vectors & and 8. Notc that to first order the principal invariants depend only
on the variations determined by the §;. Let I, = X;.; ¢ = Z,..; A,E; denote the
diagonal entries of the equilibrium inertia dyadic .#,. Then the second variation
takes the form

DV, (F,) (OF, 8F) = |£.|? 6 - x5 -+ 46 - 48, (3.60)
where

— dia [/12/13(13 — L) (E, — E3) A A3(I; — 1) (E, — E3)
X =g L(A, — 43) : LA, — Ay

L(E, — E
3(Ey 2) ] 3.61)
ElEz(/l1 - /12.)
and 4 is a symmetric 3 x3 matrix with entries
o’P4)y 1 ,
A= od, GE T 15 Re (3.62)
where
: 1 (E, — E;) 1
Ry = — = —_— —_
wmn ReTTTEE -4 T n
1 1
R13 R23 == R33 =0.

T 2B, — )’ 2Ey(A; — 4,)°

(3.63)
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Thus, in this case, the second variation is diagonalized up to the 3 %3 matrix- 4;
this degree of structure enables us to essentially ‘read off” the necessary conditions
for definiteness of the second variation. Since the system is finite dimensional,
formal stability implies nonlinear stability modulo G,,. Since A;, E;, and [; are

all positive, the stability conditions can be summarized as follows:

A rigidly rotating diagonal relative equilibrium of an isotropic material is nonlinearly
stable modulo G, if

i. The body is in rotation about the axis 3 of maximal inertia of the equilibrium
configuration, ie., if I,> 1, and Iy > I,.

1. The ordering of the principal stretches and the principal axcs of the reference
configuration agree, i.e., if

L — I
Y

J

>0 fori<j (3.64)
iii. 4 is positive-déﬁnite.

The first set of conditions are simply the usual rigid-body stability condi-
tions associated to ¥ g;¢; the second set are obtained from the matrix y associated
to the off-diagonal internal variations. The equilibrium condition that the con-
vected metric C, and the convected inertia matrix K share a common eigenbasis
is strengthened to the stability condition that C, and E have a common ordered
eigenbasis, where the ordering is given by the magnitude of the eigenvalues.
This condition, which relates the principal stretches to the principal axcs of the
reference configuration, is strongly reminiscent of the Baker-Ericksen [B-E] in-
equalities, which require agreement of the ordering of the principal stretches
and the force per current area. In fact, for a rotating relative equilibrium, the
first two sets of stability conditions imply the [B-E] inequalities. This can be seen
as follows: Assume that I3> 1, and I;> I,. Then

L E >0 Vi 0 At — A 0 3.65
14 /1, = - A}> = a4 =2, >0. . ()

The inequalities (3.65) arc the [B-LE] inequalities.
For two relatively simple isotropic materials, the Ciarlet-Geymonat material,
with stored energy function

2
&(1, I1, TII) ;= —”2— (I — log I1I) + - (IIT —log I1I),  (3.66)

and the St. Venant-Kirchhoff material, one can show that if the rigid body sta-
bility conditions arc satisficd, then the incqualitics (3.64) hold and 4 is positive
defirite. Hence, for these materials. any relative equilibrium rotating about its
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axis of maximal inertia is nonlinearly stable. I'or a compressible Mooney-Rivlin
material, with stored energy function :

qﬁ(i, Ii, ) := % (G4 A (1 — logIID) + (& — B) (I — 2 log IIT))

A
+ T(III — log III), (3.67)

both stable and unstable relative equilibria may exist; see LEwIS & Simo [1990].

§ 4. Concluding remarks

We have presented a general approach to the rigorous nonlinear stability
analysis of relative equilibria in Hamiltonian systems. The present approach,
referred to as the reduced energy-momentum method, constitutes a substantial
extension of results of ARNOLD [1966, 1968], SMALE [1970a, b], HoLM et al. [1985],
and others. In particular, the method involves only the configuration space and
not the full phase space, enforces automatically the constraint of conservation
of momentum without introducing Lagrange multipliers, and does not require
explicit knowledge of the conserved quantities in the reduced space (Casimirs).

We have introduced in a general context and have proved and exploited in a
crucial manner a new block-diagonalization procedure, which, for rotating
systems, decouples ‘rotational’ from ‘internal’ (deformation) modes in the stability
analysis. In fact, the stability conditions associated with the rotational modes are
explicit, and reduce to the stability conditions of ARNoLD [1966] for the case in
which the configuration space coincides with the symmetric group. In particular,
for the rotation group, these are the classical rigid-body stability conditions.

In Part 11 of this work we shall discuss, apply and further develop the tech-
niques introduced above in the concrete setting of nonlinear elasticity.
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