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Abstract. In this paper we analyze various control-theoretic aspects of a nonlinear control system
possessing homoclinic or heteroclinic orbits. In particular, we show that for a certain class of
nonlinear control system possessing homoclinic orbits, a control can be found such that the
system exhibits arbitrarily long periods in a neighborhood of the homoclinic. We then apply these
ideas to bursting phenomena in the near wall region of a turbulent boundary layer. Our analysis
is based on a recently developed finite-dimensional model of this region due to Aubry, Holmes,
Lumley, and Stone.

1. Introduction

The goal of this paper is to provide a method for using control theory specifically in certain areas of
fluid dynamics, but also in mechanics rather generally. The technique is based on the control of orbits
near homoclinic or heteroclinic trajectories of dynamical systems.

In fluid dynamics we show how the techniques of modern control theory can be brought to bear
on the model by Aubry et al. (1988) of the turbulent boundary-layer system as a finite-dimensional
dynamical system. With this in mind we sketch both the essence of the modeling procedure of Aubry
et al. and the essentials of the nonliriear control theory that we use. Further, as an illustration of both
the key features of the dynamical system under discussion and the control-theoretic techniques, we
discuss first the control of a simple model problem—the inverted nonlinear pendulum. This model
acts as a bridge between the control theory and the fluid dynamics.

One of our motivations is eventually to understand how to control the dynamics in the near wall
region of a turbulent boundary layer. The dynamics of this region has recently been analyzed by
Aubry et al. (1988). In this paper the instantaneous field is expanded in a basis of eigenfunctions using
the proper orthogonal decomposition of Lumley (1967, 1970, 1981). This expansion turns out to be
particularly suitable for flows in which large coherent structures contain a major fraction of the
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energy. The wall region of a turbulent boundary layer exhibits such structures, called large eddies.
These large eddies undergo intermittent jumps between fixed points. These jumps are called’ bursting
events and are thought to be an important mechanism for the transfer of energy between the inner
and outer layer.

The proper orthogonal decomposition used in conjunction with Fourier analysis and the Galerkln
projection yields a truncated set of ODEs which captures the maximum amount of kinetic energy
among all possible truncations of the same order. Aubry et al. (1988) have examined sets of ODEs of
various orders which appear to capture some of the essential dynamics of the bursting process. .

In particular a model of two complex dimensions or four real dimensions turns out to be very
useful to analyze. While this model is of too low an order for good physical representation, it does
exhibit many of the essential features of the higher-order models. This model has O(2) symmetry and
exhibits asymptotically stable and structurally stable heteroclinic cycles in certain regions of the
parameter space. Further analysis of this system has been carried out by Armbruster et al. (1988). The
key idea is that bursting corresponds to passage close to the heteroclinic cycle, while no bursting
corresponds to remaining close to a given hyperbolic fixed point. Another important ingredient in this
model is the presence of pressure fluctuations in the outer layer which can trigger a bursting event; noise
can be used to model these fluctuations. Such an analysis has been given by Stone and Holmes (1988).

Our main purpose in controlling such a system is to control the frequency of bursting events,
which hopefully can be used to control the amount of turbulence in the boundary layer. We might in
general wish to reduce the frequency of bursting, but in other instances it might be advisable to
encourage a burst or to regularize its period. Possible mechanisms for control are the use of heatable
patcbes on the boundary (combined with hot film sensors) or welts raised by piezoelectric effects by
which we could feed back selected eigenfunctions. (Welts appear more likely to have a singificant
effect on the eigenfunctions.) We also consider classical drag reduction by polymer addition (Kubo
and Lumley, 1980; Lumley and Kubo, 1984; Aubry et al., 1989), which can be viewed from a control
standpoint. These approaches alter the equations and affect our consequent ability to control the
dynamics in rather different ways as we shall see later. :

Our main purpose is to analyze the control of the four-dimensional system discussed above, but we
begin by analyzing some simpler systems. The simplest prototype system with a homoclinic orbit is
the simple pendulum. Thus we begin by considering methods for controlling the inverted pendulum
and in particular for keeping it near its unstable hyperbolic fixed point. More generally we consider
the control of arbitrary n-dimensional systems possessing a homoclinic orbit to a hyperbolic fixed
point. Using the linear dynamics ncar the fixed point we show that such a system in the idealized
situation of no noise and infinite control accuracy can be given an arbitrary period and we give an
explicit method for achieving this. As far as the boundary-layer model is concerned, this corresponds
to arranging an arbitrary length of time between bursts.

We can of course feedback stabilize a system about a fixed point if it is locally controllable there,
and we discuss some standard methods for doing this. However, our general philosophy is that this is
not always possible because it requires too much control energy. Hence we let the hyperbolic point
remain hyperbolic rather than adding so much control that it turns into a stable fixed point.

Another important realistic consideration is noise and we discuss control in the presence of noise
using the model of Stone and Holmes (1988). We show in this situation how feedback control can
increase the expected mean passage time of the system in the presence of noise. In this model we
assume the homoclinic- orbit is asymptotically stable and structurally stable These assumptlons allow
robust control.

We thus assume the noise is reasonably small and/or respects the symmetry of the system, allowing
the homoclinic structure to persist, at least approximately. This means in effect that we assume that
symmetry breaking terms that might lead to horseshoe chaos are small compared with the noise and
control effects. At the same time the control energy is also assumed to be too small to overwhelm the
homoclinic structure.

Finally, we discuss control of the four- d1men31onal model of the wall region of the turbulent
boundary layer with similar considerations in mind. Heatable patches, piezoelectric welts, and polymer
injection are suggested as possible control mechanisms.
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We remark also that Armbruster et al. (1988) have pointed out that structurally stable cycles
will occur in many partial differential equations with translational and reflectional invariance.
This invariance induces O(2) symmetry in the problem. Such stable cycles were found, for exam-
ple, by Jones and .Proctor (1987) in convection models and have also been observed for the
Kuramoto—Sivashinsky equations by Armbruster et al. and Nicolaenko (1986). Thus our tech-

niques may be applicable to ﬂuld systems other than the wall region of the boundary layer discussed
here.

2. Controlling the Period

Our aim in this section is to show how to control the period of a system possessing a homoclinic
orbit under the assumption that there is no noise in the system and that our controls have infinite
accuracy. We relax these assumptions later. More specifically, we show that we can keep the system
near its hyperbolic fixed pomt for an arbitrarily long time by driving it to a suitable point in the
phase space and then letting it evolve under its own free dynamics.

We begin by presenting firstly a discussion of the nonlinear dynamics of a system possessing
a homoclinic orbit and secondly a description of some key ideas from nonlinear control theory.

A prototype system is the nonlinear pendulum whose free dynamics is given by

é+§ﬁn9=0

For convenience we normalize, letting g/¢ = 1. The controlled system is taken to be
6 +sinf=u,

which is a Hamiltonian control system with Hamiltonian
9‘2
H=7—cos0+u9.

The free system has a hyperbolic fixed point at § = z. A slightly more complex (and realistic)
example that we discuss is the inverted pendulum with moving base, where the base is controlled.
This system has a nonhyperbolic fixed point at § = 7.

Consider first (as in Silnikov (1967) and Wiggins (1988)) an ordinary differential equation

Z = F(z), (2.1)

where ze R*™, and F: U —» R**™ is C" (r > 2) on an open set U < R*™ We assume z4 is a hyperbolic
fixed point and that DF(z,) has s eigenvalues with negative real parts and u eigenvalues with positive
real parts. Furthermore, assume there is a homoclinic orbit connecting z, to itself (Recall that a
homoclinic orbit is an orbit from a fixed point to itself, while a heteroclinic orbit links two distinct
points.})

Transforming the fixed point to the origin and utilizing the stable and unstable manifolds as
coordinates in a neighborhood of the saddle point, (2.1) may be transformed to the system

x = Ax + fl(x9 y)a
Yy =By + f2(x, y),

where (x,y)e R x R% A is an s x 5 Jordan block with all diagonal entries having negative real parts,
and B is a u x u block with diagonal entries havmg positive real parts. Here, f; and f, are of second
order and (locally) satisfy

2.2)

10, y) = f5(x,0)=0. (2.3)
Consider the following neighborhood of the origin:
| N ={(x3)e B x RYIx| <& |y| <5 (2.4)

whose boundary is given by the closures of the following sets which give cross sections to the vector
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field (2.2):
C={(x e x Rlxl =21yl <2},

={(x,y) e B* x R||x| <&, |y| = ¢&}.

Note that (2.2) points strictly to the interior of N on C; and strictly to the exterior of N on C}. Let
S¢ and S¥ denote the intersection of the stable manifold with C¢ and the intersection of the unstable
manifold with C?, respectively. Consider the flow in a neighborhood of the origin. The key, as in
Silnikov (1967) and Wiggins (1988), is to divide the time ¢t-map into two parts, one restricted to the
interior of N, which we call P, and the other restricted to the exterior which we call P;. We are
mainly concerned with P, and the corresponding approximate Poincaré map Py, which is the
Poincaré map for the vector field linearized about the origin. Denote the flow generated by (2.2) by

2.5)

@(t, Xg, Yo) = (x{t, X0, Yo V(& X0 Yo))- (2.6)
If (xq, Vo) € CE\SE, then (x,, yo) reaches CP\Sy in a time T = T(xy, yo) that is a solution of the
equation
I¥(T, X0, yo)| = &. 2.7)
Define the map Py: Ci\S; —» G\ S} by

(an yO)H((x(T(xO’ YO), X0s )’o))a y(T(xO’ yO)? X0> J’O))

with T defined by (2.7). Then P, may be defined, and, subject to a technical condition (see Wiggins,
1988), we may define the composition P = P, o P,. The approximate map P§ is given by the map
PL: C3\ S — CP\S? defined by
(x()a yO)H(eATxOs eBTyO)’ ) (28)
where T solves
|eBTy,| = . (2.9)

For our purposes, there are two key results (see Wiggins, 1988) that we need. The first is that near
the origin the system behaves to within an error O(g?) like its linear approximation. More precisely,

Proposition 2.1.
|P, — P5¥| = O(¢*) and |DP,— DP%| = O(s?).

Secondly, the time the system spends in the neighborhood N goes to oo as |ye| — 0. More precisely,
Proposition 2.2. T(x,, yo) = +00 logarithmically as y, — 0.

This follows from (2.9).
We now wish to consider a system of the type given in (2.1) with additional control vector fields.
_We then want to ask when a control u may be found such that the system spends an (arbitrarily long)
prescribed time in a neighborhood of the fixed point.
We begin by considering some basic ideas from nonlinear control theory.: :
We consider the following description of a nonlinear control system (see e.g, Brockett, 1972;
Sussman and Jurdjevic, 1972; Hermann and Krener, 1977):

% = f(x, u), R @10

where x € R, u € Q, a subset of R™, u is bounded and measurable, and fis a C* function.

More generally, we can consider x € M, a C® connected manifold. Here x represents the so-called
“state~-space” of the system, and u represents the input or control variables.

In practice, we may not be able to observe the entire state, and we append to (2.10) an algebraic
output equation y = g(x), y € R', say, where g is C* and where y represents the observed or output
variables. For the purposes of this paper we assume the state is observable, although thlS is not . -
a crucial assumptlon : :
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. Often’ we assume a special form of (2.10), namely that it is affine in the controls. Explicitly, (2.10)
then takes the form '

%= 09+ 3. 1069 e.11)

x € R", where f and the g; are C, and the u; are bounded and measurable.
This is a nonlinear generalization of the well-known linear control system

% = Ax + Buy, (2.12)

x € R", ue R™, where A and B are n x n and n x m matrices, respectively. Such a system is said to be
completely controllable if for any t,, any initial state x(t,) = X, and any final state x,, there exists a
finite time , > t, and a control u(t), t, <t < t,, such that x(t;) = x;. This system can be shown (see,
e.g., Brockett, 1970) to be completely controllable if and only if the n x nm controllability matrix

[B, AB, A%B, ..., A" 'B] (2.13)

has rank n.

Definitions and conditions for controllability are rather more subtle in the nonlinear case and we
give a brief and very incomplete description of some key ideas here.

Consider again (2.10) with x(0) = x, and denote a solution of this system by ¢(x,; u, t). Assume
that this is defined for all ¢t € [0, o).

We make the following definitions (see Sussman and Jurdjevic, 1972). A somewhat different
approach is given in Hermann and Krener (1977). y € R" is said to be attainable from x € R" at time
t > 0 if there exists a u such that ¢(x, u, ) = y. For each x € R", let A(x, t) denote the set of all points
attainable from x at time ¢, and for 0 <t < oo let A(x, 1) = { J,<,;A(x, s) and A(x) = | J;»0A(x, t). The
system is said to be controllable from x if A(x) = R" and controllable if it is controllable from every
x in R". The system is said to have the accessibility property from x if A(x) has nonempty interior and
it has the accessibility property if it has the accessibility property from every x € R". The system has
the strong accessibility property from x if A(x, t) has a nonempty interior for some ¢t > 0 and it has
the strong accessibility property if it has the strong accessibility property from x for every x e M.

A number of results are available on controllability and accessibility for nonlinear systems under
various assumptions. Of interest to us is generalizing the rank condition (2.13) for linear systems.
The affine control system (2.10) is said to satisfy the ad condition if the dimension of %, =
span{g;, [ £, 9.}, [/, [f,9:]],-..,i=1,...,m} equals n for all x in R". Here [f, g] denotes the Lie
bracket of the vector fields f and g, ie., [f, g1 = (0g/0x)f — (0f/0x)g. Also, let & denote the smallest
Lie algebra of vector fields containing f and the g; (that is, & is the smallest set of vector fields
containing f and the g; which is closed under the Lie bracketing operation). Then the control system
(2.10) is said to satisfy the accessibility rank condition if dim . = n. Note that %, ¢ .¢ in general.

We can show that an affine control system of the form (2.10) has the strong accessibility property if
% has dimension n. Intuitively, satisfaction of the accessibility rank condition means that the vector
fields at the given point span the tangent space at that point. Further, suppose the function f in (2.10)
has a fixed point at x = 0. Then we can define the linearized control system about x = 0, X = Ax + Bu,
where here. A = (0F/0x)(0,0) and B = (0F/0u)(0,0) and where F(x,u)= f(x)+ ) ;u;g;(x). Then, if
dim %,(0) = n, this linearized system is controllable.

With these control-theoretic ideas in mind we are ready to state our first result.

Theorem 2.3. Consider the C" (r = 2) affine nonlinear control system given by

i=f@+ Y wlgl), zeR,

where the u; are piecewise continuous scalar functions and f and the g; are C" functions from R" to R".
Assume that the free system z = f(z) has a hyperbolic fixed point at z = z, and that z, has a homoclinic
orbit connecting z to itself. Let £y(x) be given by

"?0 = Span{gi’ [f; gi]) [fa [fs gi]l “ees i= 15 saes m}
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If dim %,(0) = n, then a control u may be found such that the system spends an arbitrarily long time in
a neighborhood N of the fixed point z, after the control force is removed. In particular, if all
trajectories of the free system near the homoclinic orbit are periodic, a control may be found such that
the system exhibits arbitrarily long periods when the control force is removed.

Proof. The proof depends on Propositions 2.1 and 2.2. Choose a neighborhood N of z, as described
above. By Proposition 2.1 we know the system is approximated to O(¢?) by the linearized system
in N. By the condition on %, we know the system is accessible and, in particular, the linearized .
system at z, is controllable. Hence we may find (in fact explicitly—see the following example)
a control that takes the system to a point on C;\S; as described above, choosing the point such that
Yo is as close to zero as we wish. As y, — 0, the time spent in N by the free system goes to co.
An estimate of this time, -accurate to O(¢?) is given by Proposition 2.2. Hence we remove the control
at the desired point on the boundary of N, and then use the free nonlinear dynamics. O

Example 2.4 (The Nonlinear Pendulum). The equation
6 + sin 0 = u(f)

has free dynamics having an orbit homoclinic to the hyperbolic equilibrium point at § = z. The orbits
inside the homoclinic loop are periodic. Denote the linearized system at @ = 7 by % = Ax + Bu. This
system is controllable as a simple check of the rank of the controllability matrix [B, AB] reveals.

Here, the matrices 4 and B are
01 0
A= = .

For the linear system, it is a standard result for controllable systems (see, e.g, Barnett, 1975) that
a control driving the system from state x, to x; in time t, — t, is given by

u(t) = —BT(O)DT(to, YU (8o, 1) [x0 — Dlto, t1)%¢],
where

Ulto, t1) = j 1 ®(to, 1)B(x) BT (1)@ (to, 7) dt

and @ is the transition matrix for the free system.

Example 2.5 (The Inverted Pendulum on a Movable Cart). Here we have an inverted pendulum of
length # and mass m attached by a hinge to a cart with mass M moving in a line (with coordinate s)
and a control u which acts on the cart (Figure 1). The Lagrangian of the free system is

L=%M+ms® + %(ﬂ(pz + 287 cos o) — mgf ¢os ¢

yielding the equations of motion

(M + m)$ + mf cos op — m¢ sin > =0
and
mt2p + mfS cos ¢ — mf sin g — mgf sin @ — V.

U \\/ Figure 1
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Linearizing and making a suitable change of coordinates (s + ¢+ x3) and assuming m/M — 0
'(éeeleakernaak and Sivan, 1972), we get the equations

)31 = x2,
. u

%=
.x.a = X4,

. )
X4 = Z(x3 — X1).

Writing the system as x = Ax + Bu as before, we find that the controllability matrix (2.13) has rank
four and thus the linearized equations are controllable. Regarding the free dynamics, we note that the
full system has a nonhyperbolic fixed point at ¢ = s = 0. However, the free system also has an integral
of motion—the linear momentum (M + m)s + (m¢ cos @)¢@. This enables us to reduce the system to
a one degree of freedom system in the configuration variable ¢. This system does have a hyperbolic
fixed point at ¢ = 0. Hence Theorem 2.4 applies.

The above scheme is clearly not robust in the sense that we would need infinite accuracy to get
infinitely close to the stable mani‘old, and, further, the trajectories are sensitive to outside perturba-
tions. Therefore, a practical controller would be one which drives the system to within a small
distance, say J, of the stable manifold, and, when it senses that the system has moved a certain
distance from the stable and unstable manifolds, it reactivates the control and returns the system to a
point close to the stable manifold. The key is to consider such an analysis when noise is present and
we discuss this topic below. Further, for a realistic analysis we really need the homoclinic orbit to be
structurally stable.

3. Stabilization

If we wish to stabilize the system via feedback—essentially by transforming the hyperbolic point into
a stable fixed point, there are a number of approaches available—see, for example, van der Schaft
(1986). Firstly, recall that a system can be made locally asymptotically stable by state feedback if the
linearized system about the given fixed point is controllable (see, e.g., Jurdjevic and Quinn, 1978). We
have (see van der Schaft, 1986).

Theorem 3.1. Consider the system
X = f(x) + Z u;9:(x), x e R",
i=1

with fixed point x = 0. Let %, = span{g;, [ f, 9,1, [f. [, 9:1], ..., i = 1,..., m}.If dim %,(0)equals n, there
exists a state feedback u = a(x) such that the system can be locally asymptotically stabilized about x = 0.

For Hamiltonian systems, we have a natural candidate for use as a Lyapunov function for ensuring
stability, namely the Hamiltonian. If H has a strict local minimum at (g, p) = (0, 0), the system is
‘already stable. If not, we can try to adjust H via feedback such that this is true.

If we have a Hamiltonian control system where the number of controls and outputs is less than the
number of configuration variables, there are some conditions which need to be satisfied before this
method can be applied (see van der Schaft, 1986). In the case, however, where we have n controls and
n configuration variables, and the system is in the following natural form,

P
s

3.1
. oH (3.1)
Di= — +u;,
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wherei=1,...,nand

H(g,p) =73 Z g% (q@)pip; + V(@)

i, j=1

then this can always be done. Here g¥ is a positive definite metric on R™.

Theorem 3.2. The system (3.1) can be made globally stable about q =0 if (02V/dq; 8q;)(q) is bounded, by
a control of the form

|4
U; = _Q_(O)_kiqi’ i=1..n
0q;

and can be made globally asymptotically stable about q =0 if (0*V/dq; 04;)(q) is bounded by a control
of the form
ov

u; = — — kiq; — ¢;4;. (3.2
0q;

Example 3.3. For the simple pendulum we have the equation
6 + sin 6 = u(t).

If we wish to stabilize about 6 = we choose the control u = —k(0 — =), k> 1. For asymptotic
stability we set u = —k(6 — n) — cb. ‘

An alternative method of stabilization for the inverted pendulum is to apply a vertical oscﬂlatlon at
its base (see Stoker, 1950; Arnold, 1978).
The linearized equation of motion can then be written

e g
0 —= 1))0=0, .
+( /+/p()) (33)
where p(f) is periodic in ¢. Setting (1/¢)p(t) = ecost and —g/f = 5, we have the classical Mathieu
equation

d?e

e + (0 +ecost)f =0. 34)

Then we can show
Theorem 3.4 ([see Stoker, 1950). There are values of ¢ for which (3.2) hasﬁ'} only stable solutions.

Finally, we make some remarks on the energy required for the various types of control we have
discussed. We restrict ourselves to a discussion of the simple pendulum, but the results generalize in
an obvious fashion.

For saddle-point control, we do not stablize the system, but rather, each time there is a perturba-
tion, we bring the system back as close as possible to.the stable manifold. This involves the
expenditure of a certain amount of energy equal to the change in potential energy. This will be
approximately —mg¢ cos 8 where 8 is the displacement from the saddle. For small 0 this is mg£(62/2).

Similarly, using the feedback —k#@, the amount of energy used in driving the system from a distance
6 back to the saddle will be approximately f" k6 d8 = k62/2. On the other hand, to stabilize the
system via feedback, ie., change the saddle point to an elliptic point, we will need a larger k (the
larger k the larger the stability margin) and hence will expand more energy in dealing with each
perturbation.
~ Thus, as remarked earlier, our techniques make it possible in theory to stabilize the two-mode
model of the boundary layer, but we assume that in general this will not be possible as we simply will
not have sufficient control force to achieve this.
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4. Control of the Mean Passage Time in the Presence of Noise for
a System with an Asymptotically Stable Homoclinic Orbit

A situation which appears to be a reasonable model for the dynamics in the near boundary layer is
a system with an asymptotically stable homoclinic orbit which is perturbed by (small) white noise. In
addition, we assume structural stability of the orbit (a property that is due to symmetry considera-
tions). An analysis of the expected‘inean passage time around the fixed point was carried out by Stone
and Holmes (1988).

Consider the system

%= 10+ 3, g x) + w(),

where w(f) is a vector white noise process and 6 is a small parameter. We assume that for
(0, u;) = (0, 0) this system has an asymptotically stable homoclinic orbit to a hyperbolic saddle point p.
As discussed in Stone and Holmes (1988) this can be guaranteed by two properties:

(1) W*(p) = W*(p) where W* and W* are the stable and unstable manifolds of p, respectively, and
(2) A, > A, where the eigenvalues of Df(p) are given by '

A, =Re(d,) = Re(dy) = - = Re(dy) > 0> Re(h) = — 4, > --- > Re(l,).

“The behavior of the general n-dimensional system is captured essentially by the two-dimensional
system

dx = —Ax dt + 0 dw,,
dy = A,ydt + 6 dw, + u,

where w, and w, are zero mean, independent Wiener processes.
With u =0, Stone and Holmes (1988) show that the expected mean passage time t across the
region N defined in (2.4) is given by
1 £
T ~ I—ln <5) + 0(1).

U

Thus, changing u so that i, decreases will increase the passage time. Hence we set u = —ky dt in this
case, where 0 < k < A,,.

The system is not even controllable in this case, but we can control the magnitude of A,. In
general, if the system is controllable we can certainly control the magnitude of the real part of the
largest unstable eigenvalue, and hence increase the expected mean passage time.

5. Two-Mode Model of the Boundary Layer

We now consider the two-mode model of the near wall region of the turbulent boundary layer. As
mentioned in the introduction, the smallest really physical model has three modes, but the two-mode
model captures many of the essential features of the bigger models, and, hopefully, of the true
dynamics. Initially (see Aubry et al, 1988) we assume a three-dimensional flow, approximately
homogeneous in the streamwise and spanwise directions, approximately stationary in t, and in-
homogeneous in the normal direction. An expansion of the random field is then made via the proper
_orthogonal decomposition in the normal direction and which is harmonic orthogonal in the other
two directions. (The flow is assumed to be periodic in these latter two directions.) Substitution in the
Navier—Stokes equations, and use of the Fourier transformation and Galerkin projection yields a set
of nonlinear ordinary differential equations. The minimal reasonable truncation of the model is then
one which has one eigenmode (in the normal direction), one streamwise wavenumber (thus neglecting
streamwise variations), and three spanwise wavenumbers.

The equations for such a model may be found in Aubrey et al. These equations have important -
symmetry properties which are reflected in the O(2) equivariant two-mode “model” for the boundary
layer which we now describe.
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The two-mode model of the wall region of the turbulent boundary layer may be written {see Aubry

et al., 1988; Armbruster et al., 1988) v
Zy = 2q(py + dy1)217 + dy2l22]%) + €137, 2, + 04), (5-12)
2, = 2y(py + dyy 12117 + dysl22?) + €11Z5 + O(4), (5.1b)

where the z; are complex variables and p;, d;, and ¢; are parameters. The vector field here is 0O(2)
equivariant.
Assuming c;,, ¢,, # 0, we can rescale (5.1) to

Zy =72, + 2, (g + g1z + e15]25)%), (5.2a)
Zy = +22 4 z,(1y + ex4z1]? + €5,12,1%), (5.2b)

where e;; = d1/|c11¢12], €12 = dy2/c?2, €21 = day/Ici1¢12), and e,, = d;,/c},. The real Cartesian form
of (5.2) is

Xy =X1X3 + y1¥2 + Xq(py + et + eg73) (53a)
V1 =Xy, — y1Xz + yi(py + eri + e1213) (5:3b)
Xy = £(x} — ¥]) + x5(12e2177 + €3573), (5-3?)
V2= £2x91 + Va(pa + ea17] + €3,73), (5.3d)

where 17 = x? + y2.

We consider here (in rough outline) two mechanisms for implementing control. A more detailed
control mechanism will be formulated as the model develops. We consider primarily control via a
“checkerboard” of heating elements or piezoelectric welts on the boundary. We also consider polymer
addition, a classical drag reduction technique, from a control perspective. Through the use of heating
elements or welts, we assume we can essentially change the magnitude of all eigenvalues via a choice
of a suitable pattern on the checkerboard (feeding back selected eigenfunctions); through sensors we
can monitor the amplitude of the modes, thus allowing feedback. Polymer injection, on the other
hand, changes the magnitude of certain coefficients in the equations. As we see below, this can be
viewed as a type of control, although it is slightly more restrictive.

In Cartesian form, the equations with heating element or piezoelectric controls are thus

X1 = X%y + Y12 + X1 (g + €7 + ep13) +ug, (5.4a)
V1= X1¥2 — Y%y + yi(py + e1rf + egpr3) + U, (5~4b)
Hy = 2] = yi) + Xlppeai 7t + €2277) + 43, (5.40)
Vo= £2x, ¥y + Valty + ex177 + €2573) 4 uy, (5.4d)

where r? = x? + y2.

We are interested in the “—” case, as this is when a heteroclinic cycle exists in certain regions of
the parameter space. In fact we have fixed points at (x,, y;, x5, ¥2) = (0, 0, +(—u,/e;,)** 0) and
(providing no “mixed modes” exist (see Armbruster et al. (1988), i.e., no steady-state solutions with
x; and x, nonzero) we have a heteroclinic cycle connecting these fixed polnts if ey, €5, <0,
€1y + €21 < 2eq;€35)'?, g, 42 >0, and

e 12 Ny \1/2
Hl_uZ“ﬁ_(_ﬁ&) <0<u1—u2 +<—”—2) :
€22 €22 o € €22
. e 12 '
min {20, — | 1y — pp 22 — | ~22 >y — uz——+ ) ,
| €32 €22 €22 €12

then the cycle is locally asymptotically stable.
Now the linearized equations about the fixed points are of the form

If, in addition,

X = Ax + Bu, (5.52)
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where
B ‘ 12
€12 H2
— =+ —= 0 0 0
e — M2 ey & ( ezz) |
12 e .
A= 0 wF(-E) —w2 0 o] (5.5b)
_ €22 €322
, 0 0 —2u, 0
| -0 0 0 0 |

B is the identity matrix, and u = [u,, u,, 43, u,]7. Thus of course the linearized systems are completely
controllable and all our earlier theorems apply.

If we view polymer drag reduction as a control problem, we can control the linear coefficients p, -
and p, and the coefficients ¢;, and ¢, and their equivalents.

We concentrate here on the control of y, and u,. These take the form p; = u} + (1 + «/K)u? where
u? <0, K is a constant, and we have control over the parameter « (see Aubry et al, 1989). In the
region of interest; (1 + «/K) is negative, so we write

!

W= pul — B,

where f() is an adjustable positive constant, representing changes in the value of a.
Then it is clear that the controlled equations with variable a are equivalent to (5.4) with the u;
restricted to be of the form

(5.6)

uy = ~puix,, uy = —puix,, 5.7
u, = —puiy;, uy = —puiy,.
Increasing o is thus equivalent to exercising control as before.
The linearized control system is then also as before except that
Bu = — p diag(uixy, py1, Hixa, 43y2)- (5.8)

While we do not have complete freedom in choosing the u;, we do have negative feedback and the
ability to decrease the magnitude of the largest unstable eigenvalue. This finding is consistent with the
findings of Aubry et al. (1989) regarding the changes in the wall region induced by stretching. There
it was found that a stretched boundary layer corresponded to drag reduction (as observed), and that
in a stretched boundary layer bifurcations occurred at higher values of «, suggesting decreased
stability of the stretched layer, requiring greater « for stabilization. Although « was initially conceived
of as a measure of the loss to unresolved modes, it could be equally well a viscous loss, since the
simplicity of the model cannot distinguish the two (and the way in which the stretching was done
confines this to the turbulent fluid). An increase in viscous loss in the turbulent fluid due to polymers
has been suggested as the mechanism primarily responsible for the stretching of the wall region,
bringing about drag reduction.

6. Concluding Remarks

We have discussed a model that may be useful for the control of turbulence in the wall region of
a turbulent boundary layer, based on the existence of stable heteroclinic or homoclinic cycles. Our
basic aim is to decrease the frequency of bursting events, which correspond to passage close to the
cycle away from a given hyperbolic point. We noted that in general we may not have sufficient
control energy to overwhelm the heteroclinic structure and change a given hyperbolic fixed point to
a stable fixed point. The basic control strategy we have developed for heating element or piezoelectric
welt controls thus consists of

(1) decreasing the magnitude of the largest unstable eigenvalue of the system linearized about the
given hyperbolic point, thus increasing the time the system is expected to remain near this
point, and
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(2) if a perturbation drives the system a sufficiently large distance from the fixed point, returning it
to a point as close as possible to the stable manifold.

We also observed that (1) could be carried out by polymer drag reduction. The finding that for
increasing the expected passage time, classical polymer drag reduction is equivalent to control by
heating patches or piezoelectric control, is an important one, and supports a speculation by Lumley
(Lumley et al., 1988) that such a controlled boundary layer would structurally resemble a polymer-
drag-reduced boundary layer.

We have given explicit strategies for carrying out these procedures, but of course the details will
depend on the specifics of any given problem—the structure of the heating pad controls, the
estimators, and so on. Research on these matters is expected to be carried out in the near future.
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