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81 Introduction

In this paper we present a block diagonalization theorem which is designed for the analysis
of stability and bifurcation of rotating systems, or more generally, of relative equilibria. The
context of the discussion is the energy-momentum method for mechanical systems with symmetry.
Simo, Posbergh and Marsden [1989) and Lewis and Simo [1989) discovered crucial special cases
o the block diagonalization theorem for uniformly rotating systems, including general nonlinear
eiasticity and geometrically exact rods. Our purpose is to abstract these examples and prove a
general geometric theorem. We expect these general results will be important for rotating
gravitational fluid masses as well.

For rotating systems the result says that a splitting of coordinates can be explicitly found on
a linearized level which represent the rotational and internal vibrational modes. In these
coordinates, the second variation of an augmented Hamiltonian is block diagonal. Of course
coordinates can always be found in principle to do this, but we are able to do it explicitly enough to
give useful stability and, we believe, bifurcation criteria. On the other hand, the symplectic form
does not block diagonalize, indicating that the rotational and intemal modes are in fact dynamically
coupled. However, for purposes of the stability calculation, block diagonalization of the
augmented energy is what is important. The off diagonal terms in the symplectic form (sometimes
called Coriolis coupling terms) are, however, sufficiently simple that they should be useful for
studying the dynamic interaction of the rotational and internal vibrational modes.

For rotating pseudo-rigid bodies, Lewis and Simo (1989] noticed that the computation of
the definiteness of the second variation is considerably simplified by our result - in this case the
simplification saves considerable computation time. In their case, the symbolic and numerical
manipulation needed would normally require testing a full 14 x 14 matrix for definiteness; block
diagonalization techniques, however, reduces this to testing a 6 x 6 matrix for nonisotropic bodies
ora 3 x 3 matrix for the isotropic case.

According to Jellinek and Li [1989], "the general problem of separation and
characterization of the overall rotation in any (not necessarily rigid or near rigid) N-body system is
among the few still unsolved problems of traditional classical mechanics.” Jellinek and Li are able
to achieve results for the N-body problem by elimination of the coupling from the expression for
the energy in an instantaneous fashion. We have been able to achieve a similar result for the general
case of rotating structures, be they N-body systems, coupled rigid bodies, or elastic or fluid
structures. This flexibility is achieved through a general geometric approach.

Acknowledgements We thank Tony Bloch, P.S. Krishnaprasad, Richard Montgomery,
George Patrick, and Tudor Ratiu for helpful comments.
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§2 The Energy-Momentum Method

We begin our work in the context of standard mechanical systems with symmetry before
any reductions have taken place. In other words, we begin with a symplectic manifold (P, Q)

rather than a Poisson manifold. In fact, shortly we shall specialize to the case of P=T*Q anda
Hamiltonian of the form kinetic plus potential.
Let G be a Lie group acting symplectically on P with an equivariant momentum mapping

J:pog* )

(see Abraham and Marsden [1978], Marsden [1981] or Marsden, Weinstein, Ratiu, Schmid, and

Spencer [1983] for the standard definitions and results used here).
Let H: P =R be a given G-invariant Hamiltonian. A point z, € P is called a relative

equilibrium if there is a & € g, the Lie algebra of G, such that the curve
z(t) := exp(tf) z, )

is the dynamical orbit of the Hamiltonian vector field X, of H, with initial condition z(0) = z,.
Let p,=J(z,), the momentum at equilibrium. The energy-momentum method relies on the

following result,

2.1 Relative Equilibrium Theorem A point z, is a relative equilibrium iff there is a §
€ @ suchthat z, is acritical point of Hg :P R, where

He(2) = HEz) - {(J@) - 1, &) . 3)

In (3), the Lie algebra element £ € @ may be regarded as a Lagrange multiplier. Since J
is conserved by the flow of Xy, theset J~p_ =0 is preserved, so one may regard it as a (non-
holonromic) constraint set. It also follows that § € g, the isotropy algebra of . (with respect

to the coadjoint action). Thus,

Bl-lg(ze) =0 (4)

may be regarded as a (constrained) variational principle for relative equilibria.

The relative equilibrium theorem is readily verified. Of course it has a long history, going
back to Lagrange and Poincaré for rotating systems. Like many basic results, it has been
rediscovered in a number of contexts by various authors. Early references in our context are
Arnold [1966), Smale [1970] and Marsden and Weinstein [1974). As we shall state below, the
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relative equilibrium theorem sometimes specializes to the principle of symmetric criticality
(Palais [1979]).

The energy-momentum test for formal stability of a relative equilibrium z, proceeds as
follows (see Holm et al. [1985] for the meaning of formal stability and related references).

Energy-Momentum Method

1 Choose § e g such that SHe(z,) =0
2 Choose a linear subspace S T, P such that
I Scker TI(z,) and
it § complements T,‘(G"e- z,) in ker T)(z,), where GFQCG is the isotropy
subgroup of u .
3 Test &Hy(z,) for definiteness as a bilinear form on S,

The energy-momentum method "covers” the energy-Casimir method (Holm ez al. [1985])
in the sense that if the latter applies and gives formal stability, so does the former. One difficulty
with the energy-Casimir method is that on the reduced space P/G there may not be enough
Casimirs to make the method effective; in particular, it may not be possible to obtain the analogue
3(H+ C)(z,) =0 of (4). This difficulty is genuine for the case of geometrically exact rods, for

instance. See Simo, Posbergh and Marsden [1989] for further details.

The fact that 62H§(ze) drops to the reduced space follows from the next lemma.
2.2 Gauge Invariance Lemma
82H§(ze)(np(ze), 8z) = 0 )

for all 8z € ker T) (z,) and M€ g, where Np denotes the infinitesimal generator of the group
action on P,

:I'his follows readily from invariance of H and equivariance of J. One can view (5)asa
block diagonalization result on the unconstrained tangent space T, P, but it does not yield block

diagonalization within the constrained subspace $ in the energy-momentum method. It is the
latter that we are concerned with here,

One can identify any choice of .§ with the tangent space to the reduced space

P, = I )G,
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at (z,) (assuming, as we shall, that i, is a regular and generic value; c.f. Weinstein [1984]), but
it is easier to do our analysis directly on T,QT*Q rather than on the quotient space. This is the

usual situation found in constrained optimization problems although we shall see that keeping in
mind the geometry of the quotient space will play a useful role.

§3 Simple Mechanical Systems

Let Q be a configuration manifold and P = T*Q the associated phase space with its
canonical symplectic structure. In the finite dimensional case, we denote cotangent coordinates on
T*Q by (q', p)- (When we use coordinates, we assume Q is finite dimensional, although the
results are not restricted to this case.) Coordinates on the velocity phase space TQ are similarly

denoted (q!, ).
Let g denote a Riemannian metric on Q; in coordinates, we write the components of g
as g; as usual, and we write gl for the inverse tensor. Let K: TQ - R denote the

comresponding kinetic energy,

K. @) = 78,@d &, )

and let V:Q — R be a given potential.
Assume G acts on Q (by a left action) and hence on T*Q by the cotangent lift, so the
equivariant momentum map is given by

{J, @(aq) = (a » ﬁq(Q)>~ )

In coordinates, we define the action coefficients Ai(q) by writing

[E@T = Al & ©)

where a, b, ¢, ... denote coordinate indices for the Lie algebra g. Thus (2) becomes

J{ap =p Al(q). @

We assume that G acts on Q by isometries and that the potential V is G-invariant. For
elasticity, for instance, this is the requirement of material frame indifference. Note that (3) of §2
reads

Hy(a.p) = 389 p;p;+ V@ - P A@ B+ (e D) &)

w.('m
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Define the moment of inertia tensor 1 for the system locked at q€ Q by

L@ = gij(Q) A:(Q) Ag(Q) ©)

(alternatively, in terms of the q-dependent inner product (€, n):= (§Q(q), nQ(q)) on g we have
(€, ) =1,,(q)E°n®), define the augmented potential Vg by

VH(@) = V(@) -1, EE. Y)

We note that the function V is not the same as the amended potential in the sense of Smale
{1970). This is the function Vu(q) = V(@ +%I“’(q) puy which also plays an important role in

this story, but will be the subject of other investigations.

One can readily verify the following (see Abraham and Marsden [1978] and Palais [1979])
by writing out the conditions 8H§ =0 in 2.1. A more elegant argument is, however, given

below.

3.1 Principle of Symmetric Criticality A point z, = (q, , p.) =(d', p;) is a relative
equilibrium if and only if there isa E e 8, such that

I p, = g;ALE" (le, p, isthe Legendre transformof &q(q.)) (8a)
and

Wi q, isacritical point of Vg. (8b)

This is useful for carrying out the computations that follow. We also observe that Vg is
Gg-invariant, and so induces a function on Q/G. Define the one-form A5 on Q by AS= Af‘dqi,
where

A¥Q) = g;(a) Al@ & &)

or abstractly, Ag(q) = [§Q(q)]" , where  denotes the index lowering operation with respect to the
metric - In other words, Ag(q) is the Legendre transform of c‘,Q(q). We remark that A may
be viewed as a G-connection for the bundle Q — Q/G and that this connection plays an important
role in Berry's phase; cf. Marsden, Montgomery and Ratiu [1989]. Now notice that at equilibrium,
(8a) says

p. = ASg,). (10)
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Also note that

Hg(‘l. P) = Kg(‘b P) + Vg(‘l) + (l-le' g) ’ (11)

where Kg(q, P) =%II p-A8q) |12, and Vg is given by (7). By (10), Kg has a critical point at
z,. Thus, (8b) is a consequence of the relative equilibrium theorem and (11).

In the energy-momentum method we shall use a special choice of .5, namely
S = {v, e T, T"Q| Trg " ¥, is g-orthogonal to T(G,, - q,) and v, € ker[TI(z,)) }, (12a)
where Tyt T*Q— Q is the canonical projection. Letting coordinates on T(T*Q) be denoted
(q', p;, 8q', p),
(12) reads, with the help of (8a),

S = {«, P, 84, 8p,) | 89 Al x* =0 forall xe g, and

(3p); Al +g;; AL E° ?T';(Bq)" =0} (12b)

84 Rigid Variations

One version of the cotangent bundle reduction theorem (see Abraham and Marsden [1978]
and Kummer [1981], Montgomery [1986] and references therein) states that the reduced space
('I‘*Q)ue is a symplectic bundle over T*(Q/G) with fiber the coadjoint orbit through . Thus

there is an isomorphism

T (T'Q,, = 8/8, X Ty, ((THQ/G)) = 8/8, X (Vpy X Vir)

where 'VINT is a model space for Q/G. For G = 80(3), ‘Vm.r models the configuration space
Jfor the internal modes, while g/g8.= Tue O“e models the phase space for rigid modes. Our goal is
to realize this decomposition explicitly, in such a way that 82H§(ze) block diagonalizes. The
bundle (T* Q),l — T*(Q/G) with fiber Ou also has 4 natural connection (Montgomery [1986]).

Unfortunately, our decomposition is not simply the horizontal-vertical split for this connection. We
shall need a construction which is somewhat more sophisticated, but is similar in spirit.

J. E. MARSDEN, J. C. SIMO, D. LEWIS, T. A. POSBE{

We will define two subspaces Sgiq and Syyp of S and further subspaces Wy;
(isomorphic with ¥,) and 'W['N.,. (isomorphic with ’V'INT) of Sy Such that

S = Sio @ St = Spic ® (Wi © Wi ), m

relative to which le-lg(ze) will be block diagonal. As above, the first component Sric = 8/8,,
of § is isomorphic to the tangent space to the coadjoint orbit through p.. As we shall see, this

component also carries the coadjoint orbit symplectic structure.
The first component Srig Will be defined in terms of rigid variations. This will be done

by going back to Q temporarily, defining rigid variations there, and then using the Legendre
transformation to transfer the information over to the cotangent bundle. To carry this out, let

9g = {ng@e TQ|n e gandqe Q} @
and let TgQ CT(TQ) be its tangent bundle.

4.1 Definition Ler Vg, = s(Tgq) where s:T?>Q — T2Q is the canonical involution.
Alternatively, V. consists of double tangents of curves denoted by Aq (identified with velocity
variations of superposed rigid body motions in the case of S0(3)).

83 = g &, exelen) o,

where N(1) is a curve in g with NO0) =N and q(t) is a curvein Q. (The canonical involution
i effect swaps the order of differentiation.)

In coordinates, if we write elements of Veig as

@ d', Ad', Aq), (3a)
then we find that
Aqi = Aln® and AGi = gqié gk n°+ Al g2 (3b)
An intrinsic way of writing the split (3b) and hence the definition of Vgig is the following:
Vrig=T, (G - v,) @ ver, (89) (30)
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where v, = (q,, q,) is the relative equilibrium in TQ. Here, FL(v) =z, , where FL:TQ —
T*Q is the Legendre transform given by
=g @

and vert, (8q) denotes the vertical lift of the bundle g, at the point v_.

Next, let TFL : T(TQ) — T(T*Q) be the tangent map to the Legendre transformation (4),

and set
Smc=m'V|ucﬁSg (5)

where S is defined by (12) of §3 . Ifwelet g l-}e denote the (q-dependent) orthogonal
complement of %, in the metric 1,, then one finds that S, is parametrized by elements N €

gl as follows: we write elements of Sp;q as

@', p Aq', App, (6a)
where Aq' = Aln?, (6b)
and ap; = - e%:’:‘“' P+ 8 ALEY, (6¢)

where 1 € g;}c and { e g; the condition that (6a) belongs to ker(TZ‘J) is equivalent to the

relation
g* = I*(ad] 1)y ™

ie, (b =adgp . so § isdetermined by M. One checks that (e g, aswell.

§5 The Internal Vibration Space

Now we define a complement to Sg;q in 5. We will do this by a constructive procedure
that can be effectively carried out in examples. To define this complement, to be denoted Spyy, Wwe
first describe Yy -

* Kecall that the amended potential Ve is given by

Vg = V+L§, (1a)

where

Le(@) =-3(Eq(@). Eq@) - (1b)

For mechanical systems undergoing stationary rotations about &,ie., G =S80(3) and Guc =
rotations about the axis p,, which is parallel to &, we note that L, gives the potential of the
centrifugal force. Now define Yy as the subspace on which Vg or, equivalendy, Ly looks

objective in the sensc of nonlinear elasticity (cf. Marsden and Hughes [1983]). More precisely:

5.1 Definition

Vor = {82 T,Q1(80, By dLY)@) = 0 forall ne gl and (B, 20fa)) =0

forall xe g, }. 2

where the first pairing is the natural pairing between vectors and one forms while the second is the
metric inner product, and £ denotes the Lie derivative.

Since Vi has a critical point at q, (by the principal of symmetric criticality) and V is G-
invariant, we find that

(8. (B ALY@) = 82Vy(a (B, Ng(@) 3)

and so we see that the geometric condition (2) is exactly what is needed to block diagonalize
82V§(qe) within 5. In coordinates, the first condition on 8q' defining ¥}y is the geometric

condition

saint e 2 A D A AT g1 O @)

the second condition is just the defining condition on . Notice that the space ¥y is a model
space for the quotient Q/G. Now we are ready to define Sy .

5.2 Definition S = {8z¢ T, T"Ql8q € Yy and bz e ker[TH(z,))) < 5. @
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Assuming that tht yuadratic formin n and 7 given by
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is nondegenerate, we get the following result.
5.3 Proposition § =53, ® S;\r -

In fact, the condition of nondegeneracy of the form (2) implies that  Spi M Spep = {0),
the spanning follows from the dimension count dim Spig = dim(g/gu) and the fact that Spy is
determined by dim( g/gn) equations.

As we shall see, the condition of nondegeneracy of (2”) is the same as the condition that
the second variation of the Hamiltonian H§ restricted to S, is nondegenerate. In fact, for

stability, we want to assume that this is positive definite.

Now we want to insert the space 'Vm into the space Sy . To do so, we shall use the
condition TJ(z,) - 8z = 0. This condition gives us a way of determining Sp in terms of 8q in
such a way that the corresponding 8z lies in the space ker TJ(z,). This condition in coordinates is
as follows:

. 0Ai ‘
dp; A;(q)+p;a—q,f- 3¢ = 0. (5a)

Now, let Wiy be defined as the set of vertical variations (3q, 8p) = (0, 8p) which annihilate
the infinitesimal action; i.c., 8p; Ai(q) = 0. Clearly, Wp C Spp- Next, let

T = {5p,e T;Q | gidp;x, =0 forall x; such that =, Ai(q) =0}

= {dp;e T,Q | Op; =g, Al x° for some y € g).
Now given 8q' Vit » We can uniguely solve (5a) for dp; € T. In fact, we find that

i
xb=-lb°p ai 5qk.

5 (5b)

Using (5b), construct the corresponding pair (8q', 8p;) (using the metric and vertical lift makes
this intrinsic). This defines the space Wjyy . By construction, Wint S Sint and Wyyr is
isomorphic to Vjr . Thus, we have acheived the split

. Ve dis SHMMILILAY, Ju e DUV, L, LEWID, L. A I’Ub]j{\ .
Remark This way of injecting Vint into ker TJ(z,) is closely related to the map
&, 1 Q- I, g (10 )g@b

which occurs in the cotangent bundle reduction theorem (Smale [1970], Abraham and Marsden
(1978), Kummer [1981]).

We remark here that even if G is abelian (for instance, G = S! in the case of planar
coupled rigid bodies), the decompositions are not trivial; while Sric = {0} in this case, Spp =
Winr © Wpgr is still not a trivial decomposition.

Next, we give a characterization of Vinr in terms of superposed motions.

5.4 Proposition Ler q e Q be a curve tangent to 8q at q.let ne g'fe and let 1, =
Ad )N - Then Vi is characterized by those 8q orthogonal to To. Gy, - 9,) and satisfying

3 ata: (gGa)] , = 0 -
or, equivalently,
j'!;(ﬁq(exp(85)qg). TIQ(exp(eg)qe)) L=o =0. ®)

This is verified by a direct coordinate calculation. We can lift this expression to get an
alternative characterization of Sivt - We consider the momentum map J restricted to g'fe and

regarded as a function on TQ. In other words, for { € 8, » set

JOXBe) = (Co@), 3q) = g; Al L3(3q). )

In what follows, we shall assume the following condition is satisfied, which is automatically true
forS0(3): Le g = (&, L] e g, . (This property is only needed for a few alternative formulas

and will be investigated for general groups in a future publication.) Now consider the condition

ng(C)(&l)I o= 0 (10)
where § istoevolveas {=[£, §) which is consistent with (8a) and e g‘t y here & is the Lie

algebra element giving the relative equilibrium. Equation (10) defines a condition on T(TQ). We
shall regard it as a condition on Tk('l" Q) via the Legendre transform. For simplicity we still

write the resulting condition as J = 0.
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5.5 Proposition

Spr = (32D =0} NS (11

Remark The split (6) appears to be not the same as, but related to the complement to the vertical
space relative to a natural connection on the coadjoint orbit bundle a* Q)“ - T*(Q/G). In this
regard we note that the metric naturally induced on Q/G is Wilson's G-matrix (see Wilson, Decius
and Cross [1955]). Our decomposition appears to be finer than the one proposed by Guichardet

[1984] and discussed by Iwai [1988). Notice that we have connections on all levels of this tower
- of bundles

T'Q>J (W - (T*Q, - T'QG)

where J-1() - ('1"Q)'1 is regarded asa G, bundle and (T*'Q), - T*(Q/G) is regarded as an
O, bundle, where O, is the coadjoint orbit through p.

The Guichardet-Iwai results appear to be largely concerned with the bundle J-'(n) —
(T*Q), ; the fact that the reduced space ('I"'Q)'1 still has the factor O, seems to be the reason the

connection on the Gp bundle J-'(n) = ('l""Q)'Jl is not sufficient to completely isolate the
vibrational modes from the rotational ones. We believe that the O, bundle fills this gap.

8 6 Block Diagonalization

Now Hy=Kg+Vg+ {n., &) and we have arranged for Vg to be block diagonal. As far
as K§ is concerned, we compute in coordinates that

Ky = 38(p; ~ 8, AKE)(p; — £nATEY): (12)
Thus, since p; = g, AXE® at equilibrium, we get
8%K(z,) - (82, 87) = g' 8p; 8p; . (1b)

Regarding the block diagonalization of 82K§ on Sgig ® SNt » We shall use some further

interesting identities.

¢

The block diagonalization results for &H. follow from two basic formulas:

6.1 Proposition Let Aze Sy and dz€ T, P. Then

FH(, b2, 82) = G (Co@), 0} — (&M, 8)(z) - 82). (22)
where Az has associated 1 and § as in (3b) and (7) of §4.
6.2 Proposition Let 5z, and 8z, € Sy ; then
8%H(z)(Bz), 82)) = BKy(z.) - (B2y, Bz,) + 82V¢(q,)(8qy, 8qz) (2b)

Proposition 6.1, which is proved by direct calculation, shows that 82H§(ze) block
diagonalizes on Sg;q @ Sy, 1€, if Az e Spic and dz€ Syt then

82H§(ze)(Az. 8z) = 0. 3)

Proposition 6.2 then follows from our earlier calculations. It also follows that if Az € Sp,g and
AZ € Sy, then

8 Hy(z )0z, 47) = $(Lo@. L@ @

which is a generalization of the rigid body sccond variation formula for motion on the coadjoint
orbit O’le with the metric I;. (Recall that { are determined by m and {, by equation (7) of

§4.) We summarize:

6.3 Theorem The relative equilibrium z, is formally stable (with 82H§(ze) on S positive
definite) iff

i %(Cq(q), I;_Q(q)) is positive definite on Sg;g
and 1l 8%Hy(q,) is positive definite on Wiyr.

A sufficient condition for i is
Ii* 82Vg(q,) is positive definite on Vir-

We note that condition | is sufficient for the nondegeneracy condition (2") of §5.
We note that &V £(q,) separates (in coordinates on Vp) into 82V(q,) plus a term which

is quadratic in €. Thus, i is equivalent to a condition of the form nEns \]&min. where || |l isa
suitable norm and lmin is the minimum (non-zero) eigenvalue of 82V(q‘); one has to take care
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here becausc V itself need not have a critical point at q,, 5o 82V(q,) does not make intrinsic " shortest axis), positive definiteness of the entire matrix. As far as the symplectic form is
. sense. To see how this works in examples, see Simo, Posbergh and Marsden [1989] and Lewis concemned, we have the form

~ and Simo [1989).

Interestingly, the effective potential V,, which was defined carlier, is such that the

.

a/e,

conditions in the preceeding theorem become sharp; that is, they are not only sufficient for

stability, they are necessary as well. This pqint is important for bifurcation analysis, and will be the

subject of future investigations.
As far as the symplectic form Q is concerned, we have

6.4 Theorem Let

Notice that in an appropriate sense, 82H€(z°) on Spig X T, P is the time derivative of the

symplectic form Q!

; From (5) and (7) of §4 one finds that on Sp;g % Sgig» S Bives the coadjoint orbit

symplectic form

Aze Spyg and bze T, P. Then

0z )(Az, 82) = —{(n, 8)(z,) - 5z) + ({o(q,) a).

Q(ze)(Al. Ai) == ( lle, [ﬂ- ﬂ])'

while on Sgyq X Sper We have the cross terms

Qz)(Az, 82) = (Coa.) 8

which depend on the 8q components alone. In summary, we have

Gzﬂg(z‘) =

for the second variation of the augmented energy. In this matrix, note that 821-!5(:,) is given by
the expression (2b) and so positive definiteness of szg(q,) implies postive definiteness o
&Hy(z,) and hence, assuming the rigid body second variation is positive (the rotation is about the

)

8/ gu, ‘”{NI‘ 'W.INT
Generalized
Rigid Body 0
Second Variation
0 [82H§(z°) 0 ]
_ 0 0 FKyz)

[ Coadjoint Orbit

(5)
Q=
_ [mmax-nigid

L
©

Symplectic Porm]

Coupling (7)]

Woer War
Internal-Rigid
[ Coupling (1)] 0
Canonical symplectic form

plus a "magnetic” term

For information on the “magnetic” term, and its interpretation as a curvature, we refer the reader to

Kummer [1981]. Also, we presume that the coupling terms can be interpreted in terms of the

curvature of the connection on the coadjoint bundle T*Q — T*(Q/G) that we used to define the
(7) splitting of Spyy ; see Montgomery {1986] and Lewis, Marsden, Montgomery and Ratiu [1986].
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