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Abstract:

In this paper we consider the control of two physical systems, the
near wall region of a rrbulent boundary laver and the rigid body.
using techniques from the theory of nonlinear dynamical systems.
Both these systems have saddle points linked by heteroclinic orbits.
In the fluid system we show how the structure of the phase space can
be used to keep the system near an (unstable) saddle. For the rigid
body system we discuss passage along the orbit as a possible control
manouver, and show how the Energy-Casimir method can be used 1o
analyze stabilization of the system about the saddles.

Introduction:

Our goal in this paper is to analyze control and stability of two
physical systems of great practical importance using some recently
developed techmiques from the theory of nonlinear dynamical sys-
tems. The first system is a model of the near wall region of a tur-
bulent boundary layer. The second system is the rigid body. Both
these systems have saddle points connected by heteroclinic orbits
and here we wish to consider and exploit this structure in carrying
out the control analysis for these problems. A somewhat more de-
tailed analysis of the boundary layer system is given by the authors
in Bloch and Mardsen [1989]. This analysis is based on the paper
of Aubry, Holmes, Lumley and Stone [1988], which showed how
the near wall region of of a turbulent boundary layer could be an-
alyzed as a finite-dimensional dynamical system. The reduction to
finite dimensions relies on the proper orthogonal decomposition of
Lumley [1967, 1970, 1981]. It was shown in this paper that a pos-
sible description of the so called bursting events of turbulence was
as passage along a heteroclinic orbit. In Bloch and Marsden [1989]
we suggested in this light a possible mechanism for conwolling the
frequences of bursting and thus the degree of turbulence. We shall
discuss this hereunder.

Secondly we consider the rigid body problem. There have been
many interesting recent developments in analysing the stability of
the rigid body with rigid and flexible attachments. Two seminal
papers in this regard are Krishnaprasad and Marsden [1987] and
Baillieul and Levi [1987]. The former paper discussed the Energy-
Casimir method for analysing stability. More recently, the Energy-
Momentum method which analyzes stability in the spatial (as op-
posed to the body) frame has been developed. A series of papers has
appeared on this topic including Marsden and Simo [1989], Mars-
den, Simo, Lewis and Posbergh [1989], Simo, Posbergh and Mars-
den [1989] and Simo, Lewis and Marsden [1989]. (A variant of these
methods was used in Bloch [1989] and Bloch and Ryan [1989].) In
this paper we show how the Energy-Casimir method can be used to
analyze stability of a controlled ngid body system about its unsta-
ble saddle. We also discuss possible use of the heteroclinic cycle
structure as a control tool.

2. Controlling Chaos in the Near Wall Region of a Turbulent
Boundary Layer

We begin by considering a rather general result which we shall
apply to the specific dynamic model which we discuss below.

Theorem 2.1. Consider the C™ (r > 2) affine nonlinear control
system given by
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where the u; are piecewise continuous scalar functions and f and
the g; are C" functions from R™ to R™. Suppose that the free
system z = f(z) has a hyperbolic fixed point at z = zp and that zy
has a homoclinic orbit connecting zp 10 itself. Let Lo(z) be given
by

Lo(z) = Span{g;, [f, g}, [ £, [ f,9:1), ..., $=1,...,m}. (2.2)

If dim L4(0) = n, then a control u may be found such that the
system spends an arbirrarily long time in a neighborhood U of the
fixed point zq after the conwol force is removed. In particular. if all
trajectories of the free system near the homoclinic orbit are periodic.
or if the orbit is stable, a control may be found such that the system
exhibits arbitrarily long periods when the conrrol force is removed.

Proof: The proof rests on some observations about the free svs-
tems that may be found, for example, in Silnikov [1967] and Wigains
[1988]. Details are given in Bloch and Marsden [1989]. We give a
brief skeiwch here.

_Consider the free system # = f(z) and suppose that Df(zg) has
s eigenvalues with negative real part and u with positive real part.
The system may be transformed to the system

i'=Az+f1(:.:,y)
¥ =By+ falz,y) (2.3)

where (z,y) € R* x RY, A is an s x s Jordan block with all
diagonal entries having negative real parts and B isa u x u block
with diagonal entries having positive real parts.

One then considers the neighborhood of the origin N = {(z,y) €
R*x R | [z| < €, |y| < £} whose boundary is given by

Cl={(z, ER* X R¥| |z| =€, |y| <€)
Ce={(z, ) eR* xR ||z| <&, |y| =€)}. (2.4)

C? and C¥ give cross sections to the vector field (2.3). We denote
by S and S the intersection of the stable manifold with C; and
the intersection of the unstable manifold with C¥ respectively. The
key idea, as discussed in Silnikov [1967] and Wiggins [ 1988] is 1o di-
vide the Poincaré map into two parts, one restricted to the interior of

N, which we call Py, and the other restriced to the exterior, which
wecall Py.

Py thus maps C}\S? to CF¥\S?, and we denote by
T = T(zo,yo0) the time taken for a point (zo, yo) € C2\S? toreach
CZ\S¥. Then one can show that B§, the Poincaré map for the vec-
tor field linearized about the origin, approximates Py to within an
error O(g?). Since P{f is given explicitly by (zo, yo) —
(eAT zq, 8T yg) where T' solves |eBT yo| = €, one can show that
T'(zo, yo) — oo logarithmically as yg — 0.

Returning to the controlled system, by virtue of the condition
on Lg, we know the linearized system at zg is controllable. Hence
we find (explicitly for the linearized system) a control that takes the
system1o a pointon C}\S; choosing the point so that yjp is asclose
to zero as we wish. We then remove the control and the theorem
follows. O



Now, of course, the above scheme is clearly not robust, as one
would need infinite accuracy to get infinitely close to the stable man-
ifold and trajectories obviously can be sensitive 10 outside perturba-
tions. A more practical controller would thus be one which drives the
system to within a small distance 6§ of the stable manifold, and when
it senses the system has drifted a certain distance from the equilib-
rium reactivates. To make good physical sense, one would also like
structural stability and asymptotic stability of the homoclinic orbit,

Consider then the system

£=f2)+ ) uigi(z) + bw(t)

s=1

(2.5)

where w(t) is a vector white noise process and § is a small param-
eter. We assume that for (5, u;) = (0,0) the system has an asymp-
totically stable homoclinic orbit to a hyperbolic saddle point p. The
free system was analyzed by Stone and Holmes [1988], who utilized
thcl:) following conditions for asympiotic stability of the homoclinic
orbit:

1) We(p) ¢ W*p) where W* and W* are the stable and
unstable manifolds of p respectively, and

2) A, > Ay where the eigenvalues of D f(p) are given by

Au=Re(A1) 2 Re(A2) 2 «+- 2 Re(Ag—1) > 0 > Re()y)
==X, >:--2 Re(\p).

The behavior of the general n -dimensional system is captured
essentially by the 2-dimensional system

dz =-),zdt +6dw,

dy = Ayydt +6dwy +u (2.6)
where wy and w, are zero mean, independent, Wiener processes.

Now for u = 0, Stone and Holmes show that the expected mean
passage time across the region N defined by (2.4) is given by
1 €
r~yln (3) +0(1).

Hence, if we set u = —kydt, 0 < k < A, we decrease the
expected passage time.

Now of course for k sufficiently large, the system is siabilized,
but we assume here that we do not have sufficient control force todo
this. This is precisely the situation we expect to have in controlling
turbulence in the near wall region of a turbulent boundary layer. We
now briefly describe the model of this system developed by Aubry
et.al. [1988).

In this model the instantaneous field is expanded in a basis of
eigenfunctions using the proper orthogonal decomposition of Lum-
ley mentioned above. This expansion is particularly useful for flows
in which large coherent structures contain a major fraction of the en-
ergy. The wall region of a turbulent boundary layer exhibits such
structures, called large eddies. These large eddies undergo intermit-
tent jumps between fixed points called bursting events.

Now the proper orthogonal decomposition together with Fourigr
analysis and Galerkin projection yields a truncated set of ODE’s
which captures the maximum amount of kinetic energy among all
possible truncations of the same order. In Aubry et.al. [1988] mod-
cls of various orders are examined.

In this paper we consider amodel of 2 complex dimensions or 4
real dimensions which was analyzed in Armbruster, Guckenheimer
and Holmes [1988]. While this model is of too low an order for really
good physical representation, it does contain many of the features of
the higher order models, in particular exhibiting asymptotically sta-
ble and structurally stable heteroclinic cycles in certain regions of
the phase space. The key idea is that bursting corresponds to pas-
sage close to the heteroclinic cycle, while no bursting corresponds
to remaining close to a given hyperbolic point. A further imponant
part of this model is the presence of pressure fluctuations in the outer
layer which can trigger a bursting event; noise can be used to model
these fluctations in the manner of Stone and Holmes discussed above.

2.7

Our purpose here in conmrolling such a system is 1o control the
frequency of bursting events, which hopefully can be used to con-
ol the amount of turbulence in the boundary layer. In general one
wishes to reduce the frequency of bursting, but in other instances it
might be advisable to encourage a burst or regularize its peried. We
consider here a model with controls that could be heatable patches
(combined with hot film sensors) or wells raised by piezoelectric ef-
fects. Classical drag reduction by polymer addition may be analyzed
also in our framework but we omit discussion of this here (see Bloch
and Marsden {1989]).

. The free system (which is O(2) equivariant) may be written
in complex form as (see Aubry etal. [1988) or Armbruster et.al.
[1988])

2 = z1(m +dnlzi 2 + diz)z2f) + 127122 + O(4)
2.8
23 = z3(pz + dar |21 2 + o) 23]?) + enn 23 + O(4)

where the z; are complex variables and g, d;, and ¢; are param-
eters.

Assuming e;3,¢11 # 0, one can rescale (2.8) to

2 =F1 22+ 21(py + enfz1[* + enz)z2H

2= Fz} + 2y + en21 P + enzaf?).

Now we assume that through a "checkerboard" of heating ele-
ments or piezoelectric controls one can essentially change the mag-
nitude of all eigenvalues of the system, and through sensors one can
monitor the amplitude of all modes.

In Cartesian form the system with conwols is thus
o ]
2y = 2132+ Y12 + 21 (B +enri + er2rd) +uy

91 = 2132 — iz2 + (g + enrs +epard) +uy

22 = (2} — y)) + 2a(paenri + ennrd) +us

¥2 = 1224 v +w(pr + 621”]2 + 3227%) +ug

when r? =z} + 42,

In the "-" case, one can show thatin certain regions of the param-
eter space, a locally asymptotically stable heteroclinic cycle links the

fixed points at (zy, y1, 22, ¥2) = (0,0, £(—p2/e22)/2,0) (see Arm-
bruster er.al. [1988]).

One can also check that the linearized system about the fixed
points is controllable (see Bloch and Marsden (1989]). Thus our ear-
lier results apply to this system. Thus the suggested control strategy
in the presence of noise is 1) decrease the magnitude of the largest
unstable eigenvalue of the system linearized about the given fixed
point, thus increasing the time the system is expected to remain near
this point and 2) if a perturbation drives the system a sufficiently large
distance from the fixed point, retum it to a point as close as possi-
ble to the stable manifold using an explicit control for the linearized
system.

3. Stability and Stabilization for the Rigid Body Problem

Another dynamical system which contains heteroclinic orbits is
that of the rigid body. It is a classical result that a rigid body rotates
stably about its major and minor principal axes, but unstably about
its intermediate axis. Elegant proof of nonlinear stability about the
major or minor axes can be given by the Energy-Casimir method
(see Holm, Marsden, Ratiu and Weinstein [1985]) or the more re-
cently developed Energy-Momentum method (see Simo, Posborgh
and Marsden [1989]). Now, corresponding to rotation about the in-
termediate axis, are saddle points on the momentum sphere linked by
four heteroclinic orbits. A treatment of this may be found in Holmes
and Marsden {1983] (see also Abraham and Marsden [1978]).

f%@g’
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Recall that the rigid body equations are given by

Iiin = (I = Blwaws
I = (I3 — [)wwy 3.1
Isin = (I — Rww;,

where [; are the principal moments of inertia.

In Hamiltonian form the free rigid body is a left-invariant Hamil-
tonian system on T*S0O(3). By reduction, we can write the sys-
tem as a Lie-Poisson system on s0(3)°, the dual of the Lie alge-
bra of s0(3). Now 80(3)° may be identified with so(3) (by the
killing form) and so(3) may be identified with IR® by mapping

-
v=@,arER t0F=| r 0

The Lie bracket is then mapped to cross product in the sense that
V& =(vx w.

Now elements m € s0(3)* may be taken to represent the body
angular momentum of the rigid body, and viewing m € R, we
have m; = Lw;, 1 =1,2,3, and the equations of motion are

q
—p] € 80(3).
0

m~h-hmm
(S 1213 21783
. _B-1h
ity = Th mim3 (3.2)
h-n
3 Ll mim;

3 2
With Hamiltonian H(m) = } 3~ 7%, these equations of mo-
3 l { )

£~
tion are given by F' = ;‘F, HJ{}; where the Lie-Poisson bracket
{{‘1“. G}f(m) s —-m-(VFx ). Conservation of momentum,
which is here equivalent to preserving co-adjoint orbits, is given by

constancy of £ = m? + m2 + m2. Flow lines are given by inter-
secting these momentum ;;‘facms with the ellipsoids H =constant.
There are saddle points at (0, +£,0) which are connected by four
heteroclinic orbits. As discussed in Holmes and Marsden {1983],

these orbits lie in the invariant planes m3 = :I:‘ / :—}ml where gy =

Ii;? >0, a3 = !}1:1?' <0 and a3 = !EI? > 0. Explicitly the
orbits are given by

mi) = e, /_i;;sech(—,/arnex)
m3(t) = £fanh(—,/3a3¢1) (3.3)

m) = e, /%sech(—\/—alaglt)

for m3 = H(\/a3/a1)my and by

my @) =mi(-t), m3(@t)=mi(-t), my{t)=-m3(-t) (3.9)

for m3 = ~(\/a3/a1)my.

Hereweassume IT1 > L > I3,

As far as control is concerned, the situation which is closest to
that discussed in the previous section, is when we have three inde-
pendent torques (c.g. gas jets) about the principal axes, i.e. we have
the system

my = aymom3 +u;
tita = aamamy +uy 3.5
i3 = a3mmy +u3

In this case, the lincarized system is conmrollable (see Crouch
{1984]), and we can apply Theorem 2.1, thus driving the system as
close to the stable manifold as we wish, before removing the control
forces. One situation where the techniques discussed in the previous
section might be useful in this context is when one does not have
sufficient control power 10 stabilize the system. We may also, in
fact, wish 1o exploit rapid passage close to the heteroclinic orbits as
a control manouver. This leads not only 10 a rapid change in the
sign of the momentum component w3, but to a rapid "tumble” in
configuration space also.

In case where one does have enough control power, it is natural
to consider stabilizing the rigid body about the unstable principal
axis.

One natural way to stabilize the system is by altering I>. Sup-
pose, for example, one had a unit mass attached to the rigid body
along the intermediate axis of inertia at a distance z from the center

" of mass. then Iy — I + 22,

Hence for z sufficiently large, J2 + 22 > I} > I3 and the
system is stabilized about the intermediate axis, as one can check by
the Energy-Casimir or Energy-Momentum methods. Letting z goto
zero will lead to destabilization and rapid passage near a heteroclinic.
We remark that this model is similar to that of Levi [1989), about
which we comment further later.

There has been a great deal of work over the past decade analyz-
ing the problem of stabilizing both the angular momentum equations
for a rigid body and the full attitude (configuration space) equations.
We mention in particular in this regard the work of Baillieul [1981],
Bonnard [1981), Brockett [1983], Crouch (1984], Acyels (1985 a,b],
Aeyels and Szafranski [1988] and Bymnes and Isidori [1989).

In the latter paper, Bymes and Isidori show that with two torques
(gas jets) the full attitude equations may be asymptotically stabilized
to revolute motion about a principal axis.

In Brockett [1983), it is shown by finding a Liapunov function
that the null solution of the angular velocity equations may be stabi-
lized by two control torques. In Aeyels [1985a), the same result is
demonstrated by Lyapunov theory. In Aeyels [1985b), it is shown
that the angular velocity equation, may be “robustly” stabilized
(though not asymptotically stabilized) by a single torque aligned with
cither a major or minor principal axis. This result is tight in that it is
shown in Aeyels and Szafianski [1988), that the equatons cannot be
asymptotically stabilized by a single torque about a principal axis.

... We show here, via the Energy-Casimir method, that we can sta-
bilize the rigid body equations about the intermediate axis of inertia

bﬁl a single torque about the minor or major axis. More precisely, we
show

Theorem 3.1: The rigid body equations (3.2) with a single torque
about the minor (or major) axis:

th| = aymam3 My = aymamna + 4,

12 = aamym; (3.6) or sy =aymms;

3 = aamim; + U3 m3 = aamm;

may be stabilized about the relative equilibium (m;, m;,m3) =
(0, M, 0) by the control u3 = —kmym; (or u; = —kmam; ).
Proof: Consider first the system linearized about 0, M,0). Its
eigenvalues are given by the solution of

A2 - ay(a3 — MY =0.

Hence for & = 0, the system is unstable, but for & sufficiently
large we have two imaginary and one zero eigenvalue. Is the system
stable? We prove that it is via the Energy-Casimir method.



Recall that the Energy-Casimir method (see, e.g. Krishnaprasad
and Marsden [1987)), requires finding a constant of motion for the
system, E, usually the energy, and a family of constants of motion

» such that for some C, E+C hasa critical point at the (relative)
equilibrium of interest. (Often the C''s are taken to be Casimirs -
functions that commute with all other functions under the Poisson
bracket). Then, in finite dimensions, definiteness of §2(E + C) at
the critical point is sufficient to prove stability.

Now here we have

Lemma 3.2:
1(m¢ mé m} ay
Ec = 2 (— + I I_3a3 - k) G.1
and
1 a
2 _1f 2. 2. _2 63
Mc = 3 (ml +m2+m303 — k) (3.8)

are conserved for the system (3.6) with u = ~kmym,.
Proof:  }(m3)? = marhy = m3(a3 — k)mymy and then the calcu-
lations reduce to the standard rigid body calculations. o

We remark that the system (3.6) with u3 = —kmm; is a Lie-
Poisson system (see Krishnaprasad (1985) and Alvarez-Sanchez
(1986) or Holmes and Marsden [1983]), with respect to the non-

canonical Lie-Poisson bracket {F,G} = -V (‘-‘J‘;—“Mé (VF x

VG). In fact, it is Lie-Poisson in a number of different ways, see
Bloch and Marsden [1989b] for further details.

Now use the "modified" Energy-Casimir function
1 /m? 2 2 u
2)=_(B1, M2, Mm5_us
Ec+¢(Mc) =3 (1. ' a;—k)
3.9

1 2,2, 2 @3
+ i¢ (ml 'Fﬂ’lz-l"'ﬂsa3 — k)
where ¢ is an arbitrary smooth function. Now

2y = (T m2 m3 a3
§(Ec + d(ME)) = (Il émy + A émy + T, 6m3a3 — k)

+¢'(M2) {m|6m1 +mémy +mabma as"i P } (3.10)
This equals zero if

o d'm =
Il +¢m1 0
2 dmy=0 (3.11)
I

m3 a3 33 =0

I ag-—k+¢m3¢3~k

Now at equilibrium (m1,m3;ma) = (0, M,0) this will be zero if
¢' =3 . Then
6m)’  @mo)?  @Ems) a3

I I Is 63—k

§Ec +$(ME) =
(3.12)

- ?‘; {(sm,)z +(6my) + (Jms)zﬁ} + §"(MEIM(6my)

at the equilibrium of interest.

Now, since ) > I; > I3 and a3 = !};'7?. for k sufﬁcienfly
large that a3 — k < O and choosing ¢" < 0, the second varia-
tion is negative definite and we have nonlinear stability. (A similar
argument holds for vy = —kmam3.) (]

Finally, we make some remarks on stabilizing more complex
systems than the rigid body. We have in mind the problem of stabi-
lizing systems of coupled rigid and elastic bodies. Stability of cou-
pled rigid bodies and flexible rods was analyzed in Krishnaprasad
and Marsden [1987] and Baillieul and Levi (1987]. See also Bloch
and Ryan [1989]. A prototype finite dimensional model of a rigid
body with elastic appendage - a mass on a spring - has been ana-
lyzed recently by Levi [1989). Stability of motion of two coupled
rigid bodies has been analyzed by Patrick [1989). More recens work
on analyzing the stability of coupled systems may be found in Simo,
Posbergh and Marsden [1989], Marsden, Simo, Lewis and Posbergh
(1989] and Simo, Lewis and Marsden [1989].

While in the Energy-Casimir method discussed earlier, the anal-
ysis takes place in the body frame, in the latter work the Energy-
Momentum method, which takes place in the spatial frame, is used.
More importantly, in this context, the papers alluded to above, prove
the existence of a block-diagonalization of the second variation of
the energy-momentum function, thus vastly simplifying the analysis
of stability for complex coupled systems.

These results can be formulated quite generally for the Hamil-
tonians of mechanical systems with symmetry. The test for stability
of equilibrium in this context reduces to a test for definiteness of the
second variation of the Energy-Momentum function on a linear sub-
space lying in the kernel of the derivative of the momenrum map
arising from the symmetry group action. This second variation can
then be shown to decouple into “rigid body" variations and "internal
vibration” variations.

Our goal is 10 apply some of these techniques to the stability
analysis of complex controlled systems. The rigid body analysis we

have carried out here is at least suggestive that this line of investiga-
tion might be fruitful.
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