(W\ Contemporary Mathematics
Volume 97, 1989

Stability Analysis of a Rigid Body with Attached
Geometrically Nonlinear Rod by the
Energy—-Momentum Method *

T. A. POSBERGH {, J. C. Simot &
J. E. MARSDEN ¢

January 30, 1989

Abstract

This paper applies the energy-momentum method to the problem of nonlin-
ear stability of relative equilibria of a rigid body with attached flexible appendage
in a uniformly rotating state. The appendage is modeled as a gecometrically exact
rod which allows for finite bending, shearing and twist in threc dimensions. Ap-

~ plication of the energy-momentum method to this example depends crucially on a
special choice of variables in terms of which the second variation block diagonal-
izes into blocks associated with rigid body modes and internal vibration modes
respectively. The -analysis yields a nonlinear stability result which states that
relative equilibria are nonlinearly stable provided that; (i) the angular velocity is
bounded above by the square root of the minimum cigenvalue of an associated

linear operator and, (ii) the whole assemblage is rotating about the minimum axis
of inertia.

§1. Introduction

This paper discusses the application of the energy-momentum method to the
case of a rotating rigid body with an attached, flexible appendage. The model for
the appendage we have chosen is referred to a a geometrically exact rod model and
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is discussed in detail in SiMo [1985] and SiMo, MARSDEN, & KRISHNAPRASAD
(1988]. Because the formulation satisfies exactly all the invariance requircments
under superposed rigid body motions, exactly captures without simplification
all the dynamic eflects, and places no restrictions on the degree of allowable
deformations, the rod model is said to be geometrically eract. Use of this class
of models avoids the potential for unphysical results which may appear in more
ad-hoc linearized models; scc SiMmo & Vu-Quoc [1988)).

For our stability analysis we use the energy-momentum method, introduced
in SiMo, POSBERGH & MARSDEN [1989]. This method constitutes a systematic
application of the relative equilibrium theorem (sce ARNOLD [1978] or ABRAHAM
& MARsDEN [1978)), and represents an extension of the energy-Casimir method
introduced by ARNOLD [1966) and further developed in HoLM, MARSDEN, RATIU
& WEINSTEIN [1985). The energy-Casimir method was applied to rigid bodies
with flexible attachments by KRISHNAPRASAD & MARSDEN [1987] using rod mod-
els accounting for extension and shear, but precluding bending deformation. The
energy-momentum method was applied to this example in PosBercn & SiMo
{1988].

In contrast to the enecrgy-Casimir methed, for a Hamiltonian system with
symmetry we work directly in the material representation as opposed to the con-
vective (or reduced) representation. Thus, instead of using Casimirs, one employs
directly the momentum map as the conserved quantity The success of the method
relies crucially on the choice of a particular set of variables, introduced in Simo,
PosBerRGH & MARSDEN ([1989], which block diagonalizes the second variation

67H¢. Conceptually, this choice of variables enforces automatically conservation °

of the momentum constraint along with gauge symmetries, and separates the over-
all infinitesimal rigid body modes from the internal vibration modes (including
shear and torsion) of the rod. Further geometric aspects underlying this param-
eterization are examined in the paper of MARSDEN, SiMo, LEWIS & POSBERGH
[1989] in this proceedings.

§2. The Energy-Momentum Method

In this section we give a brief outline of the cnergy-momentum method; for
further details see SiMo, PosBERGH & MARSDEN [1989).

§2A General Formulation and Relative Equilibria

We consider a mechanical system with configuration manifold Q and phase
space P = T*Q, where T°Q is the cotangent bundle. The Hamiltonian H: P — R
corresponds to the total energy of the system. Let Xgy:P — TP denote the
Hamiltonian vector field associated with H; i.e.,

dH(z) -8z = Q(Xy(z),6z), forallze Pandéz€T,P, (2.1)

where Q is the canonical symplectic two-form on P. Iamilton’s equations are
then formulated abstractly as : = Xy(2).
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In addition we have a symmetry group G which acts on P by canonical
transformations, along with the corresponding Lie algebra G. The action of the
group G on Q will be denoted ¥: G x Q — Q. Associated with this action is the
corresponding infinitesimal generator

tolar=3| #ew@)a,  ace. (22)
t=0
The action ¥ on Q induccs, by cotangent lift, a symplectic action on .

The momentum map for the action of G on P is denoted by J: P — G*. We
recall that associated with this G-action, for any € € G onc has a Hamillonian
vector field X (): P — TP with Ilamiltonian function J(£€): P — R defined in
terms of the momentum map by the relation

J(€)(2) = (J(2),€) €€, (2.3)

where (-, -} denotes the pairing between G and G°. The function J(£) is then
given by the standard formula:

J(€)(ag) = (g, €o()), a, € P, (2.4)

which as a special case reproduces the usual linear and angular momentum. We
denote by q an clement in configuration space @, and by p an element in T,Q
the cotangent space for a particular configuration. Thus z:= (q,p) € P.
(m\ Following terminology due to Poincaré, a point z. € P is a relative equilibrium
. if the trajectory of Hamilton’s equations through z, is given by

1)

z(t) = exp[t€] - z., forsome £€g, (2.5)

a condition which states that the dynamic orbit through z. equals the group
orbit through z.. A basic result exploited below is that the relative equilibria of a
mechanical system with Hamiltonian # and momentum map J for the symplectic
action of a Lie group G on the phase space P are the critical points of the energy-
momentum funclional He: P — R defined as

He=H - (J - u., £) (2.6)

where g = J(z.) is the value of the momentum map at the sought relative
cquilibrium. In mechanical terms this result, known as the relative equilibrium
theorem, provides a variational characterization of the relative equilibrium as
the stationary point of the energy (Hamiltonian) subject to the side constraint
of constant momentum. Within the context of this constrained optimization
problem, formal stability of a relative equilibria is then concluded by examining
the definiteness of the sccond variation §2/7¢ restricted to the subspace defined
by the side constraint J(z.) — sz, = 0 modulo neutral directions due to group
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invariance. This subspace is isomorphic to the quotient space

S = ker[T,.J(zc)] T:,(G;u * zt)’

where Gy, - z. denotes the orbit of the (isotropy) subgroup G, of G that leaves
#. invariant (under the coadjoint action of G on G*), and T: (G, - z.) is the

(2.7)

Box 2.1. The Energy-Momentum Mecthod

and £ € G such that
dHe(z.)- 8z =0, and J(z.)—pt. =0,
for all 6z € T, P (No restrictions placed on &z at this stage).

space S C T;_P such that
i. dJ(€)(z.) -6z =0for all §z €.

tion 8z € T, P satisfying i. is uniquely written as

6z =v+ xp(2.),
N —

tangent lo orbit

for some v € S and x € G,., (so that xp(z.) € T; (Gy. - 2¢))-
3. Test for definiteness of the second variation §2Hg on S; i.e.

§*He(z.) - (v,v) > 0,

for all v € §. Definiteness implies formal stability of z, € P.

1. (First variation) Construct He = H —[J(€)—(pte,€)] and find 2, € P

2. (Admissible variations for second variation {est) Choose a linear sub-

ii. S complements T; (G, - z.) in [kerdJ(£)(z.)); i.e., every varia-

Boz 2.1. Procedurc for Stability Analysis

tangent space al z, to this orbit. The criterion for formal stability then takes the

following form

ze € P formally stable & &2 H(z.)-(62,62z) >0 for 6z € S.

Below, in equation (2.27) we will show how Lo specifically clioose S.

(2.8)

In this paper, we apply this method to the stabiliLy analysis of relative cqui-
libria of a uniformly rotating rigid body coupled to a rod. For this problem

-~
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G = SO(3) and G € so(3) = R3. Morcover, we have
Gy, = {explté] € SO(3) | L € R},
Gu. = {€ €R with € x p. = 0}.

That is, G, is the group of rotations about £, and G,,_ is the line along £ (equiv-
alently, the one dimensional space of infinitesimal rotations about ). Note that

dim([G, (z.)] = 1.

(2.9)

To define the constraint subspace & C T,_JF, we first will need to cnforce
the condition i in Box 2.1, i.e., TJ(z.)- 6z = 0, for any (z.;82) € ker[T}_J(z.)].
This condition places three restrictions on the variations in T, P. The addilional
conslraint ii in Box 2.1 that variations in ker[T,_ J(z.)] be taken modulo the
one dimensional subspace G, (z.) introduces another restriction and leads to the
dimension count

codim(S) = 4. (2.10)

To perlorm the second variation test in Box 2.1 we introduce a decomposition
of the of the constraint subspace S of the form

S = Sric ® SInT (2.11)

which results in a block diagonal structure of the second variation of the encrgy-
momentum functional H restricted to S,

2 x 2 rigid 0
2 body block
e s - Internal vibration | | - (2.12)
xS 0
block

We outline below the basic steps involved in the construction of this decomposition
following the construction given in SiMo, POSBERGH & MARSDEN [1989]. We
direct the reader to this later reference for further details. Abstract and geometric
aspects underlying this construction are examined in MARSDEN, SiMo, LEwis &
PosBERGH [1989].

§2B The Block Diagonalization Theorem and the Second Variation Test

Assume a [lamiltonian function H of the form i = V 4+ K, where V:Q — R
is the potential energy, and K: P — R is the kinetic cnergy of thie system. We
further assume that K defines on @ an inner product denoted by

() TQxTQ —R. (213)
For instance, for finite dimensional Hamiltonian systems, we have
K = 4(n'.p")y = $rig (2)p;. (2.14)

where g(q) = gijdg' ® d¢ is a given Riemannian metric on Q.
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Step 1. Reformulation of the energy-momentum functional. Define a modi-
fied potential V¢:Q — R by the expression

Ve(q):= V(q) + Le(q), }
Le(a):= —3(€q(a),€o(@))s-

It can be shown that the critical points of Ve are preciscly the relative equilibrium
configurations q. € Q (see MARSDEN, SiMo, LEwIs & POSBERGH (1989]). Ac-

cordingly, if §V, /6q denotes Lhe functional derivative of V¢ defined in the standard
fashion as

(2.15)

6V
dVe(q) - b6g = (6"'6_;)' forallq € Q, (2.16)
we have the critical point condition

8V

F; =0, (2.17)
q l¢g.)

For stationary rotations about £ € G, the term L¢ gives the potential energy
associated with the centrifugal force.

Next, define a potential function K¢: P — R by the expression
Ke(z):= §|lp - FL(£Q(q))||:_., z=(q,p)€P, (2.18)
where FL:TQ — P is the Legendre transformation and || - lg-+ is the norm

induced by (2.14) on T;Q. It is evident that K¢ also has critical points at the
relative equilibria z, € P. Furthermore, we have

He = Ve + K+ (e, ). (2.19)

Finally, observe that the second variations of Ve and K¢ make intrinsic sensc at
a relative equilibrium z, € P.

Step 2. The tangent space of admissible variations for Ve. Recall that
G acts on Q by isomelries, and that V is left inveriant under the full group
G at any configuration q € @ (for G = SO(3) this is Lhe condition of frame
indifference). The term Lg, on the other hand, is left invariant under the full G
only at a relative equilibrium q. € Q (i.c., the Lie derivative of V¢ in the direction
of any g evaluated at g, vanishes). Thus, in general, L¢ and consequently V, is
invariant only under the action of the isotropy subgroup G,, C G. Let Gu. CG
be the corresponding Lie subalgebra; i.e.,

Gu.:={C€Gad, (()=0}). (2.20)

The space of admissible variations V C T,Q for V¢ at g, is then the tangent space
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to the orbit space Q/G,,, which can be realized as

V= T,Q/T,(G,., c2¢) = {8q € T,Q | (§9.Co(@))g =0, C€G,.). | (221)

Step 3. Split of V: Block-diagonalization of V¢. Construct a decomposition
of V,

V = Vric ® VinT, (2.22)

into infinitesimal rigid body variations, and ‘deformation’ variations as follows.

Let g,t C G be the g-dependent orthogonal complement of G,, in the kinetic
energy inner product; i.e.,

Gu:={n€G | (ng(a).Cola))s =0, C €6, ), (2.23)

so that G = G, ®G. Recall that a superposed rigid body variation is of the
form ng(q) € T,Q, with n € G. Thus, in view of (2.21) and (2.22) we set

Vrie:= {ng(g.) €T, QIn€GL} C V. (2.24)

Note that the requircment 5 € g,t furnishes the condition which ensures that
indeed Vgp;e C V.

To construct Vynr, recall that V is G-left invariant whereas V; is only Gy,
left invariant. However, V; is infinitesimally G invariant, but the body force 6V [6q

need not be. The quantity capturing the lack of invariance of Ve /5q under G/G
is

He

Ve 8L¢
‘Cvo(qc)ﬁ(%) = ‘Cno(h)ﬁ('h)

i d
"7 de

6L
_ Vosteal (G2 (Yomtan(@) ) foraline g,
(2.25)

where L£,b denotes the Lie derivative of b in the direction a. We define VinT CV
by the condition

6L
Vint:={8q €V | (69.1:.,,(,,)6—;(%)), =0, forn €GL }. (2.26)

Note that the number of constraints in (2.26) equals dim[G;}. ] = dim[Vas¢). Fur-
thermore, by construction Vinr N Vgre = {0} so that (2.22) holds.
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Step 4. Split of S: Block-diagonalization of He. Conditions i and ii in Box
2.1 lead to the following concrete realization of S as a (constrained) subspace of
T, P:

S:={62=(8q,6p) € T. . P|T: J(z,)-6z=0,and g€V, (€6, }. (2.27)

The split (2.22) then induces a split S = Spre ® Syt via the Legendre trans-
formation as lollows. Sp;g will now be identified with the tangent space at z. of
superposed G/G . -motions on motions starting at z.. (For G = S50(3), these arc
superposed infinitesimal rigid body motions modulo motions about te).

Let t — 2(t) = (q(t),p(t)) € P be a motion starting at z(t)|s=0 = z..
Consider a superposed G/G,,.-motion which, by definition, is given by

gt (t) = ¥y (a(t)),
4 (2.28)
P*(t) = FL(Z ¥ (a(0)),

where t +— g(t) is a motion in G/G,,. Here ¥ is the action induced by g(t) on
Q. The tangent space at z, € P to all superposed G/G, -motions is obtained
by linearizing (2.28) at ¢ = 0 as follows. Consider the one paramcter family of
G/Gu,-motions given, for £ — n(t) € GL, by

€ — g{¢,t):= explen(t)] € G/G,.,. (2.29)
Then define Az = (Aq, Ap) € T;, P by the expressions

d
ag=%| Vontan(e@®)]  =nglan), (2:30)
=0 t=
so that Aq € Vpsg, and
d d
Ap:= 7 £=OFL (d—t\Il,xp[m(.)](q(t))) . (2.31)

It can be shown that Az = (Ag, Ap) given by formulae (2.30) and (2.31) actu-
ally lies in T, P/T, (G,, - z¢). Since Vrig C V it follows from (2.27) that the
restriction to ker[T; J(z.)] completes the construction of Spsg; i.e.,

Snrc:= {Az = (Aq, Ap) | T, J(z.)- Az =0}). (2.32)

One can show that Sgse defined by (2.32) is parametrized solely in terms of
elements i € G ; hence,

dim[Sar¢] = dim[Vr;¢] = dim{GL ). (2.33)
Finally, we define Syt by setting

Sinr:= {6z = (8q,6p) € S| 6q € VinT }. (2.34)

/ﬂm\
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One can easily show that Spre N Sri¢ = {0} so that one indeed has
S = Sric ® SInT. (2.35)
With this construction in hand we have the following basic result

The block-diagonalization theorem. Let z. = (q.,p.) € P be a relative

equilibrium. Further, let Vrie,Vint C V and Spic,SinT C S be constructed
as above. Then

i 8%Vi(g) - (mlae). 6) =0, (2.360)

ii.  6%Ke(z.)- (Az,62) =0, (2.36%)

for all no(q,) € Vrig, 69 € VinT and Az € Sprg, 62 € SinT. Consequently, in
view of (2.19) we also have

iii.  6%He(ze) - (Az,62) =0. (2.36¢)

|

Remarks

1. The condition §?He(z,)|spioxSmc > 0 leads to stability requirements
(fm\that generalize the classical stability conditions for a rigid body in stationary
rotation.

2. From expression (2.18) and the fact that at a relative equilibrium one has

Pe = FL(EQ(Q:))l (237)
it is easily concluded that

621&(:‘)1 >0. (2.38)
SiNT XSINT
Consequently, one has the estimate

62H£(Z¢)

> 6*Ve(qe) (2.39)

Vint XVinr
Thus, positive definiteness of §2Ve(qe)lv,rxvinr ensures positive definiteness of
62H€(z¢)|51m><51~1"

3. The proof of the block-diagonalization result (2.36a) follows from the
identity

SinTXSINT

(89, Vyata) 38y = dVe(ae) - (g(4e), 69), (2.40)

the defining condition in (2.26), and relation (2.25). W
With the aid of the block diagonalization theorem the second variation test
for formal stability in Box 2.1 takes a remakably simple form: Formal stability of

@\
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2 = (gc, pe) is implied by the conditions

i. 62H€(Z¢) > 01

SnpiaxSric (241)

ii. 62"5(‘1:) > 0.

VinTXVint

Condition ii requires that the lowest eigenvalue of §2V;(z.) restricted to Vinr be
positive. IL can be shown (sec SiMo, POSBERGH & MARSDEN [1989]) that this
condition is in turn implied by the requirement that |¢] be less that the lowest
natural frequency of the system at the relative equilibrium configuration ¢, € Q.

§3. The Rigid Body

In this section we outline the notation and mechanical setup for the rigid
body. For a more complete discussion we refer to ABRAHAM & MARSDEN [1978)
or ARNOLD [1978]. Most of the concepts and notation will be used again for
the geometrically exact rod in the next section. For an application of the energy

momentum method to the rigid body alone see SiMo, POSBERGH & MARSDEN
(1989].

§3A. Notation for the Rotation Group

The rotation group SO(3) consists of all orthogonal lincar transformations
of Euclidean three space to itself which have determinant one. Its Lic algebra,
denoted so(3) consists of all 3 x 3 skew matrices, which we identify with R3 by
the isomorphism “:R3 — s0(3) defined by

) 0 -0 Q2
Q0= o0 -, (3.1)
-0 Q' o

where @ = (2!, Q2, Q3). One checks that for any vector r, 2r = €2 x r and,
10 — 6 = (2 x r)". These give the usual identification of the Lie algebra so(3)
with R3 and the Lie algebra bracket with the cross product of vectors.

Given A € SO(3), let 94 denote an element of the tangent space to SO(3)
at A. Since SO(3) is a submanifold of GL(3), the general lincar group, we can
identify 5 with a 3 x 3 matrix, which we denote with the same letter. Linearizing
the defining (submersive) condition AAT =1, gives

AdT +5,AT =0, (3.2)

which defines TASO(3). We can identify TASO(3) with so(3) by the following
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isomorphism: Given 8 € s0(3) and A € SO(3) we define (A,6) — 4 € TASO(3)
through right translations by setting

Oa:=TeRp -0 2 (A,0A). (3.2b)

Thus 84 is the right invariant cxlension of 9.

(v0, Ao)

~ o

Often, the base point is omitted and with an abuse in notation we write 6A
for 64.

The dual of the Lie algebra so(3) is identified with R® via the standard dot
product:

Figure 3.1. Rigid Body

x-0= %tl‘[ﬁ"ré]. 3.3
This extends to the left-invarient pairing on T SO(3) given by

(‘l'i'A,éA) = %tr[‘i\'{é/\] = -;-tr[ir'ré] =7n.0. (34)

We shall, thereby, write elements of so(3)* as # with # € R® and elements of
TxSO(3) in spatial representation as

#a = (A, ®A). (3.5)

§3B. Rigid Body Dynamics

In general, any configuration of the rigid body is described by a position,
o € R, and an orientation, Ag € SO(3) in ambicnt space (sce Figure 3.1).
Thus, we let

Co:= {®o: = (0, Ao) € R* x SO(3)} (3.6)
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be the configuration manifold for the rigid body. Associated with this configura-

tion manifold we have the collection of tangent spaces T3,Co for B¢ € Cp defined
as

T§°c°:= {Vq.o: = (vV’O":’AO) € R3 x TAOSO(:;)} (37)

The phase space for the rigid body is the cotangent bundle T°Cy =
{U*uGCoT;,,CD} where

T3,Co: = {P2o: = (Pyor 7A,) € R® x T3 SO(3)}. (3.8)

The tangent space T4,Co and the colangent space T3,Co are in duality
through the pairing given by

(v%, pq.o) = Py - Vg + -%tr(ﬁ'xotb/\o). (3.9)

The Hamiltonian is the mapping H: P — R corresponding to the kinectic
energy of a free rigid body. Thus

H = 4w - Ip~ g + M5 Ino|. (3.10)

where o is the spatial angular momentum vector, pp is the spatial linear mo-
mentum vector, Mp is the mass of the rigid body and Ig:= AoJpAT is the time
dependent inertia tensor (in spatial coordinates) and Jg is the constant inertia
dyadic given by

™

Ip= /B pres (X)IXIP1 - X ® X] X (3.11)

Here, B C R3 is the reference configuration of the rigid body and p,.y : B — R
the reference density.

§4. Geometrically Exact Rod Models

In this section we outline the geometrically exact rod model used in this
paper. For a more complete discussion sce SiMo [1985). For application of the
energy-momentum method to rods see SiMo, POSBERGH & MARSDEN [1989).

§4A. Kinemalic Idcalization. Canonical Phase Space

We assumne that the placement in R? at time ¢ of a rod-like body is defined
as the set

2
Su={zeR® |z = (S, 1) + ZE"ta(S,t); where0 < S < Land (61,69 ¢ A},

o=1

(4.1)
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where A C R? is a given compact set. The map : [0, L] — R® given by ((S) =
(S,t) defines the position at time ¢ € Ry of a curve referred to as the line of
ceniroids. The vector fields £4(S5,t), a = 1,2, are the director fields which in the
special (restricted) theory of Cosserat rods, are subject to the constraints

lIta(S,t)|| = 1, a=1,2, and §(S,1)-8(S,t)=0. (4.2)

In addition, the admissible motions are required to satisfly the condition
t3(S,t) - -a%.-tp(S,t) >0, where t3(S,0):=4(S, 1) x 82(S,t) 0. (4.3)

We refer to S;(S):= {= € R¥|[z — ©(S,1)] - t3(S,t) = 0} as the placement of a
cross-section of the rod at time {. Condition (4.3) limits the amount of shearing
experienced by each cross-section.

Consequently, at cach time t € Ry and § € [0, L}, we have an orthogonal
Jrame {t,(S,l)}1=1.g.3 referred Lo as a director frame in Lhe sequel. Given any
fized (inertial) frame { E;(S,1)}1=1,2,3 for example, the standard basis in R3, there

is a unique orthogonal transformation A,: [0, L] ~ SO(3), defined for each time ¢
such that

t1(S,t) = A(S,t)E(S,1), (1=1,2,3), Sefo,L], (4.4)

where A(S,?) = A((S) for t € R,..
Thus, the rod is described by a curve with values in the special orthogonal

group which at each point orient the director frame. Abstractly, this latter view
leads to the configuration manifold

:={® =(p,A) :[0,L] = R® x SO(3)}, (4.5)

suitably restricted by prescribed boundary conditions to be specificd below. A
motion is a curve of configurations t — &, = (¢, A() € C. Associated with any
such motion, there is a sequence of placements S; C R3 of a physical body defined
by (4.1).

Associated with the configuration manifold one has the collection of tangent
spaces T4.C for ® € C, defined as

TeC:= {va = (vy,04):[0, L] — R® x TASO(3)}, (4.6)
where, in accordance with the earlier notation, the tangent field S € [0,L} —
WA(S) € Ta(s)SO(3) admits the following right realization:

Given @:[0, L) ~ s0(3), set

WA(S): = (A(S),w(S)A(S)), for Se[o,L] (4.7)
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We refer to the right realization as spatial representation. Following contin-
uum mechanics conventions we have used lowercase letters for the representalion.

The canonical phase space for our geometrically exact rod model is the cotan-
gent bundle T°C:= {{Ugee TiC}, whete

T3C:= {ps = (py,7a): [0,L] - R®* x TAS0(3)}. (4.8)
As above, one also has the right representation
#a(5): = (A(S), #(S)A(S)), (4.9)

for all S € [0, L), #:[0, L] — s0(3)". Finally, we recall (see SiMmo, MARSDEN &
KRisiNAPRASAD [1988]) that for pure displacement boundary conditions TsC and
T&C are in dualily through the standard L pairing

L
(Vo.ps):= / [Po(S) - vp(S)mA(S), Ba(S))] dS. (4.10)

where (7A(S),04(S)) is defined analogously to the rigid body casc.
More generally, definition (4.10) nceds to be modified by appending addi-
tional boundary terms to accommodate (natural) stress free boundary conditions.
As a function on the phase space P = T*C, the kinelic energy K:P —- R
takes the form

L
K:/ Pi'p-p+x-I"'x)dS (4.11)
0

L
=/ [p3lp-p+ - AJ-1Ax)dS, (4.12)
(1]

where p and = are the linear and angular velocity respectively, ps is the mass
per unit length of the rod, and

I=AJAT, I= / €°6°presbapla — Eo ® Ep]dA, (4.13)
A

where prcs is the density in the reference configuration. llere £ are the integra-
tion variables, such that £3 € [0, L), and (¢!,£2) € Q.

The potential energy V as a function on P = T*C is expressed in terms of a
stored energy function ¥:R3 x R® — R as

L
v =/ Y(AT (@ - 13),ATw) dS, a:= A'AT, (4.11)
0

where ‘ = %. The spatial strains are v = ¢’ — t3 and w. When the rod is

deformed the potential energy gives rise to internal stress resultants defined as

oy a¢

= = = —. 15

" " (4.15)

Consequently, the Hamiltonian //: T°C — R is givenas fl = K 4+ V.
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(po. 40) = (p(8), A(SD)]

Rigid Body - =0

(wU:Aﬁ)

(¢, A)

#(S)

Geometrically Ezact Rod D

E,

Figure 5.1. Rigid Body With Attached Rod
§5. Coupled Rigid Body — Geometrically Exact Rod

In this section we consider the stability analysis of the relative equilibria for
a coupled rigid body and flexible appendage modeled as a fully nonlinear geo-
metrically exact rod. It appears that this development represents one of the first
examples of a rigorous nonlinear stability analysis of a realistic, fully nonlinear
coupled structural system. The basic configuration is illustrated in figure 5.1. We
assume the base of the rod is fixed at a point located a distance rq from the cen-
ter of mass of the rigid body. We model this configuration by imposing suitable
boundary conditions on the rigid body and geometrically exact rod.

§5A. Boundary Conditions

For the rigid body with the attached, flexible rod we require that

wo(t) + ro(l) = (S, 1)

; Ao(t) = A(S, 1) (5.1)
5=0 s=0

For a rigid body clamped to the base of the rod we also require that the linear
and angular velocities match; i.e.,

et+wexrg=¢ 3 Wy = w
S§=0 §$=0

These boundary conditions impose lurtlicr conditions on the admissible variations:

(5.2)
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Lemma §.1. For the rigid body coupled to a geometrically exact rod, let

(640,66p) € Ty, Po and (6¢,88) € Ty P. Then, the variations of the config-
uration satisly the constraints

Spo(t) + 66a(t) x 7o(t) = 6(S, 1) ; 600(t) = 66(S,1t) , (5.3)
$=0 $=0
and the variations in angular momentum satisfy the constraint
I3 (60 + mo x 665) = I-'(67 + = x 66) (5.)
S5=0

Proof: Conditions (5.3) follow by direct computation while conditions (5.4) follow
by direct computation and application of the Legendre transformation (5.2). W

We make the assumption that the tip of the rod is stress free. However, at
the basc of the rod

n(S,t) = nyg; m(8S,t)

S=0

= my, (55)
S5=0

corresponding to the force and moment balance at the boundary.

§5B. Tangent and Cotangent Spaces: Rigid Body and Rod

We now outline the appropriate configuration space and the associated tan-
gent bundle and phase space for the problem of a rigid body fixed to one end of
a geometrically exact rod and free to move in space.

We set ®o = (0, Ag), € = (v, A) and define the configuration manifold of
the rigid body with attached rod as

Q = {q:= (80, 8) € Co x C | B(Bo) = (S)

}. (5.6)

§=0

where B8(®0) = (o + 70, Ao). Furthermore, we let §:= (o, %) where &o =
(‘lbon tbOAD)n and & = (‘P» tbA)'

In view of lemma 5.1 , the tangent bundle associated with this configuration
space is given by

TQ = {(7:9) | 9 € Q.B(%0) = 8| } (5.7)

§$=0

where ﬁ(‘l’o) = ((po + wo X i'o,‘u-}vo).
Application of the Legendre transformation to (5.7) with p = (Pg, P) then
yields the phase space

P:=T'Q={(e:p) |9 € Q, pe FLTQ}. (5.8)

where FL: TQ — T°Q denotes the Legendre transformation. Elements of the
phase space will be denoted as z := (q,p) € P.

ﬂ
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§5C. Hamiltonian and Momentum Maps

As a [unction on P, the kinetic cnergy in material representation K: P — R
takes the form

L
K=3iMz'po-po+ %IB‘WO"TO'*-/ a'p-p+=-I"'x)dS.  (59)
0

Here K is the sum of the kinetic encrgy of the rigid body, and that of the geo-
metrically exact rod.

The potential energy as a function on P = T*Q is the same as for the rod
and is expressed in terms of a stored energy function ¢:R3 x R3 — R as

L
V= /o V(AT (o' — t3),ATw) dS, = A'AT. (5.10)

Note that the stored energy function depends on the configuration of the rod
alone. More generally it may also depend on the configuration of the rigid body.
This would be the case, for example, were the rigid body attached to the rod by
an elastic hinge. Again, the Hamiltonian is givenas H = K + V.

Next we turn our attention to the invariance properties of H under group
actions. We first compute the momentum maps corresponding to the group of
rotations and translations.

We have the following group invariance properties.

i. Left SO(3)-Invariance. We note that the reduced expression for the stored
energy function ¢ appearing in (5.10) is consiructed precisely to satisfy this in-

variance property. Thus G = SO(3), Q as defined in (5.6), and G = s0(3), so
that

T1(A, (o, Ao, 0, A)): = (Ao, Aho, Ap, AA), for all A € SO(3), (5.11)

is the action induced by SO(3) on Q. Given any £ € so(3), the infinitesimal
generator is

. d . - . -
€al(wo, Ao, A)) = | (exp(l€)wo, exp(t€)Ao, exp(L€)ep, exp(t£)A)
t=0
= (€wo.€Aa.Ep,EA). (5.12)

From the relation {Ji(ag), &) = J1(€)(ay) there follows

L
J1(Ppor TAgr Por TA): = o + o X Po +/ (m 4+ x p)dS. (5.13)
o
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ii. R3-translational invariance. The reduced expressions for the stored energy
function ¥ in (4.14) is also invariant under R3-translations. Conscquently, G =
R%, G =R, and Q is as defined in (5.6) so that

(e, (o, Ao, 0, A)):= (o + ¢, Ag, ¢ + ¢, A), for all c € RS, (5.14)

is the action induced by R® on Q. Given € € R?, the infinitesimal generator is

d
fQ(‘PO. AO' ‘p!A) = '&_t' (‘Pﬂ + t£) AO:‘P + tf,A) = (6!0' f- 0)' (5'15)
t=0

Again, we use (Ja(ag), &) = J2(€)(a,) the corresponding momentum map

Jo: P = R as

L
Jz(pWO,"errpqh “A): =Jo + / Pds- (5'16)
)

The first step of the energy-momentum method then requires the construction of
the energy-momentum functional which in the present context takes the form

Heu=K+V —(J) — p., €)= (J2 —v,,u)

= Veu + Keu + (Be,€) + (ve, u), (5.17a)
where
Vew =V = 4 Male x g+ ul? + 16 ¢
L L
+f pall€ x ‘P+u||2dS+/ I¢ .5ds}, (5.175)
0 0
and

1 L _1 1
Keu = %{IIMB "Pa = MG(€ x o+ u)|’ + |IX5% w0 — IZE|

L _i 1 L 1 1
+/ |lp42p—p§(£xzp+u)||2ds+/ |]I'27r—12£||2d3}.
[} [+
(5.17¢)
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§5D. Energy-momenium funclional: First Variation
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As pointed out in §2, the computation of the relative cquilibria exploits the
crucial fact that relative equilibria are critical points of the energy-momentum

functional. We have the following result

Proposition 5.2. (First variation of H¢ ). The Euler-Lagrange equations asso-

ciated with the critical points of Hg , are

Rigid Body: Flexible Appendage:
Mg'poe =€ X 0o, +u, Pa'Pe =€ X . +u,
Igemoe =&, Iime = ¢,
€ X po,c =m0, € x p. = ng,

- -1 —_ ’ !
IB'leWO.e X Toe =Moe+Poe X Noge. L Te X Te =M+ o, X 12
where ng, and g are as defined in (5.5), and n, and 1 are as defined

Proof: Follows by a direct computation of

6H£.u = 6Vf." + 61{5.“‘
From (5.17b) we find
WVeu=08V —Mp(Expo+u)-£xbpp—1Ip€xE-86

L L
—/ pA{xzp-&u)-(x&pdS—/ 1€ x €.604dS;
o 0

whereas from (5.17¢) we obtain
§Kew = M3' (0o — My (€ x wo + u)) - (§p0 — My(€ x 6p0))
+ (Ig'wa x mo + In€ x ) - 660 + (13" wo — €) - 8o
+ /OL Pa (P —palx o +u)) (6p—pa(€ x 6p))dS

L
+/ (I 'exwc+IEx€)- 6604+ (1 "'w~¢) -6ndS
(]

3

> (5.18)

7

in (4.15).

(5.19a)

(5.196)

. (5.19¢)

Furthermore, for 6V aflter integration by parts and using (5.3) we obtain the result

that
8V = —60q - (mo + 79 X 1) — 8¢pp - N0

L
+/ [—(m' + ¢’ x n). 860 —n'.5p)]dS.
0

(5.20)
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By standard arguments in the calculus of variations we conclude that the
stationarity of the first variation requires conditions (5.18) to hold. M

We note that the relative equilibrium conditions (5.18) are precisely those
one would expect to obtain by a ‘bare hands’ computation using the definition of
a relative equilibrium and the the laws of motion. These results are of course in
complete agreement with those obtained by the relative equilibrium theorem.

The following theorem describes several properties of a relative equilibrium
of the rod.

Theorem 5.3. At a relative equilibrium configuration of the rigid body with
attached, geometrically exact rod, the following conditions hold.
i. The spatial angular velocity field is constant for all S € {0,L]; i.e.,

We: = [A.AT] = constant, (5.21)

so that
A(S, 1) = exp[tw.])Ao(S). (5.22)

ii. The center of mass of the rod, defined by t +— 10 € R® where

1 L
w8 = 7 Mognc+ [ palS)edlS.1)dS)
(1]

L (5.23)
M: = Mp +/ pA(S)dS,
0
undergoes uniform motion with constant velocity
0 1 t 0
vei=7r(po+ | p(S)dS)=u+&xrl. (5.24)
0

iii. The fixed spatial rotation axis € € R is an eigenvector of the extended inertia
dyadic relative to the center of mass; i.e.,

¢ = ¢, (5.25)

where we define
I, = o + M[[[r2}?15 - r2 @ rQ)
Bw: = Iy + Mp[lleolf*1s - po ® ®a)) (5.20)

L
+ / (I+ palllwoll*13 ~ o ® wa]) dS.
()

1v. The total linear and angular momentum at a relative equilibrium satis{y the
condition

Exp.+uxeé, =0. (5.27)
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Proof: seec Simo, PosBErGH & MARSDEN [1989)]. |

Recall the first variation (5.20). If we set u = 0 (corresponding to a reduction
to center of mass) then the computation of the second variation is straight forward.
Thus, for §2H¢(z.) on TP at cquilibrium we have

62 He(z.) - (62,Az2) = 62Ve(q.) - (69, Aq) + 62 K¢(z.) - (62, Az)
= (611’[) + mo,e X 690) . IEL(A‘H‘Q + 7o, X Aen)
+ 88 - [6 X Ay + o, X (f X Agg)] —émqg - (f X AGO)
— 8o Apo x £+ 8p-[Mg'Apa— € x Ay

L
+/ (67 + 7. x 60) - I7Y(Am + 7, x A8)
0

+6860-[Ex Anr+mx (€ x AB)] - 6n. (€ x AG)

—bp-ApxE+6p-[p;'Ap—€ x Ap] dS +6V(q.)
(5.28)

Subsegtl?ntly, we will set Az € Spig. Elements in Sgy¢ are of the form Az =
(Agq, Ap), where Aq = (Ao, Ay, Ap, AB) is given by

Awpg =10 X po; Ap =X p; (5.29a)
(m Ay =1, A8 =1, )
| and Ap = (Apo, Amg, Ap, AT) is_given by
Apo = Mp( x v+ 1 X po; Ap=palxp+nxp,; (5.295)
Awy=1Ip(+ 1 x mq, An=I(+nx x, )

for n,{ € R?
To perform the second variation test we will need the following result.

Lemma 5.4. Let Aq € Vrig, and let g. € Q be a configuration in relative
equilibrium. Then, in general §2V(q.) # 0; in fact for §2°V(q.) : Vriec x TQ — R
we find

§°V(q.)(Aq,8q) = (€ X po,.) x Spg -1+ (€ x 70,.) X 665 -

L
—-/o [(fxpc)X6¢P-17+(€x1r,)x69~u]dS. (5.30)

Proof: Follows by a direct calculation involving integration by parts. For details
see SIMO, PosBERGH & MARrspeN [1989). I
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§85E. The second variation of the energy-momenium functional

For 82H¢(z.) : TP x Sprc — R from (5.28), (5.29) and (5.30) we have

8 He(z.)=¢- {5'"0 + ®o,e X 889 + wo,. X §pa + po,. X Spg
+1p(660 x £} 4+ € x 1566,
L
+/ [61r+7r, X80+ . X p+pe X 8¢p
0

+1.(660 x £) + £ x 1.88] dS}
L
-((x¢&)- {13600 + Mpwo, X §¢o +/ [1.60 + paw. x §¢) dS}
0
+(nx§)- {51"0 +8po,e X Po,e + Po,e X po,c
L
+/ [67 + 6 x pe + . x 61)] dS} (5.31)
0
We can now state the following Corollary in the case of a geometrically exact

rod attached to a rigid body.

Corollary 5.5. At a relative equilibrium z, € P, for any Az € Spic and §z €
SinT we have

62He(z)(Az,62) = 0. (5.32)

so that, restricted to § C T._ P the second variation of the energy-momentum
functional can be written in the uncoupled form

62flf(2¢) = 62H¢(z,)

+ 62 He(z.) . (5.33)
S

Snra Sinr

Proof: Equation (5.32) follows from expression (5.31) and the definition of V;n7.
On the other hand, (5.33) follows immediately from the bilincarity of 62He:S x
S — R, and the equilibrium conditions. W

Proposition 5.6. Let Az € Spig, and let z. € P be a (relative) equilibrium
configuration. Let the second variation be regarded as a function §2H¢: Spic X

Sric — R. Then, at an equilibrium, §2H¢(q.) on SrrG % Sri1G can be written as
the following quadratic form

8 He(ze) = (me x 1) - (I} = A3](s2e x 7)) (5.34)
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Proof: Sce Simo, PossBercgH & MarspeN [1989]). I

We note that on Synr the situation is the same as for the rod alone. This is
because all the flezibility is assigned to the rod (i.e., V is a depends only on &,
the configuration of the rod). This would not be the case were the rod attached
to the rigid body by an elastic hinge.

§5F. Stability Conditions associated with VinT.

We complete our stability analysis by deriving conditions which guarantee
the definiteness of the component on Vyyr. According to our outline in §2B, the
space V C T, Q is given by

L
Vi={§qeT, Q|¢& / (188 + paspe x 5p)dS =0}. (5.35)
0

One can show that the evaluation of the Lie derivative condition in (2.26) yields
the following explicit expression

5L L
(89, £aqga g5y = ¢ / [e X 60 4 2p. x 6¢p +1(60 x €) + € x 1.66) dS
0

L
-(¢(x E)~‘/0‘[Ie60+p.4tpe x 6] dS
=0 (5.36)

for all 6& € VryT, and all ¢ € R3 such that ¢ - £ = 0. This condition defines
VinT C V.

As a quadratic form, the second variation of the effective potential evaluated
at an equilibrium configuration can now be written as

62 Ve

L
=ev@)- [ {mIIE % Sl + 56 - E(F. — x,é,)se} ds  (537)

where L
82V(&.) = / A(E.)(68, §8)dS (5.38)
1]

and A(®.)(8§%&, 6§&) is referred to as the total elasticity tensor.

To bound (5.37) from below we introduce the following auxiliary eigenvalue
problem.

Eigenvalue Problem. Let 62V (®.) be as above. Then, from (5.38) we have

82V (2 .)(868,68) = (68 ,A(8.)68) (5.39)
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Let M = |” "013 I] be the matrix form of the kinetic cnergy Riemannian

metric. Consider the symmetric variational cigenvalue problem:
Find (A,7) € R x V;nr such that, for all §& ¢ VinT;

(63, A(Z.)n) = M6@, Mn) | (5.40)

We note the following:

1. Suppose that &, is the reference configuration, so that the geometric term
G(®.) = 0. Then, since ker[Z($,)] = Vasc so that 5 & Vgric by construction,
it follows that (5.40) has positive eigenvalues since M is always positive definite
and C(®)|s=identity is positive definite. The solutions of (5.40) are, in fact, the
natural frequencies of the system at configuration &,.

2. In gencral, of course, A(®.) cannot be positive definite for all &, (re-
stricted Lo V;nr) since this would imply convezity of the stored cnergy function
and hence uniquencss; clearly, an unacceptable restriction. See MARSDEN &
HuGHEs (1983, Chapter 6}, OGDEN [1984] and CIARLET [1988] for a detailed
discussion of some appropriate restrictions on the stored energy functions.

3. If A(®.) is indeed positive definite at &, € C, then (5.40) has positive
eigenvalues. The lowest one is given by the Rayleigh quotient

L (6%,A(%.)6%)
Ao(®e) = inf (6%, M5T) ° (5.41) =

so that, trivially, one has the inequality
(62,A(B.)68) 2> Io(B.)(6%, MES) >0, (5.42)

for all 6% € V7.
With these observations in mind we have

Theorem 5.7. Let the relative equilibrium ®, € C be such that A(®.), as defined
by (5.38) is positive definite, and let Mo(®.) be the lowest eigenvalue of problem

(5.40) as given by (5.41), so that (5.42) holds. Then, stability on Vinr requires
that

L
82He| > Xo(B:)(6%, M56B) — /o {p,‘llf x 8|* + 86 - €[i, — I,é,]sa} ds.
¢

G43)

Remark. A sharp estimate of the constant Ao(®.) > 0in (5.42) can be obtained
by solving explicitly the local form of the eigenvalue problem (5.40). Integration
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by parts of (5.40) and use of standard results in the calculus of variations yields
the second order linear eigenvalue problem

E(2:)[C(2e)E(Re)n) = AM7 in [0, L], (5-44)

along with the (linearized) boundary conditions

5(§c)n =0, (5'45)
$=0,L
and the constraint conditions
L
/ M6 dS = 0. (5.46)
o
Here, =*(®.) is given by the expression
(6n, 6m) s = (B.)(6n, 6m) = —én! (5.47)
! = \Te ' Tl-dm -l xbn " '

At a straight reference configuration &, = (o,1) where g = Ses, for S €
[0,L}, and e3 = (0,0, 1), equation (5.42) reduces to the classical problem for a
Timoshenko beam model if C(®.) is assumed to be constant and diagonal form
of the

C(‘I,) = diag[GAl, GA:, EA, EIl, EIz, G[] (548)
Explicitly, setting 1 = (91, 72, 13, 01, 02, 03), we have
GAi(ny - 03) paMm
GAa(nf + ) PaAm2
E A0y _ Pams
ENOY — GAx(ns +05) [ =Y 1,0, (° (5:49)
Elzolzl + GA[(T]‘ - 02) 1202
GJo! Jos

along with the stress free boundary conditions which now take the form

(- 62) = [z +01] =0
s=ol (5.50)
4 =05 =05 =0

$=0,L 5=0,L S=0,L

=
§=0,L

S$=0,L

and the constraint condition (5.28) which eliminates rigid body modes. An ex-

plicit solution to this problem can be found in elementary text books, i.e. GRAFF
{1975).
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§6. Conclusions

In this paper we used the energy-momentum method to investigate the sta-
bility of the relative equilibria of a uniformly rotating rigid body with an attached
flexible appendage. A fundamental decomposition of the space of admissible vari-
ations was employed, which decoupled the problem into a ‘rigid body’ stability
problem and an ‘internal vibration’ problem. The stability conditions on the first
of two subspaces, denoted by Spyg, corresponded to that of a classical rigid body.
On the complement to this space, denoted by S;n, the stability conditions corre-
sponded to requiring the rate of rotation to be below that of the lowest frequency
of excitation of an associated eigenvalue.
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