A Hamiltonian-dissipative decomposition of normal forms
' | of vector fields

D. Lewis* and J. Marsden!

1. THE ELPHICK-IOOSS NORMAL FORM

We consider dynamical systems in two variables with nilpotent linearization at the origin.
We show that the behavior of the equilibria of such systems is determined by a modified
Hamiltonian function which is constructed from an appropriate normal form for the vector
field. In particular, the equilibria of the dynamical system correspond to critical points of
the modified Hamiltonian and the local behavior of the vector field near an equilibrium is
determined by the second variation of the modified Hamiltonian and its time derivative.

The normal form used here is the one described by Elphick et al. [1987]. This normal
form is determined using an inner product ( | ) on the space of vector fields with homo-
geneous polynomial entries. The inner product behaves well with respect to the adjeint
operator, allowing an explicit characterization of the kernel of the adjoint in terms of vector
fields commuting with the linear group action associated to L3, where L§ is the adjoint
(with respect to the Euclidean inner product) of the linearization Lo of the equations of
motion at the origin. After the normal form is obtained, the inner product is used to split
the vector field in normal form into its Hamiltonian and dissipative components. (The word
dissipative is used liere in a generalized sense; the dissipation can be positive or negative
and is defined precisely below.) The Hamiltonian subspace of the equivariant vector fields is
determined by using the canonical symplectic structure on R? to compute the Hamiltonian
vector fields with L§ invariant Hamiltonians. The subspace of dissipative vector fields is
defined to be the orthogonal complement to the Hamiltonian subspace with respect to ({ ).
For illustration, we consider the nilpotent operator

Lo=(g (1)) (1)

Here, the space of equivariant Hamiltonian vector fields is determined by Hamiltonians
H(z,y) = 3y* + U(z) generating vector fields of the form (y,~Ux(z)). The dissipative
subspace consists of Lj invariant functions (i.e. functions of z alone) multiplying the L}
equivariant vector field (z,y). Thus the Hamiltonian vector fields turn out to have the
normal form

i =y (2)
.7'/=_Ux
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(where U is thought of as a polynomial expression in ) and the dissipative vector fields
have the form

z

a(z)z (3)
y = a(z)y.

Adding (2) and (3) gives the Hamiltonian-dissipative decomposition

& = y+a(x)e (4)
'_l:l = —U$+a(a:)y,

which is the Elphick-Iooss normal form associated to Lg.

The decomposition techniques described above are not restricted to vector fields with
nilpotent linearization. An analogous situation arises for the harmonic oscillator, with
Hamiltonian H(z,y) = 3(z* + 3?), which leads to the normal form for the Hopf bifurca-
tion. The linearization of this normal form is not nilpotent. For a discussion of the Hopf
bifurcation as the unfolding of the Hamiltonian vector field associated to H, see Schmidt
[1976].

Let us now recall some of the general formalism behind the results. The inner product
() is defined as follows. First define an inner product { | ) on the space Py, of homogeneous
polynomials of degree n on R™ by

(P|Q) = P(9)Q(¥)lx=o0,
where 8; = 9 /8z7. For example,
() |(29)") = albaps”.
This inner product has the property that
(QR|P) = R(9)Q()P(x)lx=0 = (RIQ(I)P). (5)
The inner product on the space of scalar polynomials can be extended to polynomial
vector fields on R™, i.e., polynomials with values in R™, by defining
Vi) = LV
=

This inner product behaves nicely with respect to pullback by linear maps. Let
A:R™ — R™ be a linear transformation. We first note that

(Po AlQ) = (P|QoA),

where (P o A)x = P(Ax) and A" is the transpose of A with respect to the usual Euclidean
inner product on R™. This can be seen by applying the chain rule to show that dyx = Ady,
where y = A*x. It follows from the extension of the inner product {|) to vector valued
polynomials that (| ) satisfies (AV|W) = (V|A*W). Hence

(A1V 0 AIW) = (VI(A")T'W o A7), (6)
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Le. the adjoint (with respect to the inner product ( | ) on P,) of the pullback map is the
pullback map of the adjoint (with respect to the Euclidean inner product on R™).
We consider now the extended adjoint operator A™ : P, — P, given by

APy = %‘mo (e'L°tV o eL°‘) ,

where Lo is the linear part of the vector field to be put in normal form. We make use of
(6) to obtain a simple description of the decomposition

P, =Im AN g (Ker A(”))* .
Taking A = ef°t and applying (6), we see that

(%|t=o (e—LoiV o eLot) IW)

(VI &l ((751) W o (21)7))
(V| %l (e-LEtW o eLB‘))
viAPw),

(AMV W)

It

where (Af.")W) [X] = [W[X],LX]. Hence (Ker .A("))* = Ker A™ and so we have the
decomposition
P, = Im A™ g Ker AS"),

i.e. all vector fields orthogonal to the image of A(" commute with L5 We say that
a polynomial X,V, is in normal form (with respect to the given inner product) if V,, is
orthogonal to Im A™, In particular, the terms appearing in the normal form commute
with Lg. This definition arises as follows: Assume that the equations take the form

X = Lox + g(x), ()

where the vector-valued polynomial g is of order n > 2. One seeks a vector-valued poly-
nomial p of order n such that the nonlinear term g is removed to order n by a change of
coordinates of the form x = y + p(y). Application of the chain rule yields

Dp(y)-¥
= Dp(y)- Loy + higher order terms;

P

thus (7) is satisfied at order n if and only if
Dp(y) - Loy = Lop(y) + &(y)s
ie., if
g(y) = —Lop(y)+ Dp(y)- Loy
~ (4®™p) (3).

Hence, only g € Im .A(™ can be removed by this method. (See Guckenheimer and Holmes
[1983] for a discussion of normal forms.)
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In some cases (in particular, the nilpotent case (1)), the invariant functions are func-
tions of a momentum map associated with an appropriate dual pair. {See Marsden and
Weinstein [1983] and Weinstein [1984].) More specifically, assume the system associated
to Ly is completely integrable via some Lie group G in the following sense: the action of
the Hamiltonian vector field X Hys OD the level sets of the momentum map J : R*® — G* is

transitive. Then functions whzch are tnvariant under the action induced by X Hye ‘collec-

tivize’ with respect to J; i.e. if a function R*™ — R is invariant under the action of XH,_.;
then there ezists a function f : G* — R such that F = fo J.

R2n
J / \ha
g‘

R

A dual pair

In the nilpotent case (1), we take R to be our Lie group G_acting on R? by translations
in y, i.e. £:(z,y) — (z,y+§). This action has infinitesimal generator ég2(z,y) = (0, €)
and momentum map J(z,y) = J(z,y) -1 = z. Hence the level sets of J are simply vertical
lines. The dynamics generated by Lj are Hamiltonian with respect to Hys = %12. This
Hamiltonian has the Hamiltonian vector field X Hys = (0,—z), which induces the action

£: (z,y) (z,y — €z) of R on R?. This action is transitive on the level sets of J (except
for J~1(0)). Hence this system is Hamiltonian and completely integrable with respect to
G and the fact that the invariant functions are functions of z alone is predicted by the
collectivization result noted above. Another interesting example we hope to look at is the
dual pair associated to 1:1 resonance; see Golubitsky and Stewart [1987].

If there is an additional Lie group G which acts on both R?" and G*, and if the momen-
tum map J associated to the group G is equivariant with.respect to the action of G, then
G invariance collectivizes in the following sense: if F = foJ is G invariant, then f is G
invariant. We shall use this fact in §4.

Remark: An alternative normal form for the nilpotent system is given by
t = v
= —Vp+flup. ®)
If we make the change of coordinates £ = v and y = v—az, where the function a(z) satisfies
2a + ayz = f(z),
then we see that the normal form (8) corresponds to the Elphick-Iooss normal form

T = y+az
v -VU +ay (9)

for U(z) = p(z) ~ [*a’z dz.
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An alternate Hamiltonian-dissipative decomposition, which treats differential polynomi-
als in one independent and one dependent variable, characterizes the dissipative component
of the system as a series of differentials of Euler-Lagrange expressions. A description of
this decomposition, including an interpretation of the dissipative terms as determining a
generalized Rayleigh dissipation function, is presented in. Olver and Shakiban [1988]. The
relationship between the Olver-Shakiban decomposition and the decomposition presented
here will be the subject of future investigation.

1.1 Sample phase portraits

We mow present a few samples of vector fields on R? which have the same Hamiltonian
component, but distinct dissipative components. We choose as our underlying Hamiltonian
the function

H(z,y)= ;—,y"’ + .1z — 0522 — %—.1:3,

which we view as an unfolding of the nilpotent Iamiltonian discussed in the previous
section. The phase portrait for this Hamiltonian system, given in figure 1, yields the ‘fish’
which characteristically appears in unfoldings of the double zero eigenvalue problem. This
system has a center and a saddle point lying on the z-axis. The following three figures (2-4)
illustrate the effect of the addition of various order one dissipative components to the vector
field. In figure two, the center at the ‘eye of the fish’ has become a source; the saddle point
remains a saddle. In addition, a new equilibrium, a second source, has appeared. In figure
three, the ‘eye’ is now a sink; the other two equilibria, a saddle and a source, are similar
to those in figure two. Figure four is qualitatively similar to figure three, in the sense that
it possesses a sink, saddle and source, but the saddle and source are sufficiently near one
another that they are hardly visible in the graph. To illustrate this system in greater detail,
we focus on the region of phase space near the lower ‘fin’ and vary the constant ¢ in the
dissipation function a(z) = ¢ + z in figures 5a — d. As the constant ¢ increases, the saddle
and the source move towards each other; when ¢ = .1344035, they collide and disappear.
(In figures 5b and 5¢, the location of the saddle is indicated by a cross; the location of the
source is marked by a triangle.)

In all three dissipative cases the behavior along the upper ‘fin’ is fairly consistent with
that of the underlying Hamiltonian system. It is to be expected that the neutral center at
the ‘eye’ should become either a source or a sink when a nonconservative term is added to
the vector field. The most striking distinctions in the phase portraits occur in the region
containing the lower ‘fin’ of the original system. The appearance of the new fixed point
could not be predicted from a local analysis. One consistent feature in the dissipative flows
is the existence of a curve, roughly determined by the unstable eigenvector of the saddle
and the most strongly repelling direction of the source, which predominantly determines
the béhavior of the flow.in the lower righthand quadrant. Such a curve appears in almost
all dissipative variants of the Hamiltonian flow given above. The equilibria and eigenvalues
for the phase portraits displayed in figures one through five are given in the following table.
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Figure Dissipation Equilibria LEigenvalues
1 a(z)=10 (—0.370156,0) +0.800195:
(0.270156,0) {0.800195, —0.800195)
(—0.360501,0.0468512) 0.259923 + 0.798682:¢
2 a(z) = 2° (0.272494, —0.0202335) | (0.948178,—0.651166)
(1,-1) (3.04881,0.951191)
(—0.368706, ~0.0184809) | —0.125309 4 0.79956:
3 a(z) = 23 (0.270321,-0.00533972) | (0.849601, —0.750835)
(1,-1) (3.6619,1.3381)
(—0.345222,-0.0727806) | —0.383434 £ 0.7958841
4 a(z) = 1344+ | (0.536518, —0.359959) (1.87994, —0.00158842)
(0.539904, —0.36406) (1.88692,0.00158862)
5a a(z)=0 (-0.370156,0) +0.800195¢
(0.270156,0) (0.800195, —0.800195)
(—0.344397,-0.0738376) | —0.386595 % 0.7950¢
5b a(z) =.13+z (0.482062, —0.295052) (1.76258, —0.0563945)
(0.602334, —0.44111) (2.01036,0.0566391)
(—0.345148,-0.0728771) | —0.383722 £ 0.795859:
5¢ a(z)=.134+«z (0.520387, —0.340535) (1.84621,-0.0170522)
(0.55676, —0.384588) (1.92121,0.0170752)
5d a(z) = .14+ z | (-0.346259,-0.0714189) | —0.379388 & 0.796218:

Table 1. Eigenvalue information for figures 1 - 5.
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R fig. 1

H(z,y) = %yz + .1z — .051‘2 - %1’
y
~14.1z +32°
"/
fig. 2
a(z) = z?
z = y+13
¥y = —l+.lz+z'4+2Yy



fig. 3
33
y+z!

~1l+.dz+2+ ;rsy

fig. 4

1344 + 2
y+ (1344 + z)z
1412427+ (1344 + 2)y
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= 3+ .1z - 0527 ~ 15°
=y

=14 .1z4 22

fig. 5b
13+ =z .

y+(13+ 1)z
—1+.1z+2%+ (13 +z)y
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a(z) = 134 +z Be. 5e
g = y+(.134+1)z
vy = =1+ 1lz+22+(13441)y
S —
fig. 5d

= l4+z
z = y+(l4+1)z
= —l1+.dz+2°+(14+2)y



2. THE MODIFIED HAMILTONIAN

The following remarks show that the equilibria of a two dimensional system given in normal
form with respect to the nilpotent operator (1) may be analysed by studying the critical points
of a function H, determined by the normal form. In particular, a saddle point of the funclion
H, is a saddle point of the equations of motion and a local minimum of H, is a sink (source)
of the equations of motion if H, <(2)0 in a neighborhood of the critical point. (H, has no
local maxima.)

Given the dissipative system in normal form

&t = y+a(z)z
g = —Us(z)+a(e)y

we compute the lincarized equations of motion

bz = 6by+ (azz+a)iz
by = (U + azy)bz + aby

i _ a+ a,x 1
T\ —(Ugz +aagz) a

at cquilibrium. (Note: We write a for the function a(z), a, for the derivative da/dz, etc.)
We compute

with matrix

det L = a? + 2aa,z + Uy = (a*z + Uy,

and
trL = 2a + azz.

Define the modified Iamiltonian function
Hy(z,y) = %y2+ U(z)+ a(z)zy + f(z), (10)

- where

x
flz) = ;—a222 +/ alz dz.

I, has partial derivatives

o,
= U+ (e+azz)y+ fe
Jdz
= Ur + ((L + (er)y + (20 + GIT)UI
= (Ugy —ay)+ (2a + agz)(y + ¢z)
Ol = y+ax
Jy y ’
It follows that
0=z = y+azx B
0::{/ = —Uz+ay <:>VI[a(qu)—0~
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i.e. VHy(x.) = 0 if and only if %, is an equilibrium. Alternatively, one can see that critical

points of H, correspond to equilibria by writing the equations of motion in the form

dH,
oy
o0H,
e

7 = +(2a + azz) &.

In this formulation, the function (2a-+ a;z) &, which is linear in the velocity, plays the role
of a traditional dissipative term. This can be viewed in terms of a Rayleigh dissipation

function R(z) given by
T
R(z) = / (2a + azz) da

ax+/ adzr.

Il

H, has second partial derivatives

8",
oz?
0%*H,
dzdy
0%H,
dy?

= Uz + (2‘1 + aml'):l/ + foo

= a+a;x

= 1,

with values

2H
—a—é—zz-a—(xe) = Uy + daa,z + az? + 24?
8%H,
529y )
0’H,
Ty ) =

= a+azz

at equilibrium. The Jacobian determinant at equilibrium is

det D2Ha(xe) = Ugs+d® + 2aa,z

= (Up+a%z),
= det L.
We note here that
0*H, 2 9
52 (xe) = ((az)z)” + det D° Ho(x.),

(1)

hence D2 H,(x.) must be either positive definite (in the case det D? H,(x,) > 0) or indefinite
(in the case det D?H,(x.) < 0). It follows from (11) that if det D2H,(x.) > 0, then det L >
0, so that the real parts of the eigenvalues of the linearized equations must be of the
same sign, i.e. the equilibrium must be a source, sink or center. On the other hand, if
det D2H,(x.) < 0, then det I < 0 and so the eigenvalues of I must be real and have opposite
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sign, i.e. the equilibrium must be a saddle point. In the case of positive determinant, an
additional computation is required to determine whether the equilibrium is a source or a
sink. The sign of the the real part of the eigenvalues is determined by the sign of the trace
of L. We shall show that this sign equals the sign of the trace of the Jacobian of the time
derivative of the modified Hamiltonian; this sign also determines the sign of H, itself in a
neighborhood of the equilibrium. In particular, an equilibrium x, is a sink if and only if it
is a strict local minimum of the modified Hamiltonian H, and ffa <0ona neighborhood
of x;. Ifx. isa source, then H, again has a local ﬁ)jpimum at X., but I.Iﬂ' >0 on a
neighborhood of x,. S ' ' ' ‘ :

We now compute the derivatives of H,:
-0H,. O0OH, .
gr - "oy
(¥ + az)((2a + azz)y + f,)

= (y+ ax)2(2a +a1.1') | ‘ (12)

f[a =

 Usiiig the Rayleigh dissipation function R(z) = [(2a + a,z)dz, we can write

M H. = R, | R

At equilibrium o R
B A R L T

- Itis clear from the factorization ( 12) that

oA, (x.) = oM,
B 3.1: e -3 — ay

(x)=0.
In fa_ct, any point (z,y) such that & %;0 is a critical point of H,.
H,(x.) has second partial derivatives
O, , .
N (fe)
I*H,
Bway(xf)

- ‘l . 02]'1‘1 . P : ‘
. -—ay—2(xe) = 2(2a+ a,z).

il

2a + azz)?(2a + ay)

2(a + q%ét)(?a +a,2)

It follows that det D?ﬁa(xe)k =0,

'frszja.(xe) = 2’(2(1" + azm)(l + (e + azx)z) ,

and hence D?II,(x,.) ;haS eigenvalues 0 and tr D2IT,(x,). We note that the eigenvector
associated to the 0 cigenvalue of D2I,(x.)'is (1, -(az);) and the eigenvector associated to
the tr D*11,(x,) eigenvalue is (((Ll‘)x, 1). In “particular, the éi'genv‘e(f:"tor witivh eigenvalue 0 is
tangent to the curve y = —agz determined hy the conditionsfl@ =0 (equivalently & = 0)

and the other eigenvector is perpendicular "tor this curve.
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We see that
trD2H,(x.) = 2(2a + a,z) (1 + (a + azz)z)
2L (14 (a+ a,2)?).

!

Since the term within the parentheses is always positive, the sign of tr L (2nd hence the sign
of the eigenvalues of L in the case that det L > 0) is determined by the sign of tr szla(x,;).
Clearly, we also have 824, / 9y*(xe) = 2(2a + a,z) = 2tr L, 50 one can work with this partial
derivative, rather than the trace, if it is more convenient.

The modified Hamiltonjan H, provides information about periodic orbits, as well as
equilibria. It is clear that a periodic orbit cannot be entirely contained within a region
where H, has fixed sign. If an orbit moves down across the level sets of H, while in a region
where H, < 0, then it must pass through a region where H, > 0ifitis to return to the
level set on which it began. From the factorization (12) of H, we note that the regions
of fixed sign for H, are bounded by the vertical lines (2a + a,z)~1(0). (H,=0 along the
curve y = —az, but does not change sign when crossing this curve.) Hence any periodic
orbit must cross one of the lines (2a + a,z)~1(0). According to the Poincaré index theorem,
the region enclosed by a periodic orbit must contain an equilibrium point, which we know
must lie along the curve ¥ = —az. Thus, a periodic orbit must enclose segments of both
the y = —az and the (2a + azz)~(0) branches of the set £, = .

The functions H, and H, can also be used to detect the occurrence of « Hopf bifurcation.
(See Marsden and McCracken [1976) or Guckenheimer and Holmes [1983], for instance.)
From the characteristic equation A2 + tr L A+ det L = 0 for the eigenvalues of L, observe
that L has purely imaginary eigenvalues if and onlyiftrL = 0and detL > 0. As discussed
above, conditions on the determinant and trace of  can be expressed in terms of det D2JJ,
and trD?H,. In particular, L has purely imaginary eigenvalues if det D2H, > 0, ie. if
H, has a local minimum at Xe, and if tr D2, = 0. These conditions may be expressed
geometrically as follows: Consider the factorization

I, = (v + az)*(2a + a.z)

and note that if we plot the set ]?;1(0), then an equilibrium has purely imaginary cigenval-
ues if and only if it is a local minimum of /I, lying at the intersection of the curve y=—azx
and the vertical line(s) (2a + a;x)~1(0).

The non-zero speed condition Jor Hopf bifurcation can be checked by computing the
derivative of tr D*H, (or 0’11, /0y?) with respect to the bifurcation parameter y at x..
We note that .

(trDZI'Ia(xc))u = (2 tr L (1 + (e + azz)2))u
2trlL, (1 + (e + “1‘1,)2) s

I

since, by assumption, tr L = 0 at criticality. Hence sign (tx'Dzl]u(xe))“ =sign(trl,).

In summary, much of the qualitative behavior of a system of the form (10) can be
determined by plotting the level sets of the function H, and locating the regions on which
H, is positive, negative or zero: '

o Equilibria occur at critical points of H,. These must lie along the curve y = ~qg

making up one or more branches of the set 1.[;1(0). )
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® Local minima of H, correspond to sinks, sources, or nodes of the equations of motian.
Ignoring degeneracies, the equilibrium is attracting (repelling) if H, is non-positive
(non-negative) in a neighborhood of the equilibrium.

e Saddle points of the equations of motion correspond to saddle points of H,.

® Periodic orbits must cross the vertical lines (2a + azz)~1(0) which bound the regions
on which H, has fived sign. In particular, a Hopf bifurcation can occur only at a
singularity in H;1(0), i.e. where the curve y = —az intersects the line (2a+azz)"1(0).

Remark: The second time derivative of H, contains a factor of #. In addition, the higher
order time derivatives of H, seem to factor nicely at points where & = 0. We have

Huyz,y) = (y+ az)(a complicated function)
= i(a complicated function)

=0 ifz=0
HO(z,y) = 2(2a + a;z)(a’z + U,)? ift=0

=0 ifg=2=0
HMz,y) = 6(2a + a,2)*(a’s + U,)? if$=0

= 0 : if 3'[ =&=0
H,gs)(:c,y) = 2(a’z + U,)%(a complicated function) ife=0

= 0 ifg=2=0.

This behavior may or may not continue indefinitely; these facts could be useful for the
analysis of degenerate singularities.

2.1 Ezamples

The following figures show the phase portraits of several dissipative nilpotent vector fields
and the level sets of the associated modified Hamiltonians. The curves made up of small
boxes indicate the curve y = —az; the vertical line indicated by small boxes in figures 8a
and 9a is the line (2a + a,2)~1(0). Figure 6 shows-a member of the one parameter family
considered in figures 4 and 5; it can be seen that the two fixed points which eventually
collide and disappear lie in an ‘arm’ of the level sets of the modified Hamiltonian. This
‘arm’ shrinks as the parameter c is increased, forcing the two equilibria together. Figures
7 and 8 show the effect of a quadratic and, respectively, cubic dissipative term on the
underlying Hamiltonian %yz - %x3. Finally, figure 9 shows a flow possessing a periodic
orbit, which straddles the regions of increasing and decreasing energy.
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CH(z,y) = M+ .1z - 0527 - 15"
a(z) = 13+« '
Hy(z,y) = {y’*+'1z - .03312% - .11672° + 752 + (13 + z)zy

¢ >
2

=

N3 0 oYy
H = N,
o
N
3

a

Y+ (13+2)z fg 6e

—14+.1z 4224 (134 2)y

v+(13+1)z fig. 6b
~.14.06627 + .35z° — 32 + (.13 4+ 22)y

L]
[
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H(z7y) = %y 3
a(z) = =z
Ha(z,y) = 3" -3z 3s'+ 2%y

fig. 7a

fig. 7b

r = y-{—Izl
v = 2?2 -32%+ 2zy
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H(z,y) = §y"~12°
a(z) = 2
Hy(z,y) = ' -i2+20 +2%

. -}
-]
fig. 8
= y+f & 5
= 2?4+ 2%
-]
fig. 8b

y+z°
z? +47% 4 32%
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) = 3 +.1z-.052" - 12°
a(z) = .05+.1z
) = ¥+ .12 — 047527 - .3252° + .00752" + (.05 + .1z)zy

+(.05+ .12)z fig. 9a
d+4+dz4+224+ (134 2)y

mon
| =

z = y+(.05+.1z)z fig. 9b
¥y = —.1+4.095z +.975z% — .03z° + (.05 + .2z) y
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3. A FOUR DIMENSIONAL EXAMPLE
- 81" The normal form and modified Hamiltonian

Consider the class :of-{l-dimgﬁsional dynémica.l systems with the nilpotent linearization

i

oo o

i
i
%

at the orxgm The action of R on R* assoc1ated to LO is

N N — N
';L,ooo’o

t: (rc y,u v) (:c y+tzuv+tu)

T

The znvamant functions are functzons of:z: u; and uy - zv. (There is a momentum. map
and dual palr interpretation of these invariant functlons, just as in the planar case.) A basis
for the space of equivariant vector ﬁelds 15 given by

e = (2,90, 0)
e, = (0,0,u,v)
& = (u,9,0,0)
“es = (0,0,7,7)
es = (0,1,0,0)
es = (0,0,0,1)

where the vectors e“g and e6 are to be multlphed by functions of z and u alone (to- av01d
redundangies). :
The Hamzltoman vec&or ﬁelds i normal form are of thf: form

¥

XH(“E y“’u U)—(y+Uy’ Uz,v+U,,, U )s

with Ha,nultoman H=1 (y + 1;2) + ] :;where U "”»11Lva,r|ant functron The space of “dis-
sipative’ equivariant vector fields is computed usmg the 1dent1ty (5}, which implies that a
vector field d = (d*, d?, d>, d*) is perpendlcuiar to (the hngher brder terms of ) the Hamllto—

nian vector ﬁelds if

yd! — zdt vd® Cudfio T

Thus, the, ‘dissipative *vector fields are sp‘ann»cd' by . ( '

p

i ‘ '.v';!:dliéi"iﬁ‘ ‘(:L',‘f 707'0)
" l d2 = (0,0,u,v) _
s d3 = (—’u, 0,0,y) . ; . (14)

Cdy o= (0,2,2,0)
dy = (0,%,0,-z). '
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We now consider systems corpbmmg both Hamiltonian and ,dissipative’ components. A
special subclass of such systems consists of systems of the form

RN T IRV R

Define the modified Hamiltonian

Bl y+a(x)z
Y= = Udeu) ¥ ala)y
o
D

v+t ﬂ(u)u
—Uu(:c u)

+ ﬂ(u)vi

Ha(=,y,u,0) = (4* + o) + U + agy + fuv,
xr u
+ﬁ2u2) +/ o’z d:c+/ Budu.

+% (a2z2

H, has partial derivatives

o OHyg
ov

Hence

where

oH,
oz

oH,

dy

oH,
du’

= U.—oy+ (20 + ay3) (y + 02),

A

= —y+QRatazz)i- -

= y+azx

=

= Uu— Bt 28+ Buu)(v+ Bu)
= -0+ (2ﬂ+ ﬂuu) i

= v+,@u
L= U
e OH,
= Oy
7 :,_,611;(1:
dz
0 = aH,
v
b - _0H,
Jdu

(15)

Ry(z) = /I (2a + azr)dr and Ra(u) = /u(2/3 + Byu)du

act as Rayleigh dissipation functions.

of H,.

Thus, again equilibria are exactly th

We compute that /I, has time derivative

i,

(2a + a,2)(y + azx)? +

(26 + byu)(v + bu)?

= (2a+ azx)i® + (20 + byu)it.
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- Remark: The ‘angular momentum’ term zv — uy has time derivative
(zv—uy)y = Uu+Upw—-Uyz—Uyy+ (a(z) + b(u))(zv — uy)
= Uyu— Uz + (a(z) + b(u))(zv — uy).
3.2 Eigenvalues of L

We define the following quantities:

n = R; = 2a + azr
T2 = RY=28+f.u
T3 = ((1‘22: + U,)z

T4 o= (ﬂ”u + Uu)u

ay = —trk=-(n+m)

a; = T3+1a+7nm

a3 = —(mm3+m1i7Ty)

ay = detl = mary — (Ugy)?

A = e3-aay =3+ oyt i+ 1yrd

Ay = azAy 4+ (trL) detL = az(az — aya3) + ala,

= —(Un)(n+m) -nn ((Ta‘— 1) + 0103)

Using these quantities, we can use the following formulas to compute quantities R;,
i = 1,....4 with the property that the signs of the real parts of the eigenvalues of L
are the opposite of the signs of the R;. (We obtained these formulas from Armbruster
(1988].) We compute that

1 trL? Af A
Bo=-gh Re=-Gm Rs= i Ra= orr (16)

Hence, the signs of cigenvalues are given by the signs of tr L, Ay, —As tr L and —AjAgdet L.
Thus, we have the following table
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Tdet L ¢

-
b~

Eigenvalues
++ -
++ 4+
+ - —+
+-+-
-+ -+
- —++

~

I+ +|Z

L+ +++++ + +
L+ +

|
I+ 4+ 1

L+ + 1
P+ L+ 0+ 0+ 04+ 0+ 1+ 1+

IIII++,+‘+IIII++++

If D?H, is positive definite, then both 73 and T4 are positive; computing the necessary
entries of the table, we find that if both 7y and 7, are positive (negative), i.e. if the deriva-
tives of the Rayleigh functions are both positive (negative), then all eigenvalues of L have
negative (positive) real parts. This provides an extension of the result for a two dimensional
system stating that a locel minimum of H, is locally attracting or repelling depending on
the sign of the derivative of the Rayleigh function at the equilibrium.

We now show that if D211, is indefinite, then the equilibrium must have at ledst one
eigenvalue with positive real part. If all eigenvalues have negative real part, then det L > 0,
trL <0, Ay <0, and A; < 0. If D*H, is to be indefinite, 73 must be negative; 74 must
also be negative if the positive determinant condition is to be satisfied. Since tr I < 0, we
can write 7y = —73 — §; for some positive constant &;. We also write T3 = T4 — 65 for some
constant §;. The condition 73 < 0 implies §; > 74. Expressing A; and A; in terms of 73, 74,
81, and §,, we obtain

Ar = 8165 + 6y — 617y + 613 4 6172

and
Az = =82 (Upu)® + 1a(12 + 6) (53 + 81827 + 5fT4) .
If we are to satisfy both detZ > 0 and Az < 0, we must have

+ 616573 + 6214)

2
(= 82) 2 (Un)? > 2RO G2
1

(17)

In particular, we must be able to satisfy
T4612(T4 - é;) - Tz(Tz -+ 61) (63 + 8162710 + 6?1’4) = —(611'4 + §2T2)A1 > 0. (18)

If we wish to satisfy both this condition and the necessary condition A; < 0, we must have
8174 + 8273 > 0. This holds if and only if

6
fri= -2 5 5 > 0.
T4
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Since 14 < 0, this implies that unless 6372 > 0, the equilibrium cannot be stable,
We now consider the necessary conditions for A; < 0 and test to see if these can be
satisfied under the preceding assumptions. We compute that A; changes sign at

' 2 g
£+ Ta—Ti—0 Ta—-T3 =8\ o
o= B iJ ( = 2.

In addition, we note that when §; = 0, then A; = 272> 0.

We consider first the cage when both ; and é; are positive. Then, since 74— 72 — 8, < 0
and &3 > 0, both 6+ and §; are negative. Hence, for all positive values of dy the sign of Ay
equals the sign of A1 for 61 = 0, which is positive. Thus there must be at least one unstable
direction if 7, and é, are positive.

The final possibility is the case where both 7, and 6, are negative. In this case, §f > 0
and é; < 0. Hence, to satxsfy A1 < 0, we must have §, > §}. At'the same time, if we are
to sa,tlsfy (18), we must have §; < §7. It follows that an allowable range of values for 6,
exists only if 67 > 6F. We compute that 67 = &F for 6, = 0 and 8y = 74 + 72 /(74 — 72).
Since 74 < 0, it follows that &} — 67 has constant sign on the permissible range

0>62>r4>r4+—i—7

Ty T

When 8y = 14, then ‘
’ 5;—51"‘=A—-———>’<0. o (19);:

Hence there is no possible value of 6, for which all of the necessary conditions can be
satlsﬁed Thls proves the claim.’

PR

4. St SYMMETRIC SYSTEMS

Now consider a system on R* with the same mlpotent linearization as in §3; but now "
possessing 51 symmetry, i.e. the equations of imotion are equivariant under the group
action :

8 :(z,y,u,v) — (cos9:c+sin0u,cos0y+sin01i‘,—sin0:v+e059u,—sin0y+cos0v)..,:

Functions which commute with both the 5! action and the action induced by L are functions
of 2% 4+ u? and zv — uy. The equivariant vector fields consist of gradients of functions of
the invariant functions and multiples of the vector fields (z,y,u,v) and (0,v,0, —z) by such
functions. We consider first the case in which the dissipative vector field is a multiple of
{(0,v,0,~1z) alone. Thus the permissible vector fields in normal form are of the form

= y+ Uy
U, +ud
= v+U,
= U, - zd,

S 2 o 8
I

where U and d are functions of z? 4+ «2? and zv — uy.
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In addition to the trivial solution (z,y,u, v) = 0, this system has a nontrivial steady
state solution at any point (z,y,u,v) satisfying

vo= —-_U.,=—xU1
U2

U, = 72

d = 0,

where U and U, denote the derivatives of U with respect to the first and second components.
Note that the first two equalities imply that zy + uv = 0. o
Let f: R — R be the function determined by the relation

f(zz + u2) = IV(:I:, u) - 'vY(a:,u),

where Y (z,u) and V(z,u) are the solutions of ¢ = & = 0. (This function can be computed
explicitly for U; quadratic as described above.) Define the modified Hamiltonian

VU

17,2, .2 2, .2 Vo 2 9 i +u® £ f(1)
Hy = 5(" +v)+p(z* +u ,:w—uy)+/0 d(z* +u ,s)ds—/ /0 di(t, s)ds dt.

H, has partial derivatives

oH, U=y ‘

8:; = 22 /f(x2+u2) di(u? +vx2,s)ds + vd(u? + 22, vz — uy)
+oUs(u? + 22, vz — uy) + 2203 (u? + 22, vz — uy)

aaf;“ = y— ud(u®+ 2%, vz —uy) — ulz(u? + 2%, vz — uy) -

aafia = 2u /f:::;) dl(y2 + z2,f9)ds‘— yd(u? + 2%, vz — uy)
—yUs(u? + 22, vz — uy) + 2ulh (v? + 22, ve — uy)

aBHva = v+ zd(u?+ 2%, vz — uy) + zUy(u? +’:r2,va': - uy).

As before, equilibria are critical points of H,. In the special case that the potential U is a
function of 2 + u? alone, we have the second order system

Y
= —U,+ud
= v

-U, — zd,

LU

with nontrivial solutions at points where y = v = I/; = d = 0. In this case, the modified
Hamiltonjan takes on the simpler form '

Tv—uy
Hy = 3{(* +9%) + U(z? +u?) +/ d(z? + u?,5)ds.
0
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If we consider the combination of both radial and ‘angular’ dissipation, then the equa-
tions of motion are of the form
= y+U,+az
= —Uy+ud+ ay
= v+ U,+au
= =U,—zd+ av,

< 8B e 8

where a is a function of z2 + u? and zv — uy. This system has nontrivial equilibria when

_ du+ 2a%x
- 2a
_ dz - 2a%u
voE 2a
d? — 4a*
h = —a—
d
U2 = —Z. |
Alternatively, the conditions for the existence of nontrivial equilibria may be expressed as
y = Uutazp
v = -Uxtup
d = $2U;p
@ = Fu

where p = /U2 - 2U,.

4.1 0O(2) symmetric systems

As a further simplification, we can specialize to the case of a system with O(2) symmetry,
which eliminates the zv — uy terms which were possible in the S! case. The O(2) symmetric
case has nontrivial equilibria when

R
U’ = 70
Yy = —az
v = —au.

Letting £ = 2 + u?, the modified Hamiltonian takes the form

¢
H, =1 (y2 + vz) + U + a(zy + uv) + La¥¢ +/ a(s)¥ds.
The linearized system has characteristic equation
0=X=2(2a + a’0)A% + 4(a® + (a? + U')' )N - 8a(}a® + U)X

and eigenvalues

0,24, and (a€)’ + L\/((at))? — 4(La? + U'Ye. (20)

It is clear from (20) that the equilibrivm will be stable only if the following conditions hold:
(i)a>0
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(ii) (at)' <0
(i) (3a?+0") >0,

Combining condition (iii) with the condition La? + U’ = 0 required for equilibrium, we
see that the function %a,z + U’ must change sign from negative to positive as ¢ increases
through its value at equilibrium. Similarly, we note that —af = Y (z,u) + uV(z,u) must
be a positive increasing function at a stable equilibrium point.
The second variation of the Hamiltonian has characteristic equation
0 = M-2(1+a®+2(}a?+U')Ye+ 2(at)'a't) X°
+((1+ @) + 42+ a®)(La? + UYL+ 4a'(1 + a?)(al)'t) N2
—4(1 + a?)(1a® + U'Y'eA

and eigenvalues

0,1+a%} (u £ /u? — 16(3a? + U')'t) :

where

=1+ (a+2d'0)* + 4(La® + U'Yt.
If the equilibrium is stable, then (%a2 + U')’ > 0, which implies s« > 0 and all cigenvalues of
D?H, (except the zero cigenvalue, of course) have positive rcal part. Thus, to some extent,
the analysis in the planar case can be expected to generalize to the higher dimensional
case. In future work, we intend to turn attention to the analysis of specific systems, such
as pseudo-rigid bodies (see Lewis and Simo [1989]).
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