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(m lew analytical techniques and recent algorithms which numer-
*«ally compute the time evolution of mechanical systems cnable
today’s scicntists, engineers, and mathematicians to predict
events more accurately and more rapidly than ever before. Be-
yond the problems of simulation and prediction. however, lic
the problems of understanding a dynamical system and choos-
ing a correct dynamical system to model a given physical situ-
ation. Many systems remain too intricate to fully understand.,
but modern methods of mathematical analysis can sometimes
offer insight. Most of this insight is obtained by viewing dy-
namics geometrically, and in fact the recent advances in me-
chanics which we review in this article all share this gcometric
perspective. Much of the value of these techniques lics in their
applications, and although applications cxist in a broad range of
disciplines, we will focus on examples from space mechanics
and robotics because these are simple to visualize.

A key problem in space mechanics is the problem of effi-
ciently and effectively controlling the attitude of satellites in
their orbits. Several spacecraft, including the very first U.S.
satellite, Explorer I, have been unable to complete their mis-
sions because they began to tumble in space and could not be
stabilized. Much research has been devoted to prevent current
orbiting telescopes from suffering a similar fate. These tele-
scopes must be controlled with high precision, since small er-
rors can seriously degrade obscrvations made of objccts
thousands of light years away. Several problems have plagued
the Hubble Space Telescope, including low-frequency vibra-
tions in the structure’s solar-power panels due to unanticipated
thermal expansion effects as the telescope passes from night

into day. These vibrations were further amplificd by the tele-
scope’s computer controlled stabilization mechanisms (Wil-
ford, [1990]). Two of the topics we shall discuss—stability and
numecrical integration—are pertinent to the analysis and control
of such vibrations.

Stability and control are also important issues in the field of
robotics. This is certainly the casc for a team at the MIT Arti-
ficial Intelligence Laboratory which is trying to construct a
somersaulting robot (Hodgins and Raibert [1989]) as shown in
Figure 1. Specifically, the project is to build a robot which will
gather a running start, launch itself into the air. complete a
forward revolution, and then land firmly on its feet. As might
be imagined, the challenges involved in such a venture are
formidable.

Recent idcas of Berry [1984, 1985). Hannay [1985]. and
Montgomery {1990], however, may help to solve this problem
as well as provide the means for a way of efficiently controlling
mechanical systems such as orbiting telescopes. It is amusing to
note that many of these recent ideas are related to a natural
curiosity that has fascinated and motivated investigations in
physiology as well as dynamics: How does a falling cat often
manage to land upright even if released while upside down from
a complete rest? (See Figure 2.) The cat cannot violate the
conservation of angular momentum, yet somehow it manages to
turn itself 180 degrees in mid-air. This process has been inves-
tigated many times over the past century (see Nature |1894),
Crabtree [1909], Kanc and Scher | 1969] and references thercin)
and recently has been analyzed by Montgomery [1990] with an
emphasis on how thc cat (or, more generally, a deformable
body) can efficiently readjust its oricntation by changing its
shape. By ‘‘cfficiently,”” we mcan that the reorientation mini-
mizes some function—for example the total encrgy cxpended.
Montgomery’s results characterize the deformations which al-
low a cat to most efficiently reorient itself without violating
conservation of angular momentum.

We begin with a review of Hamiltonian systems and canon-
ical formulations. We then introduce noncanonical formulations
and the concept of reduction of dynamics. Recent results in
determining stability arc presented in the next section, and these
are followed by a discussion of geometric phases in mechanics.
We conclude with a survey of some recent advances in numer-
ical integration algorithms.
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Figure 1: Diagram of the planar biped robot
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constructed at MIT (from Hodgins and Raibert [1990]).
The robot is designed to take a running start, jump into
the air, pitch itself forward so that it completes a
forward flip, and continue running when it lands.
©1990 MIT Press, used by permission.
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Figure 2: A falling cat manages to land on its feet even
it released upside down without initial angular
momentum. The explanation of this counter-intuitive
feat may lead to new ways of controlling the dynamics
of mechanical systems such as robots and space
telescopes (drawing from R. Montgomery Commun.
(«ﬁﬂdarh. Phys. 128, 567 [1990].)

The equations of motion for a classical mechanical system con-
sisting of n particles may be written as a set of first order
equations in the form established by Hamilton:

oH ) oH

q:a' pi=—a—q'.‘ l=1.....n. (CHE)

The generalized configuration coordinates (g'. . . . . ¢") and
momenta (p,, . . . , p,) together define the system’s instanta-
neous state, which may also be regarded as the coordinates of a
point in a 2n-dimensional vector space called the phase space.
We denote such a point by (q,p). The Hamiltonian function
H(q,p) completely defines the system. In the absence of con-
straining forces and time dependence, H(q,p) is simply the total
energy of the system.

In the modem theory of Hamiltonian systems, this classical
setting is generalized in two cssential ways. First, the phase
space, which identifics the possible states of the system, is
allowed to be a diffcrentiable manifold rather than merely a
linear vector space. This generalization allows for the simplest
and most natural characterization of systems consisting of bod-
ies whose motions are spatially constrained. The set of all pos-
(@v&ible spatial positions of bodies in the system is known as the

nfiguration space. For example, the configuration space for a
~ three dimensional rigid body moving freely in space is SE(3),
the six dimensional group of Euclidean (rigid) transformations
of three-space, that is, all possible rotations and translations. If
translations are ignored and only rotations are considered, then
the configuration space is SO(3).

When the constraints defining a system are complicated, the
configuration spacc may be an equally complicated manifold.
For example, if two rigid bodies are connected at a point by an
idealized ball-in-socket joint, then to specify the position of the
bodics. we must specify a single translation (since the bodics
are coupled) but we need to specify two rotations (since the
bodies are free to rotate in any manner). The configuration
space is therefore SE(3) X SO(3). This is alrcady a fairly com-
plicated object, but remember that onc must keep track of both
positions and momenta of cach component body in order to
formulate the system’s dynamics completely. If Q denotes the
configuration spacc (only positions), then the corresponding
phase space P (positions and momenta) is the manifold known
as the cotangent bundle of Q, which is denoted by T*Q. De-
scribing dynamics on such a manifold in terms of standard
vector calculus can be quite cumbersome and computationally
costly, but the modern theory of Hamiltonian systems allows us
to take advantage of the powerful differential calculus on man-
ifolds.

The second important way in which the modern theory of
Hamiltonian systems generalizes the classical theory is by re-
laxing the requirement of using canonical phasc space coordi-
nate systems, i.c., coordinate systems for which the equations
of motion take the standard form (CHE). An arbitrary transfor-
mation of the coordinates (q,p) does not necessarily result in a
system in which the new coordinates obey the canonical equa-
tions. As a simple example, the canonical description of the
simple harmonic oscillator is defined by the Hamiltonian H(q,p)
= (g° + p*)/2, but if we change variables according to ¢ = xy
and p = y, then it is easy to verify that x and y are not canonical
coordinates.

Canonical coordinates are sometimes convenient variables
through which to study Hamiltonian systems, but rigid body
dynamics, celestial mechanics, robotics, and biomechanics pro-
vide a rich supply of examples of systems for which canonical
coordinates are unwicldy and awkward. The free motion of a
rigid body in space is the simplest such example. It was treated
by Euler in the 18th century and yet it remains remarkably rich
as an illustrative example.

As mentioned earlier, the rigid body problem in its primitive
formulation has the six dimensional configuration space SE(3).
This means that the phase space, T*SE(3), is twelve dimen-
sional. Assuming that no external forces act on the body, con-
servation of linear momentum allows us to solve for the
components of the position and momentum vectors of the center
of mass. This reduces the problem to finding the body’s rota-
tional orientation in space as if its center of mass were fixed.
Each possible orientation corresponds to an element of the ro-
tation group SO(3), which we may view as a configuration
space for all non-trivial motions of the body.

Euler formulated a description of the body’s orientation in
space in terms of three angles between axes which are either
fixed in space or are attached to symmetry planes of the body’s
motion, as shown in Figure 3. The three Euler angles, ¥, ¢, and
6, are generalized coordinates for the problem.

It is possible to construct a canonical Hamiltonian of the
body’s rotational motion in terms of the three Euler angles and
their conjugate momenta. This leads to a fairly complicated
system of six coupled ordinary differential cquations. Euler’s
formulation, however, is simpler than the canonical Hamilto-
nian approach. Assuming that no external moments act on the
body, the angular momentum vector is conserved. Euler used
this fact to write the three associated momentum equations in a
coordinate system fixed within the body rather than fixed in
space. Letting (I1,, II,, I1,) denote the components of the an-
gular momentum vector I = I1(s) along the principal inertial
axes of the body, the momentum equations are given by the
well-known Euler equations:
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Figure 3: Diagram of Euler angles 0, ¢, ¥ in the case of
a symmetric top. (After Goldstein {1980]).

. h=1
I, = g i,

. 13 - ll

I, = T [L,0,, (EE)
, L -1

I, = |1.1, 211,115,

where the constants /,, /, and /, are the principal moments of
inertia of the body. It was Amold [1966a] who first clarified in
a satisfactory way the relationships between the various repre-
sentations (body, space, Euler angles) of the equations and
showed how the same ideas apply to fluid mechanics as well.

The formulation above is remarkable for the simplicity of its
geometrical interpretation. Viewing (II,, I1,, 1I;) as coordi-
nates in a three dimensional vector space, the Euler equations
are evolution equations for a point in this space. An integral
(constant) of motion for the system is given by the magnitude of
the angular momentum vector: [[[1|> = 117 + 113 + [13. This
can be verified dircctly from the Euler equations (EE). Because
of this, the evolution in time of any initial point T1(0) is con-
strained to the sphere [IT]| = [[HI(0)} = constant. Thus we may
view the Euler equations as describing a two dimensional cvo-
jution on an invariant sphere. We call this sphere the reduced
phase space for the rigid body cquations. The constant |[[1]} may
be interpreted as a parameter which determines the size of the
invariant sphere.

A basic fact about this description is that this nvo dimensional
system is a Hamiltonian system on the two-sphere $%. The
Hamiltonian structure is not obvious from Euler’s equations
because the description in terms of angular momentum is in-
herently non-canonical. This means that there is no way to
choose a pair of coordinates from (11,, I1,, I1,) to satisfy the
canonical Hamilton equations (CHE). As mentioned above,
however, Hamiltonian systems may be generalized to include
Euler’s formulation. The Hamiltonian for the reduced system is

l(ﬂf n3 ﬂ%)
H=s|—+—+

247, A 1—3 . (RBH)

and we shall shortly show how this function allows us to recover
Euler’s equations (EE). Since solutions curves of (EE) are con-

fined to the level sets of A (which are in general ellipsoids) a“
well as to the invariant spheres ||[IT]] = constant, the intersection.
of these surfaces are precisely the trajectorics of the rigid body,
shown in Figure 4.

When considering a reduced phase spacc such as the sphere
in the case of the rigid body ecquations, we call the fixed points
relative equilibria. The equilibria are *‘relative’’ in the sense
that they are equilibria only on the reduced phase space. These
equilibria correspond to periodic orbits in the unreduced phase
space, specifically to steady rotations about a principal inertial
axis. The locations and stability types of the relative equilibria
for the rigid body are clear from Figure 4. The four points
located at the intersections of the invariant sphere with the x and
z axes correspond to pure rotational motions of the body about
its major and minor principal axes. These motions are stable,
whereas the other two relative equilibria corresponding to ro-
tations about the intermediate principal axis arc unstable.

We shall shortly see how the stability analysis for a large
class of more complicated systems can be greatly simplified
through a careful choice of non-canonical ccordinates. We
managed to visualize the trajectories of the rigid body without
rcally doing any calculations, but this occurrence is rare; the
rigid body is a rather special system. Not only is the rigid body
problem completely integrable (one can writc down the solution
in terms of integrals), but the problem reduces in some sense to
a two dimensional manifold and allows questions about trajec-
tories to be phrased in terms of level scts of intcgrals. Many
Hamiltonian systems are not completely integrable and trajec-
torics must be studied numerically. However, the fact that we
were able to reduce the number of dimensions in the problem
(from twelve to two) and the fact that this reduction was ac-
complished by appcaling to ron-canonical coordinates turns ot
to be a general feature of Hamiltonian systems with symmetry.
One of the major results of contemporary theoretical mechanics
has been the rigorous formalization of a general reduction pro-
cedure.

One of the most attractive features of the reduction procedure
is that it may be applied to non-integrable or chaotic systems
just as easily as to integrable ones. In a Hamiltonian context,
non-integrability is generally taken to mean that, once the ‘*ob-

Figure 4: Phase portrait for the rigid body. The
magnitude of the angular momentum vector determines ! “}
a sphere. The intersection of the sphere with the
ellipsoids of constant Hamiltonian gives the trajectories
of the rigid body. This figure, as well as Figures 12, 13,
and 14, were produced using the software package
kaos which may be obtained from John Guckenheimer,
Cornell University. Figure provided by Mark Meyers.
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yious’’ integrals are removed any analytic constant of motion is
(@N, function of the Hamiltonian. We will not attempt to formulate
a general definition of chaos, but rather usc the term in a loose
way to refer to systems whose motion is so extremely compli-
cated that long-term prediction of dynamics is virtually impos-
sible. It can sometimes be very difficult to establish whether a
given system is chaotic or non-integrablc. Sometimes theoret-
ical tools such as **Melnikov’s method’’ (cf. Guckenheimer and
Holmes [1983] and Wiggins [1988]) arc available. Other times,
onc resorts to numerics or direct observation. For instance,
numerical integration suggests that irregular natural satellites
such as Satumn’s moon, Hyperion, tumble in their orbits in a
highly irregular manner (Wisdom, Peale, and Mignard {1984]).
The equations of motion for an irregular body in the presence of
a non-uniform gravitational field are similar to the Euler cqua-
tions except that therc is a configuration-dependent gravita-
tional moment term in the equations which may render the
systcm non-integrable.

The evidence that Hyperion tumbles chaotically in space
leads to difficulties in numerically modeliling this system. It
turns out that the manifold SO(3) cannot be covered by a single
three dimensional coordinate chart such as the Euler angle
chart. Hence, an intcgration algorithm using canonical variables
must cmploy more than one coordinate system, alternating be-
tween coordinates on the basis of the body’s current configu-
ration. For a body which tumbles in a complicated fashion, the
body’s configuration might switch from one chart of SO(3) to
another in a very short time interval. In the worst case, this
could entail switching coordinate charts at nearly every step of
the integration algorithm. The computational cost for such a
procedurc could be prohibitive. This situation is worse still for
(W‘»odies with internal degrees of freedom like robots and large-

. <cale space structures. Such examples dramatically point out the

need to go beyond canonical formulations in the context of
practical problems.

Geometry, Symmetry, and Reduction

To motivate the discussion that follows, let us recap the two
major clements of our discussion of the problem of the free rigid
bedy: (1) The cquations of motion for a system may be simpler
in terms of non-canonical coordinates (c.g., Euler’s equations)
than in canonical coordinates; (2) The essential dynamics of a
systemn may be described in terms of trajectories on a manifold
(e.g., the invariant momentum sphere) which has a lower di-
mension than the dimension of the problem’s original phase
space. The reduction of dimension involved may be difficult to
recognize and cumbersome to formulate within a canonical
framework.

We now describe how modern developments in mechanics
have led to coordinate-free formulations of equations of motion.
These provide a framework for the non-canonical formulation
of problems. We then outline a general method for reducing the
dimension of the phase space of a Hamiltonian system provided
that the system is invariant under an appropriatc symmetry
group.

We have emphasized the distinction between canonical and
non-canonical coordinates by contrasting Hamilton’s (canoni-
cal) equations with Euler’s equations. We may view this dis-
tinction from a different perspective by introducing Poisson
bracker notation. Given two smooth (C™) real-valued functions

and H defined on the phase space of a Hamiltonian system,
M =fine the (canonical) Poisson bracket of F and H by

*\ [oF oH oH oF
{F-”}=§(a—¢a-a—m)'

where every (¢'.p;) is a conjugate pair of canonical coordinates.
Now suppose that H is the Hamiltonian function for the system.
Then the formula for the Poisson bracket is precisely the direc-
tional derivative of F along the flow, that is,

F = {F.H).

In particular, Hamilton’s equations themselves are recovered if
we let F be cach of the canonical coordinates in tum:
i . oH . oH
¢ =1{qH} = > pi = {pH} = ——.

Once H is specified, the statement *‘F = {F,H} for all smooth
functions F”’ is equivalent to Hamilton’s equations. In fact, it
tells how any function F evolves along the flow.

This representation of the canonical cquations of motion
leads to a generalization of the bracket notation to cover non-
canonical formulations. There is an appropriate definition of the
binary operation { , } such that the equations of motion in the
given coordinates are equivalent to F = {F,H} which is valid in
any system of coordinatcs. This holds for Hamiltonian systems
on reduced phase spaces, such as the angular momentum sphere
of the free nigid body. as well as systems expressed in their
unreduced forms.

As an example, we once again consider Euler’s equations.
The solution to the equations are trajectorics given in terms of
the coordinates (I1,, I1,, I1,) of the three dimensional *‘angular
momentum space,’’ and the constraint ||[[1]] = constant reduces
the dynamics to a sphere imbedded in this space. We define the
following non-canonical bracket of smooth functions on the
angular momentum space

{F.H} = -1 - (VF x VH),

where the gradients are taken with respect to the (11,, I1,, I1,)
coordinates. The geometry of the scalar triple product operation
insures that the induced bracket of functions defined on any
invariant sphere is represented by the same formula. If A is the
rigid body Hamiltonian (see (RBH)) and F is, in turn, allowed
to be each of the three coordinate functions II;, then the formula
F = {F,H} yields the three Euler equations.

The non-canonical bracket corresponding to the reduced free
rigid body problem is an example of what is known as a Lie-
Poisson bracket (see Appendix A). Other bracket operations
have been developed to handle a wide variety of Hamiltonian
problems in non-canonical form, including some problems out-
side of the framework of traditional Newtonian mechanics (see,
for instance, Arnold [1966a] or Marsden ct al. [1983]). The
generalization of the Poisson bracket exemplifies the geometri-
cal emphasis of modern theoretical mechanics. When studying
Hamiltonian dynamics from a geometrical perspective, it is es-
sential to distinguish features of the dynamics which depend on
the Hamiltonian function from those which depend only on
properties of the phase space. The generalized bracket operation
is a geometrical invariant in the sense that it depends only on the
structure of the phasc spacc. The phase spaces arising in me-
chanics often have an additional geometrical structure closely
related to the Poisson bracket. Specifically, they may be
equipped with a certain differential two-form called the sym-
plectic form. The symplectic form defines the geometry of a
symplectic manifold much as the metric tensor defines the ge-
ometry of a Riemannian manifold. Bracket operations can be
defined entirely in terms of the symplectic form without refer-
ence to a particular coordinate system. (See Marsden et al.
(1983].)

The classical concept of a canonical transformation can also
be given a more geometrical definition within this framework.
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A canonical transformation is classically defined as a transfor-
mation of phase space which takes one canonical coordinate
system to another. The modemn analogue of this concept is a
symplectic map—a smooth map of a symplectic manifold to
itself which preserves the symplectic form or, equivalently, the
Poisson bracket operation. Symplectic maps of cotangent bun-
dies arise naturally in mechanics since every smooth map on a
configuration space induces a symplectic map on the cotangent
bundle of that space. This induced map is known as a cotangent
lift.

The geometry of symplectic manifolds is an essential ingre-
dient in the formulation of the reduction procedure for Hamil-
tonian systems with symmetry. We now outline some important
ingredients of this procedure. Some additional information is
contained in Appendix A. In Euler’s problem of the free rota-
tion of a rigid bedy in space (assuming that we have already
exploited conservation of lincar momentum), the six dimen-
sional phase space is T*SO(3)—the cotangent bundle of the
three dimensional rotation group. The reduction from six to two
dimensions is classically described as a consequence of two
essential features of the problem:

(1) the existence of a coordinate system in which thc Hamilto-
nian can be expressed independently of the body’s config-
uration, and

(2) the existence of a conserved quantity, w., the angular mo-
mentum in space.

Condition (1) is equivalent to rotational invariance of the
Hamiltonian, while condition (2) expresses the conscrvation of
the total angular momentum of the rigid body. These two con-
ditions are generalized to arbitrary mechanical systems with
symmetry in the general reduction theory of Meyer [1973] and
Marsden and Weinstein [ 1974], which was inspired by the sem-
inal works of Amold [1966a) and Smale [1970]. In this theory,
one begins with a given phase space that we denote by P, We
assume there is a group G of symmetry transformations of P that
transform P to itself by canonical transformations. Generalizing
(1) above, one assumes that the Hamiltonian is invariant under
these transformations. Generalizing (2), wc use the symmetry
group to generate a vector-valued conserved quantity which we
denote J; it is called the momentum map.

Analogous to the set where the total angular momentum has
a given value, we consider the set of all phase space points
where J has a given value .. We call this set the p-level set for
J. The analogue of the two dimensional body angular momen-
tum sphere in Figure 4 is the reduced phase space. denoted P,
that is constructed as follows: P, is the p.-level set for J with
any two points that can be transformed one to the other by a
group transformation, identified. This identification proccdure
1s not unlike the procedure one uscs to bend an interval into a
circle by identifying the two endpoints of the interval—what
were two points before become one point in the new system. In
the reduction theorem, many points can get identified with one
new point, but the idea is the same. The reduction process states
that P, inherits the symplectic (or Poisson bracket) structure
from that of P, so it can be used as a new phase spacc. Also,
dynamical trajectories of thc Hamiltonian H on P determine
new reduced trajectories on the reduced space. This new dy-
namical system is, naturally, called the reduced sysiem. The
trajectories on the sphere in Figure 4 are the reduced trajectories
for the rigid body problem.

We saw that steady rotations of the rigid body correspond to
fixed points on the reduced manifold, namely, the body angular
momentum sphere in Figurc 4. In general, fixed points of the
reduced dynamics on P, are called relative equilibria, follow-
ing terminology first introduced by Poincaré around 1880. The

reduction process can be applied to the system which modelsam
the motion of the moon Hyperion, to spinning tops, to fluid ant
plasma systems, and to systems of coupled rigid bodies. For
cxample, if a system of coupled rigid bodies is undergoing
steady rotation, with the internal parts not moving relative to
each other, this will be a relative equilibrium of the system. An
oblate Earth in steady rotation is a relative equilibrium for a
fluid-elastic body. In general, the bigger the symmetry group,
the richer the supply of relative equilibria.

Stability

Having discussed the reduction procedure, we turn to the sta-
bility of the reduced dynamics. There is a standard procedure
for finding the stability of equilibria of an ordinary differential
cquation

x = f(x)

where x = (xy, ..., x,) and f is smooth. The procedure in-
volves solving for the equilibria (fixed points) of the differential
equation. These are the points x, such that f(x,) = 0; i.e.,
points that are fixed in time under the dynamics. The goal of
this procedure is to determine the stability of the fixed point x..
By stability here we mean that any solution to x = f(x) that
starts near X, remains close to x_ for all future time.

A traditional method of ascertaining the stability of x, is to
examine the first variation equation

€ = Df(x.)¢
where D, f(x.) is the Jacobian of f at x, and is defined to be the
matrix of partial derivatives

D.f(x.) = [a_f'] . ﬂﬂ%

ax;

The eigenvalues of D f(x.) are then examined. If all the eigen-
values lie in the left half plane, then, by a result of Liapunov
{1909], the fixed point is stable. If any of the eigenvalues lie in
the right half plane, then the fixed point is unstable. However,
for Hamiltonian systems the cigenvalues come in pairs or quar-
tets symmetric about the origin and so they cannot all lie in the
left half plane. Thus, this standard stability result will never
allow us to deduce whether a Hamiltonian system contains a
stable fixed point. As the class of Hamiltonian systems includes
the equations which are used to model motions of orbiting space
stations and space telescopes, it is imperative to develop ex-
plicit conditions to ensure the stability of their orbits.

When the Hamiltonian is in canonical form one can use a
stability test for fixed points due to Lagrange and Dirichlet.
This method uses the fact that for a fixed point (q..p,.) of such
a system,

oH oH
(rqi(qe’pe) = a(q:-pe) = 0.

Hence, the fixed point occurs at a critical point of the Hamil-
tonian. If the 2n X 25 matrix D*H of second partial derivatives
is either positive or negative definitc at (q.,p.) then one has a
stable fixed point. Consider the positive definite casc. Concep-
tually, the reason for stability is very simple: since H has a
minimum at (q.,p.) and energy is conserved, solutions stay on
level surfaces of H, so that a solution starting near the minimum
has to stay ncar thc minimum. For a Hamiltonian of the form
kinetic plus potential (V), critical points occur when p, = Oan”™"
q. is a critical point of the potential of V. This critcrion thei.
reduces to asking for a minimum of V.

In fact, this criterion was used to solve onc of the classical
problems of the 19th century: the problem of rotating gravitat-
ing fluid masses. This problem was studied by Newton, Mac-



(«W\

g

Nonlinear Science Today

1991 Vol. 1, No. 1 9

a) b)

il

c) d)

¥ % OO

O O

O
O

Figure 5: The formation of pear-shaped objects of
equilibrium of a rotating fiuid mass as it solidifies.
Shown are the horizontal and vertical projections of the
fluid masses during bifurcation (after Poincaré {1892]).

Laurin, Jacobi, Ricmann, Poincaré, and others. The motivation
for its study was in the conjectured birth of two planets by the
splitting of a large mass of solidifying rotating fluid as shown in
Figure 5. This is an cxample of what has since become known
as a symmetry-breaking bifurcation. These ideas arc important
in understanding pattern formation and many of the resulting
symmetric objccts we sce in nature. Poincaré [1892, 1901] was
a major contributor to the study of this phenomenon and used
the potential energy and angular momentum to deduce the sta-
bility and bifurcation of rotating fluids.

The Lagrange-Dirichlet method was generalized by Amold
[1966b] into what has become known as the energy-Casimir
method. Amold analyzed the stability of stationary flows of
perfect fluids and also developed an explicit stability critcrion
for the casc in which the configuration space for the Hamilto-
nian of this system is a group which coincides with the sym-
metry group of the mechanical system. A Casimir C is
characterized by the fact that it Poisson commutes with any
function F defined on the phase space of the Hamiltonian sys-
tem, i.c.,

{C.F} = 0.

(The name Casimir is used in recognition of work by H. B. G.
Casimir, who introduced closely related ideas in representation
theory.) Large classes of Casimirs usually occur when the re-
duction procedure is performed, resulting in systems with non-
canonical brackets.

For example, in the case of the rigid body discussed previ-
ously, if @ is a function of onc variable and II is the angular
momentum vector in the inertial coordinate system, then

cdamn = e

is a Casimir for the rigid body bracket. The energy-Casimir
. method involves choosing C such that # + C has a critical
point at an cquilibrium z, and then examining D*(H + C)(z,).

If this matrix is positive or negative definite then the equilib-

rium z. is stable. When the phasc space is obtained by reduc-
tion, the equilibrium z, is a relative equilibrium of the original
Hamiltonian system.

The cnergy-Casimir method has been applied to a variety of

problems including problems in fluids and plasmas (Holm,
Marsden, Ratiu, Weinstein [1985]) and rigid bodies with flex-
ible attachments (Krishnaprasad and Marsden (1987]). If appli-
cable, the energy-Casimir method may permit an explicit
determination of the stability of the rclative cquilibria. It is
important to remember, however, that these techniques give
stability information only. As such one cannot use them to infer
instability without further investigation.

The energy-Casimir method is restricted to certain types of
systems, since its implementation relies on an abundant supply
of Casimir functions. In some important examples, Casimirs
have not yet been found and may not even exist. Two methods
developed to overcome this difficulty arc known as the energy
momentum method (EMM) and the reduced energy momentum
method (REMM). These two methods are closcly linked to the
method of reduction. They use conserved quantitics, namely the
encrgy and momentum maps, that arc usually rcadily available,
rather than Casimirs.

The energy momentum method (Simo, Posbergh and Mars-
den [1990a,b), Simo, Lewis and Marsden [1990], and Lewis
and Simo [1990)) involves the anugmented Hamiltonian defined

by
H, = H(q, p) = §-J(q. p).

where J is the momentum map described in the previous section
and £ may be thought of as a Lagrange multiplicr. One then sets
the first variation of H; equal to zero to obtain the relative
equilibria. To ascertain stability, the second variation D?H, is
calculated. One is then interested in determining the definite-
ness of the second variation.

Definiteness in this context has to be properly interpreted to
take into account the conservation of the momentum map J and
the fact that D?H, may have zero eigenvalues duc to symmetry.
The variations oi‘ p and g must satisfy the lincarized angular
momentum constraint (dg. 8p) € ker[DJ(q., p.)l, and must not
lie in symmetry directions; only thesc variations are used to
calculate the second variation of the augmented Hamiltonian
H,. The energy momentum method has been applied to the
stability of relative equilibria of among others, coupled rigid
bodies and geometrically exact rods (Simo, Posbergh and Mars-
den [1990a,b] and Patrick [1990]).

Comerstones in the development of the EMM and REMM were
laid by Routh [1877) and Smale [1970], who studied the stability
of relative equilibria of simple mechanical systems. Simple me-
chanical systems are those whose Hamiltonian may be written as
the sum of the potential and kinetic cnergies; the lincar harmonic
oscillator ¥ + w’x = 0 is an example of such a system. Smale
showed that there is a naturally occurring connection that plays an
important role in the reduction of a simple mechanical system with
symmetry. (A connection can be thought of physically as a gen-
eralization of the electromagnetic vector potential, A. Sec Zwan-
ziger, Koenig, and Pines [1990]). We now call this the mechanical
connection. Smale also showed that the relative equilibria of these
systems are given by the critical points of the amended potential
function V,,_, defined below.

The amended potential plays a crucial role in the REMM (sce
Simo, Lewis and Marsden [1990], and Lewis and Simo
|1990]). The REMM exploits properties of the reduction
method to put the second variation into a normal form. First onc
calculates the amended potential V,, which is the potential en-
ergy of the system plus a generalization of the potential energy
of the centrifugal forces in stationary rotation:

1
V(g = V(@) + s - 17 (@he,

where 0§ is the locked inertia tensor, a gencralization of the
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inertia tensor of the rigid body obtained by locking all the joints
in the configuration ¢. The momentum p, need not be zero since
the system is typically in motion. The sccond variation directly
yields the stability of the relative equilibria. However, an in-
teresting phenomenon occurs if the tangent space V is split into
two specially chosen subspaces Vg, and V) (Simo, Lewis and
Marsden {1990)). In this case the second variation block diag-
onalizes:

DV, [V x V=
D*,.| VriG X VriG 0
2
0 DV, | yint X Vint

The space Vg, (rotation variations) is generated by the sym-
metry group, and Vjyr are lhc internal or shape variations. In
addition, the whole matrix D? H¢ block diagonalizes in a very
efficient manner, This often allows the stability conditions as-
sociated with D*V, | ¥ X V 1o recast in terms of a standard
cigenvalue problem for the second variation of the amended
potential.

This splitting/diagonalization has important computational
implications. In the casc of pscudo-rigid bodies (Lewis and
Simo [1990}), this splitting results in reducing the stability
problem to the examination of a singlec 3 X 3 matrix instead of
a full 18 X 18 array. (The large matrix becomes diagonal except
for a3 X 3 subblock on the diagonal.) The block diagonaliza-
tion approach enabled Lewis and Simo to solve their problem
analytically, whercas without it, a substantial numerical com-
putation would have been necessary. The idea of block diago-
nalization can be taken further. It tumns out that D°H, and the
symplectic structure can be explicitly brought into normal form
simultaneously. Although investigations are still at an carly
stage, this result promises to simplify computations in pertur-
bation theory and the study of bifurcation phenomena.

In general, this diagonalization explicitly separates the rota-
tional and internal modes, a result which is extremely important
not only in rotating and clastic fluid systems, but also in mo-
lecular dynamics and robotics. Similar simplifications are ex-
pected in the analysis of other problems to be tackled using the
reduced energy momentum method.

Appendix A: On the
Reduction Construction

In this appendix, we explain a few of the general notions used
in the reduction theorem. In the text, we used the example of the
free rigid body to illustrate the concept of reduction. The an-
gular momentum space for the rigid body can be imerpre(ed as
the dual space of the Lie algebra of SO(3). This is a three
dimensional vector space usually identified with R>. The ana-
logue of the angular momentum space in general reduction the-
ory is g*, the dual of the Lic algebra of the symmetry group G.

The momentum map is a map J : P — g* with the property
that, for each £ € g, (J,£) gencerates, in the sense of Hamilton's
equations, the infinitesimal action in the same way that angular
momentum q X p generates rotations. The level set with value
B € g* is J7'(w), which will be a submanifold of P under
certam conditions. The group G,, is the subgroup of G that maps
J- (p.) to itself. (It can also bc defined as the subgroup that
fixes the value p under the coadjoint action of G on g*.) The
reduced space is then the quotient P, = J~ "w/G,.

Whercas P, is symplectic, the manifold P/G is Poisson (the
bracket of two functions on P/G is defined by regarding them as
G-invariant functions on P). If u is considered as a paramecter,
one can show that the P, arc the symplectic leaves in P/G in the
same way that the spheres |[I1]| = constant arc the symplectic
leaves in the three dimensional angular momentum space.

True trajectory

Dynamic phase {

Geometric phase {
(holonomy)

\ horizontal lift of

reduced trajectory

reduced trajectory

Figure A1: Holonomy for the rigid body (after Marsden,
Montgomery, and Ratiu [1980)). As the body completes
one period in P, the reduced phase space, the body's
true configuration does not return to its originat value.
The phase difference is equal to the influence of a
dynamic phase which takes into account the body's
energy, and a geometric phase which depends only on
the area of P, enclosed by the reduced trajectory.

An important case of the reduction thcorem arises when the
configuration space is identical to the symmetry group, so that
P = T*Q = T*G. Then the Poisson manifold P/G =
is identified with the linear space g*. This identification induces
a special Poisson structurc on g* known as the Lie-Poisson
structure. The Lic-Poisson bracket of two functions F and K on

@* is defined by
., [ oK e o
=x{nm o o |/ r € g*,

where the derivative 8F/8p. is the usual derivative of F regarded
as taking values in ¢, and [,] is the Lie bracket on g. The
general Lie-Poisson bracket {,}. is the bracket obtained from
(T*G)/G using right multiplication for the plus sign and left
multiplication for the minus sign. The rigid body bracket dis-
cussed in the text is the special case G = SO(3), using the
minus sign in the definition above.

Let us indicate how holonomy is linked closely to the reduc-
tion process by returning to our rigid body example. Picture the
rigid body as tracing out a path in its phase space T*SO(3).
Conservation of angular momentum implics that the path lies in
the submanifold consisting of all points which are mapped onto
u by the momentum map. These points are then mapped to a
curve in £, by the reduction process; i.c., by the quotient map

I — P As Figure 4 in the text shows, almost every
trajectory on 'this reduced space is periodic, but this does not
imply that the original path was pcricdic, as is shown in Figure
Al. The difference between the true trajectory and a pericdic
trajectory is given by the holonomy plus the dynamic phase.
This is given quantitatively by formula (RBP) in the text and the
reduction picture presented here is useful in proving it.

{F»K}:(I-'-)

We remark that the reduction construction for the rigid body °

corresponds to the Hopf fibration which descnbes the three-
ghere 52 as a nontrivial circle bundle over $2. In our cxample,

is the subset of phase space which i is mapped to i under the
reducuon process. (More accurately, J ~ (i) is SO(3) =~ §¥Z,.)

See Kogak et al. [1986] or Appendix C for more details.

(T*GYG -
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Symmetry, Stability, Geometric Phases,
and Mechanical Integrators (Part 11)

J. E. Marsden*, O. M. O’Reillyt,
F. J. Wicklint, B. W. Zombro§

(Part I of this paper appeared in NLST 1:1, pp. 4-11.]
Geometric Phases

The application of the methods described in Part 1 is still in its
infancy, but the previous example clearly indicates the power of
reduction and suggests that the REMM will be applied to dy-
namic problems in many fields, including chemistry, quantum
and classical physics. and engincering. Apart from the computa-
tional simplification afforded by reduction, reduction also per-
mits us to put into a mechanical context a concept known as the
geometric phase, or holonomy.

A well-known example of holonomy is the Foucault pendu-
lum. During a single rotation of the earth, the plane of the pen-
dulum’s oscillations is shifted by an anglc which depends only on
the latitude of the pendulum’s location. Specifically, if a pendu-
lum located at latitude « is swinging in a planc, then after twenty-
four hours, the plane of its oscillations will have shifted by an
angle of — 2 sin a. This holonomy is a result of parallel trans-
lation: if an orthonormal coordinate frame undergoes parallel
transport along a line of latitude «, then after one revolution the
frame will have rotated by an amount equal to the phase shift of
the the Foucault pendulum. (See Figure 6.)

Geometrically, the holonomy of thc Foucault pendulum is
equal to the solid angle swept out by the pendulum’s axis during
one rotation of the earth. Thus a pendulum at the north pole of the
carth will experience a holonomy of — 2w, whereas a pendulum
on the earth’s equator expericnces no holonomy. Both of these
results are with respect to the laboratory frame.

A less familiar example of holonomy was presented by Hannay
[1985] and discussed further by Berry [ 1985, 1988]. Consider a
frictionless, non-circular, planar hoop of wirc on which is placed
a small bead. The bead is set in motion and allowed to slide along

*Department of Mathematics, University of California. Berkeley. CA 94720.
tDepartment of Theoretical and Applied Mechanics. Comell University, Ithaca.
NY 14853, Research partially supported by NSF Grant DMS-8703656.
$Center for Applied Mathematics, Comnell University, Ithaca. NY 14853. Re-

search partially supported by NSF Graduate Fellowship.
§Department of Theoretical and Applied Mechanics, Comell University, Ithaca,
NY 14853.

the wire at a constant speed. Clearly the bead will return to its
initial position after, say, T seconds, and will continue to return
every T seconds after that. Suppose however, that the wire hoop
is slowly rotated in its plane by 360 degrees while the bead is in
motion. At the end of the rotation, the bead is not in the location
where we might expect it, but instead will be found at a shifted
position which is completely determined by the shape of the
hoop. In fact, the shift in position depends only on the length of
the hoop, L, and on the arca it encloses, A. The shift is approx-
imately given by 8w°A/L? as an angle, or by 4wA/L as length.
(See Hannay [1985) or Marsden, Montgomery, and Ratiu [1990]
for a derivation of these formulas.) To be completely concrete, if
the bead's initial position is marked with a tick and if the time of
rotation is a multiple of the bead’s period, then at the end of
rotation the bead is found 4wA/L units from its initial position.
This is shown in Figurc 7. We remark that if the hoop is circular
then the angular shift is 27 and so the holonomy is not observ-
able.

There is a similar explicit formula for the freely rotating rigid
body. Supposc that a rigid body has spatial angular momentum
given by the vector p and has total energy E given by (RBH). If
the (reduced) trajectory on the angular momentum sphere (Figure
4) is periodic with period T then the trajectory must enclose some
surface area, S on this sphere. A formula of Montgomery’s (see,

untatl cenc
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Figure 6: The parallel transport of a coordinate frame
along a curved surface (after Arnold [1978]).
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a)

b)

Flgure 7: A bead sliding on a planar, non-circular hoop
of area A and length L. In a), the bead stides around the
hoop at constant speed with period 7. In b), the hoop is
slowly rotated through 360 degrees. After one rotation,
the bead is located 4wA/L units behind where it would
have been had the rotation not occurred. Shown is the
case where the time of rotation is a multiple of T.

for example, Marsden, Montgomery, and Ratiu [1990]) states
that after time T the rigid body has rotated (modulo 27) about the
vector i by the phase angle

1 S
—m{—m+2ﬁ}.

The approximate phase formula for the ball in the hoop is derived
by the classical techniques of averaging and the variation of
constants formula. However, formula (RBP) is exacr and requires
geometric methods to prove.

The interesting feature of (RBP) is that A8 is split into two
parts. The first term is purely geometric and so is called the
geometric phase. It does not depend on the encrgy of the system
or the period of motion, but rather on the fraction of the surface
area of the angular momentum sphere which is enclosed by the
periodic trajectory. Since we allow A 0 be either of the two areas
*‘enclosed’” by the trajectory, the result obtained is valid up to the
addition of a multiple of 2w. The geometric phase for classical
mechanical systems was first identified by Hannay [1985] (mo-
tivated by Berry [1985]) and so it is sometimes called Hannay's
angle or the Hannay-Berry phase. The second term in (RPB) is

A6 (RBP)

Figure 8: A book tossed in the air about an axis which
is close to middle {unstable) axis experiences a
holonomy of 180 degrees about its long axis when
caught after one revolution.

known as the dynamic phase and depends cxplicitly on the sys-
tem’s energy and the period of the reduced trajectory.

It is possible to observe the holonomy of a rigid body with a
simple experiment. Put a rubber band around a book so that the
cover will not open. (A “‘tall,”’ thin book works best.) With the
front cover pointing up, gently toss the book in the air so that it
rotates about its middle axis, as shown in Figure 8. Catch the
book after a single rotation and you will find that it has also
rotated by 180 degrees about its long axis—that is, the front cover
is now facing the floor! (Cushman and others have given a carcful
analysis of this problem.)

There are further examples of familiar everyday occurrences
which demonstratc holonomy. We have already mentioned the
fact that a falling cat often manages to land upright, and can even
accomplish this feat if released while upside down with total
angular momentum zero. Monatgomery [1990] treated the cat as a
deformable body and characterized the deformations which allow
a cat to reoricnt itself without violating conservation of angular
momentum. In showing that such deformations arc possible,
Montgomery casts the falling cat problem into gcometric lan-
guage. Let the shape of a cat refer to the location of the cat’s body
parts relative to cach other, but without regard to the cat’s ori-
entation in spacc. Let the configuration of a cat refer both to the
cat’s shape and to its orientation with respect to some fixed
reference frame. More precisely, if Q is the configuration space
and G is the group of rigid motions, then Q/G is the shape space.

For example, if the cat is completely rigid then it will always
have the same shape, but we can give it a different configuration
by rotating it through, say, 180 degrees about some axis. If we
require that the cat have the same shape at the end of its fall as it
had at the beginning, then the cat problem may be formulated as
follows: Given an initial configuration, what is the most efficient
way for a cat to achieve a desired final configuration if the final
shape is required to be the same as the initial shape? It turns out
that the solution of the falling cat problem is closcly related to
Wong's equations, which describe the motion of a particle in a
Yang-Mills field (Montgomery (1990], Wilczek | 1988], and Sha-
pere [1989]).

Geometrically, the picture for the falling cat problem is anal-
ogous to that presented earlier for a rigid body. We think of the
cat as tracing out some path in configuration space during its fall.
The projection of this path onto the shape space results in a
trajectory in the shape space, and the requirement that the cat’s
initial and final shapes arc the same means that the trajectory is
aclosed loop. Furthermore, if we want to know the most efficient
configuration path which satisfies the initial and final conditions,
then we want to find the shortest path with respect to a metric
induced by the function we wish to minimize.

Intuitively, we may define holonomy as a difference between
the initial and final configuration of a system which results from
a cyclic change of the system’s shape. A simple example (duc to
Cherry [1989] and shown in Figure 9) is to stand with your arms
at your side, your palm facing forward, and your thumb facing
out. Keeping your arm straight, lift your arm sideways until it is

BRI

Fligure 9: An example of holonomy. Although the arm
completes a cycle in its shape space, there is a 90
degree rotation in the configuration space.
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paraliel to the floor, then, keeping your thumb up, swing your
arm forward until your fingers point straight ahcad. Now return
your arm to your side and you will find that your palm faces
inwards and your thumb points forward—a 90 degree change in
the configuration of your arm! Note again that the holonomy does
not depend on the length of your arm, nor on its mass, nor on how
quickly you perform the actions; the holonomy is a purcly geo-
metric result. Expressed slightly differently, the geometric phase
is independent of a particular parametrization, whereas the dy-
namic phase may be parametrization dependent.

The examples above indicate that holonomic occurrences are
not rare. In fact, Shapere and Wilczek [ 1987] showed that aquatic
microorganisms use holonomy as a form of propulsion. Because
thesc organisms are so small, the cnvironment in which they live
is extremely viscous to them. The apparent viscosity is so great,
in fact, that they are unable to swim by conventional stroking
motions, just as a person trapped in a tar pit would be unable to
swim to safety. These microorganisms surmount their locomotion
difficulties, however, by moving their **tails’” or changing their
shapes in a topologically nontrivial way which induces a holon-
omy and allows them to move forward through their environ-
ment. There are probably many consequences and applications of
this obscrvation that remain to be discovered. It is tempting to usc
the phrasc holonomy drive for any process in which holonomy is
uscd to cffect a change of position.

Yang and Krishnaprasad [1990] have provided an example of
holonomy drive for coupled rigid bodies linked together with
pivot joints as shown in Figure 10. (For simplicity. the bodies are
represented as rigid rods.) This form of linkage permits the rods
to frecly rotate with respect to each other, and we assume that the
system is not subjected to external forces or torques, although
torques will exist in the joints as the assemblage rotates. By our
assumptions, angular momentum is conserved in this system.
Yet, even if the total angular momentum is zero, a turn of the
crank (as indicated in Figure 10) returns the system to its initial
shape but creates a holonomy which rotates the system’s config-
uration. See Thurston and Weeks [1986] for some relationships
between linkages and the theory of 3-manifolds.

It is natural to ask, is there a way for humans to exploit holon-
omy drive to our advantage? Scientists in a variety of ficlds arc
already exploring this question. Panasonic has dcveloped a
**micromotor’’ which can focus a camera lens using the principle
of holonomy. A qualitative explanation of such a micromotor is

Overall phase rotation of assemblage

Figure 10: Rigid rods linked by pivot joints. As the
“crank’ traces out the path shown, the assemblage
experiences a holonomy resulting in a clockwise shift in
its configuration. Figure provided by P. S. Krishnaprasad.

piczoclectric
patches

a)

b)

<)

Figure 11: Example of a motor which utilizes
holonomy. a) Piezoelastic patches send signals to a
flexible inner ring which deforms so that it touches a
rigid external ring. b) A second set of signals deforms
the inner ring along a direction which is slightly offset
from the first direction. c) As this process is continued,
the external ring rotates retrograde to the perceived
motion of the inner ring.

presented in Ise [1986]).

Brockett (1987, 1989] is also exploring the feasibility of holo-
nomic motors. An example of the holonomic motor principle is
shown in Figure 1. A flexible inner ring is concentrically placed
inside a rigid outer ring. A computer controls piezoelectric
patches which are attached to the inner ring and are used to
dcform the inner ring along some predetermined axis. The axis of
deformation is slowly rotated (say, clockwise) from onc defor-
mation to the next. It is important to note that the inner ring does
not rotate, but is merely being deformed in a different direction
at each step. The net result of these actions is that the outer ring
rotates in a direction which is retrograde to the rotation of the axis
of deformation (in our case, counter-clockwise). If we imagine
the outer ring being connected. for example, to some axie, then
we sce how this process naturally produces a motor. An extension
of this work may cven produce a *‘spherical’’ motor in which a
flexible sphere is concentrically placed within a slightly larger
outcr sphere. Transversc bands of piezoelectric patches working
in synchrony could then be used to rotate the outer sphere in any
direction.

Holonomy may be important in the ficld of magnetic resonancc
imaging (MRI) and spectroscopy. Theoretical work by Berry
11984, 1988] has shown that if a quantum system experiences a
slow (adiabatic) cyclic change, then there will be a shift in the
phase of the system’s wave function. This is a quantum analoguc
to the bead on a hoop problem discussed above. This work has
been verified by several independent experiments; the implica-
tions of this result to MRI1 and spectroscopy are still being inves-
tigated. For a review of the applications of gcometric phase to the
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fields of spectroscopy, ficld theory, and solid-state physics, see
Zwanziger, Koenig, and Pines [1990) and the extensive bibliog-
raphy thercin.

Yet another possible application of holonomy drive is the som-
ersaulting robot. Due to the finite precision response of motors
and actuators, a slight error in the robot’s initial angular momen-
tum can result in an unsatsifactory landing as the robot attempts
a flip. Yet, in spite of the challenges, Hodgins and Raibert {1989]
report that the robot can currently execute S0 percent of the flips
successfully. Montgomery, Raibert, and Li [1990) arc asking
whether a robot can use holonomy to improve this rate of success.
To do this, they reformulate the falling cat problem as a problem
in feedback control: the cat must use information gained by its
senses in order to determine how to twist and tum its body so that
it successfully lands on its feet.

It is possible that the same technique used by cats can be
implemented in a robot which also wants to complete a flip in
mid-air. Imagine a robot installed with sensors so that as it begins
its somersault it measures its momenta (linear and angular) and
quickly calculates its final landing position. If the calculated final
configuration is different from the intended final configuration,
then the robot waves mechanical arms and legs while entirely in
the air to create a holonomy which cquals the difference between
the two configurations.

If holonomy drive can be used to control a mechanical struc-
turc, then there may be profound implications for future orbiting
space telescopes. Suppose a telescope initially has zero angular
momentum (with respect to its orbital frame), and suppose it
needs to be turned 180 degrees. One way to do this is to fire a
small jet which would give it angular momentum, then, when the
turn is ncarly complete, fire a second jet which acts as a brake to
exactly cancel the angular momentum. As in the somersaulting
robot, howcver, crrors are bound to occur, and the process of
returning the telescope to (approximately) zero angular momen-
tum may be a long process. It would seem to be more desirable
to turn it while constantly preserving zero angular momentum.
The falling cat performs this very trick.

Teaching a robot to utilize holonomy drive may be possible,
but if this feedback process is to work. the robot must be able to
make an accurate prediction of its final configuration based on
data provided by its sensors. More importantly, these predictions
must be made fast cnough that the robot can compute and im-
plement a holonomic series of motions while still in the air.

Mechanical Integrators

The development of fast and accurate numecrical integration tech-
niques has long been a goal in robotics, control theory, space
mechanics, and other fields in which the equations of motion
must be integrated numerically. For mechanical systems with
symmetries, it seems desirable that the numerical algorithms pre-
scrve the values of any integrals of motion of the system (for
example, encrgy and angular momentum in the case of the free
rigid body), so that the effect of iterating the algorithm is con-
sistent with the reduction of the dynamics in the sense described
carlier. There are various approaches to the problem of deriving
conscrvative algorithms, depending, among other factors, on the
choice of a particular quantity or quantities that the algorithm is
designed to conserve.

A number of algorithms have been developed specifically for
integrating Hamiltonian systems to conscrve the energy integral,
but without attempting to capture all of the details of the Hamil-
tonian structure (for example. Chorin, Hughes, Marsden, and
McCracken [1978), Stofer {1987], Greenspan (1974, 1984]. Xic
(1990]). Although such algorithms may bc constrained to pre-
serve some other integrals of motion as well, they do not in
general conserve all of the integrals of motion. Thus, for a sys-

tem which has the energy and scveral momentum-like quantitics
as integrals of motion, an cnergy-conservative algorithm would
not be expected to conserve all of the momentum integrals. In
fact, some of the standard energy-conservative algorithms have
poor momentum behavior over even moderate time ranges. This
makes them unsuitable for problems where the exact conservation
of a momentum integral is essential to the control mechanism.

Simo and Wong [1989], for example, document instances of
angular momentum drift in energy-conservative simulations of
certain forced rigid body motions. To control such drifts and
attain the high levels of computational accuracy demanded by
automated control mechanisms, one would be forced to reduce
computational step sizes to such an extent that the numerical
simulation would be prohibitively inefficient. A particularly dra-
matic example of this has been reported by Simo [1990]. Ac-
cording to one of his studies, attempting to simulate both the
rotational and vibrational modes of a freely moving rod using a
standard energy-conservative algorithm may result in the predic-
tion that the rotational motion will come to a virtual halt after
only a few cycles!

If conservation of momentum is more important in a given
application than conservation of energy, onc would like to be able
to generatc an appropriate numerical algorithm which exactly
conserves momentum (or, more generally, all momentum-like
integrals of motion). Of coursc, numecrical anomalics such as
angular momentum drift are not always due to inaccuracics in the
algorithm. There may be other reasons for failing to get correct
answers. For example, it is not obvious how to account for cen-
trifugal and Coriolis forces in a model of a rapidly rotating and
flexing becam. This and several other questions involving the
modelling of flexible structurcs have recently been addressed by
Simo and Vu-Quoc [1987] and Baillieul and Levi [1987]. Elim-
inating numerical sources of momentum drift in computations
based on particular models makes it casicr to evaluate the models
themselves.

As we have seen, momentum integrals in Hamiltonian systems
are associated with invariance of the system under the action of
symmetry groups. Consequently, onc might derive momentum-
conservative algorithms by constraining the algorithm to obey, in
some sense, the same group invariance as the actual dynamics.
There is a natural way to accomplish this by exploiting the Hamil-
tonian structure, and demanding prescrvation of the symplectic
structure as well. This is the context of symplectic integrators
(originally by De Vogelaére [1956]; see Ge and Marsden [1988]
and references therein).

A symplectic integrator is an evolutionary finite-difference al-
gorithm which has the property that each iteration is given by a
canonical transformation (also known as a symplectic transfor-
mation) of the phase space. The time-step size Ar is a parameter
in the symplectic mapping defining the algorithm, so if this map-
ping approximates the Ar-time map of a particular Hamiltonian
flow to at least positive order in Az, the algorithm may be said to
provide a finite-diffcrence approximation of the dynamics in the
usual sense. Since any number of iterations of the algorithm still
results in a symplectic map, a symplectic integrator also pre-
serves the Hamiltonian structure of the dynamics.

Suppose we are interested in simulating the dynamics of a
Hamiltonian system that is invariant under the action of a Lic
group G. As discussed previously, we expect such a system to
have conserved integrals of motion arising from thc momentum
map J : P — q* where P is the phase space. Ge and Marsden
[1988] have shown that under fairly weak additional assump-
tions, a G-equivariant symplectic integrator exactly conserves J.
and consequently, all intcgrals of motion associated with the
reduction of the dynamics. For example, a symplectic integrator
of this type applied to a free rigid body motion would exactly
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: — ‘ preserve the initial value of the angular momentum vector in
Tntesrater space. More generally, the invariance properties of the algorithm
insure that the computed solution will always remain on the re-

duced phase space of the actual dynamics.

For the important case P = T*Q with G acting by a cotangent
lift, a formula for the mapping defining the algorithm can be
obtained conveniently by means of the Hamilton-Jacobi generat-
ing function S,(q,0). Let S,, bc a G-invariant function which
s o , approximates the solution of the time-dependent Hamilton-Jacobi
Range-xurta . cquation with At representing time. By G-invariant we mean that
ecartn S,(2q. 80) = Sa(q,Q) where g designates the action. Then the
associated symplectic map &,, : (g. p) = (Q, P), defined im-
plicitly by the equations

p = —aS._\,/aq, P = GSA,IGQ,

defines a symplectic integrator with the desircd conscrvation
properties. A simple example of a first-order symplectic scheme
for H = p%2 + V(g) is (g. p) = (Q. P), where

Q=g+ (At)P,
av
P=p-(an 5;(? + (Anp).

° ‘ i ‘ s This approximate generating function Icads to a computation-
ally explicit first-order symplectic algorithm. Using a similar
approximate solution, Ge and Marsden [1988] provide an explicit
Figure 12: Transverse Poincaré section. A comparison construction of a symplectic integrator for the free rigid body.

of symplectic versus non-symplectic aigorithms. The Figures 12 and 13 illustratc characteristics of a symplectic
outermost rings are periodic orbits of a Hamiltonian integrator (4th order) as compared to a popular conventional al-

system as computed with a fourth-order symplectic . . .
afgorithm. Insige this ring is an orbit comgutgd by gorithm (4th order Runge-Kutta) with comparable pointwise ac-

fourth-order Runge-Kutta. This orbit appears to decay curacy per iteration. The system being studied is a two degree of
and spiral inwards, even though both orbits are freedom Hamiltonian system which has been used to mode! cer- o
computed from the same Initial condition. The step tain types of surface waves in fluids (Armbruster, Guckenheimer,
size in both cases is 0.1. Figure provided by S. Kim. and Kim [1989)). In Figures 12 and 13 we consider a special case

Syaplectic integrator {True nomentua)

Symplectic integrator

True energy

“x~o3m

4th order
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Runge-Kutta
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tice tice

Figure 13: Comparison of fourth order integrators. a) The momentum error of a conventional algorithm may accumulate
monotonically in time. b) The Hamiltonian computed by a symplectic integrator typically undergoes bounded oscillations in time.
Figure provided by S. Kim.
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where the system has a conscrved momentum integral. Figure 12
shows a Poincaré section transverse to the appropriate level set of
this momentum integral. The Poincaré map computed by the
symplectic integrator produces itcrates lying entirely on the level
set of momentum, whereas therc is significant deviation from the
level set for the non-symplectic algorithm. Furthermore, the mo-
mentum error of the conventional algorithm appears to accumu-
late monotonically in time, as shown in Figure 13. The possibility
of extending the momentum-conservative algorithms to dissipa-
tive systems with internal friction which conserve momentum
(but not energy) such as orbiting spacc telescopes should be the
subject of further investigations.

Although symplectic integrators do not in general conserve the
energy (Hamiltonian) of a mechanical system, there is some nu-
merical evidence that that energy invariance remains in a reason-
able range over long time intervals. In fact, it is typically
observed that the numerically computed Hamiltonian for a sym-
plectic integrator undergoes bounded oscillations in time.
whereas conventional algorithms typically produce accumulating
energy crrors as shown in Figure 13. Channell and Scovel [1990]
report other instances of this behavior.

The properties of symplectic integrators also make them highly
suitable for long-time integration of chaotic Hamiltonian sys-
tems. Figure 14 depicts a numerically computed Poincaré map for
the same two degree of freedom system mentioned above, this
time slightly perturbed from the integrable limit. This figure was
generated by a fourth order symplectic algorithm and exhibits the
intermingling of stochastic and regular behavior characteristic of
nearly intcgrable systems. Conventional algorithms require
smaller time steps to produce a comparable degrec of clarity and
may also introduce artificial dissipative effects.

Given thc importance of conserving integrals of motion and the
important role played by the Hamiltonian structure in the reduc-
tion procedure for a system with symmetry, one might hope to
find an algorithm which combines all of the desirable properties
of the symplectic and energy-conservative algorithms: conserva-
tion of energy, conservation of momenta (and other independent
integrals), and conservation of the symplectic structure. How-
ever, according to an argument of Ge [1988], any algorithm
having all of these properties must represent the exact solution of
the original dynamics problem up to a time reparameterization.

Ge's argument is straightforward. Suppose &,, is a symplectic
algorithm of the type discussed above, and consider the applica-
tion of the algorithm to the reduced phase space. We assume that
the Hamiltonian H is the only intcgral of motion of the reduced
dynamics (i.c., all other integrals of the system have been found
and taken out in the reduction process). Since ¢y, is symplectic
it must be the At-time map of some time-dependent Hamiltonian
function F. Now assume that thc symplectic map ,, also con-
serves A for all values of At. Thus {H, F} = 0 = {F, H}. The
latter equation implies that F is functionally dependent on # since
the flow of A (the ‘‘true dynamics'’) has no other integrals of
motion. The functional dependence of F on H in turn implics that
their Hamiltonian vector fields are parallcl. so the flow of F (the
approximate solution) and the flow of H (the exact solution) must
lie along identical curves in the reduced phase space: thus the
flows are cquivalent up to time rcparametrization.

This result, succinctly stated, says that it is impossible for an
algorithm to simultaneously conserve the symplectic structure,
the momentum map, and the Hamiltonian. Non-symplectic algo-
rithms that conserve both momentum and energy have recently
been studied by Simo and Wong [1989) and Knshnaprasad and
Austin [1990]. Their work shows that it is indeed possible to
design algorithms of this sort—the ideas are discussed in Appen-
dix B.

In summary, by incorporating thc momentum map conserva-
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tion condition into the derivation of the algorithm, one obtains a
large class of integrators, some of which also posscss other de-
sirable propertics. One then has the option of making secondary
design choices from among these properties. For cxample, one
may choosc whether the integrator will be explicit or implicit, or
whether the integrator will conserve encrgy or symplectic struc-
ture. It is not presently clear which options should be preferred
for a given application. Recent research has given high priority to
the conservation of the momentum map. For the reader interested
in the technical details, we have included a mathematical appen-
dix showing how momentum map conservation can be accom-
plished for a class of symplectic integrators. We also discuss how
one might design algorithms conserving the energy and the mo-
mentum map.

Conclusions

This article has been a brief survey, and many technical details
have been omitted or sketched, but we have attempted to indicate
some of the advantages afforded by techniques such as reduction,
holonomy, energy-momentum stability tests, and symplectic in-
tegration. The recent developments in mechanics presented in
this article have applications ranging from micromotors to space
stations. They are helping us to understand the locomotion of
swimming microorganisms and somersaulting robots. In fact, it is
almost a misnomer to classify these developments as belonging
solely to the field of mechanics, since the increased understand-
ing of stability, holonomy, and the reduction of dynamics has
contributed to developments in robotics, quantum chemistry,
magnetic resonance imaging, and microbiology. The success of
the techniques described in this paper indicates that fundamental
insights into these problems may be obtained by adopting a mod-
emn and geometric approach to classical mechanics.

Figure 14: A Poincaré section for a near-integrable
Hamiltonian system showing two orbitsonthe H = 0
energy surface. The orbits were computed with a
fourth-order symplectic algorithm (Forest-Berz). For the
parameter values generating this section, the system
behaves like two weakiy coupled Duffing oscillators.
Armbruster, Guckenheimer, and Kim [1989] have shown
that this system contains chaotic trajectories.
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Appendix B: Integrators which
Preserve Momentum Maps

The construction of momentum-conserving algorithms, whether
of symplectic or energy-momentum type, requires that level sets
of the momentum map J remain invariant under the mapping ¢ :
P — P which represents a single itcration of the algorithm. The
geometry of the reduction procedure thus plays a crucial role in
both cases. We present here sufficicnt conditions under which it
is possible to obtain such a mapping in the symplectic case. Our
argument leads to a simple recipe for deriving the algorithm from
an appropriate generating function. We then outline a general
procedure for constructing energy-momentum conserving algo-
rithms.

Symplectic Algorithms

The argument is a modification of some ideas found in Ge and
Marsden {1988). The notation is that of Abraham and Marsden
{1978]. We make the following assumptions at the outset, which
basically define the setting in which reduced symplectic integra-
tors are applicable:

(1) P is a symplectic manifold with an exact symplectic form w

(2) G is a Lie group acting symplectically on P and J : P — g*
is an associated momentum map for the action, with g rep-
resenting the action of an individual element of G;

(3) ¢ : P — P is a symplectic map;

(4) ¢ is G-cquivariant: ¢(gz) = gd(2), forall z € P.

Letting §,, = X, designate the vector ficld corresponding to

& € g under the action, we start by differentiating the cquivari-
ance condition (4)

g = gb

with respect to the group element in the direction of §,. at the
identity of the group. That is, we take the time derivative of
b(gez) = ged(2), where g is the flow of £.. This results in

$*Xup = Xuo-
However, &*X; ., = Xy 504 a5 a result of the symplectic con-
dition on ¢ (assumption 3}); thus we have

Xupos = Xuo-

Two Hamiltonian vector ficlds arc equal if and only if their
Hamiltonians differ by a constant; therefore we obtain finally

(.§)od - {J,&) = constant.

We need (J.£) o & = (J,&) for the value of J to be preserved by
the map ¢, so we need to establish sufficient conditions under
which the constant will vanish.

We make the following further assumptions:

(/) S:P — Risa G-invariant generating function for thc map
b, i.e., S(gz) = S(z) and *6 = 08 + 4S:

(i) (J.©) = ig9.
Now,
.8 od = $*J.8)
= ¢*ig 8 (by i)
= i, $*8 (by equivariance of ¢)
= i 8 + i, dS (by d).
The first term in this last expression is just (/,£) again, and the

final term vanishes by invariance of S. Thus, the desired conser-
vation condition, (J.£) © ¢ = (J,£), follows from assumptions

14 and / and ii.

The additional assumptions i and ii are not very restrictive in
the context of typical applications to mechanics problems. As-
suming that the original system is given in terms of canonical
coordinates on a cotangent bundle P = T*Q, we have w =
—dBy, where 8, = pdq is the canonical one-form on the cotan-
gent bundle. If the symmetry group G acts by cotangent lifts, then
ii follows automatically. We may interpret condition § as provid-
ing a recipe for creating symplectic intcgrators. Suppose that we
can find a G-equivariant function S which approximatcly gener-
ates the flow of the Hamiltonian vector field. Then the algorithm
¢ is given implicitly by the generating relation $*8 = 0 + 45,
and so it will automatically be a momentum preserving symplectic
map.

Energy-Momentum Algorithms

We now turn to the case of constructing an algorithm which
conserves the Hamiltonian and the momentum map, but which
will not, in general, conserve the symplectic structurc.

A class of algorithms satisfying this requirement can be ob-
tained through the steps outlined below.

(1) Formulatec any cnergy-Prescrving algorithm on the reduced
phasc space P, = J7 (n)G,. A variety of algorithms are
readily available, sec references cited in Ge and Marsden
[1988]. If such an algorithm is interpreted in terms of the
primitive phase space P, it is abstractly given as an iterative
mapping from one G, -orbit in J~ () to another.

(2) In terms of canonical coordinates (q.p) on P, implement the
orbit-to-orbit mapping dcscribed above by imposing the con-
straint J(q;, pi) = J(gi4 1. Pe+y)- The constraint does not
uniquely determine the algorithm on P, so we may obtain a
large class of iterative schemes.

(3) To uniquely determine a map from within the above class, we
must determine how points in one G,-orbit are mapped to
points in another orbit. There is still an ambiguity about how
phase space points drift in the G -orbit directions. This drift
is closcly connected with geometric phases! In fact by dis-
cretizing the geometric phase formula for the system under
consideration we can specify the shift along each G, -orbit
associated with cach iteration of the map.

The papers of Simo and Wong (1989] and Krishnaprasad and
Austin [1990] provide examples of how to make the choices
required in steps (1). (2), and (3).

Appendix C: The Hopf Fibration
in Mechanics

The Hopf fibration is a mapping from 5* to 2. Using the fact that
5% is topologically equivalent to the set of unit quaternions, which
is in turn isomorphic to SU (2), the following diagram for the
Hopf fibration is obtained:

s? SU2)
oy 2:1 mapping
RP}—— 50(3)
¢
SZ

where = is a quotient map which identifies antipodal points of §°
and ¢ is the map taking A € SO(3) — Ak € §%. Here k is a fixed

~

-

’5’%)
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. unit vector in R*. The composition ¢ © 1 is the Hopf map, but by
‘an abuse of notation we also call ¢ the Hopf map.

The Hopf fibration has two realizations that arc pertinent to
mechanics: the reduction procedure for the rigid body and for the
1 : 1 resonance of two harmonic oscillators. For the rigid body.
30(3)* is interpreted as the body angular momentum space of a
rigid body and the momentum map is a map J : T*SO(3) —
30(3)*. A level set of J is J ™ '(n) C T*SO(3) for p € 50 (3)*.
We may identify /™ '() with SO(3) by means of the one-to-one
map Y(A) = R, ., where A € SO(3) and R, is right translation
by A. Recalling that G,, denotes the group of rotations about the
axis determined by p, we realize the map ¢ as

Hopf map &

SO A

;1‘ =

7w J N RYG,

quotient

The quotient projection can be interpreted as a momentum map
corresponding to the right action of SO(3) on itsclf.

In the second application to mechanics, the Hopf fibration is
applied to a Hamiltonian system of two harmonic oscillators
which are in a 1 : | resonance. The Hamiltonian for this system
is given by

1 2 2 2
H =300 +qi +p: + g

and the orbits of this system lie on the level sets H = h in C?
gw\ which are three-spheres of radius V2h. As in Kogak et al.
{1986], we define Hopf variables w,, w;, wy, w, by

w1 = 2qiq2 + pip2).
wr = Aq1p2 — qap1).
wy = (q; + pD — (g3 + p).
wy = 2h.
These variables satisfy w} + w? + w?} = w? and so the Hopf
fibration maps
§% = (q,.P1g2:p2) = (wpwawy) = 52,

In complex notation, the Hopf fibration is even casier to describe.
Wewrite z, = ¢q, + p; and 2, = g5 + p, so that the Hamiltonian
becomes

] 9 2
H= E(L’ll‘ + |z,

which is symmetric under SU(2). The momentum map of SU(2)
acting on C? is exactly

(G1.P1:q2:P2) = (Wiwa,w3),

and its restriction to u = constant maps S> to 57 as above, i.e.,
the Hopf fibration is a momentum map. In fact, these two exam-
ples are related: Cushman and Rod [1982] have shown how to
analyze the 1:1 resonance using grid body dynamics!
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