E éontémporary Mathematics
Volume 97, 1986

'Ca'rtan-Hannay-Berry Phases
and Symmetry

J. Marsden*, R. Montgomery**, and T. Ratiu***

Dedicated to Roger Brockett on the occasion of his 50th birthday

Abstract

We give a systematic treatment of the treatment of the classical Hannay-Berry phases for mechanical
systems in terms of the holonomy of naturally constructed connections on bundles associated to the system.
We make the costructions using symmetry and reduction and, for moving systems, we use the Cartan
connection. These ideas are woven with the idea of Montgomery [1988] on the averaging of connections 1o

produce the Hannay-Berry connection.

§1 Introduction

In this paper we give some of the results of the work of Montgomery [1988], and of
Marsden, Montgomery, and Ratiu [1989] on the use of symmetry and reduction in the theory of
Hannay-Berry phases for mechanical systems. We have in mind both classical and quantum
systems, but this paper will only be concerned with classical mechanical systems. We intend this
paper to be a short version of the cited works which should belp interested readers get the ideas
quickly. For the most part proofs will be omitted. Readers well versed in connecticn theory will be
able to supply proofs themselves; for details, the longer version can be consulted.

The work is motivated by that of Hannay and Berry on phases for parametrized families of

integrable systems. There are, however, many systems to which the Hannay-Berry construction

*Research partially supported by NSF grant DMS 8702502, DOE Contract DE-AT03-88ER-12097 and MSI at
Cornell University.

**Research partially supported by an NSF postdoctoral fellowship and NSF grant DMS 8702502.

***Resedrch partially supported by NSF grant DMS 8701318-01.

AMS Subject Classification 58F, 70H.

©1989 American Mathematical Society
0271-4132/89 $1.00 + $.25 per page

279



280 J. MARSDEN, R. MONTGOMERY, T. RATIU

does not literally apply, for example, the motion of a bead on a slowly rotating hoop. (Hannay and
Berry get around this by regarding the problem as the limit of a sequence of families of integrable
systems, namely the limii of infinite potential constraining forces, but we are able to treat itin a
simple, direct way). This paper shows how to put these and other systems consistently into the
framework of connections on bundles and reduction of Hamiltonian systems with symmetry. What.
we do is take the parameter space M to be a space of motions of an ambient space (R? for the
hoop) and the phase space P to be the cotangent bundle of the constrained configuration space.
Physically, the key observation, due to Jeeva Anandan, is that when comparing two different
constrained systems one must compare points with the same momentom relative to a fixed inertial
frame.

Mathematically, there are two key important observations in the present paper. The first is
that connections can be averaged; in Montgomery [1988] the context was that of a fixed connection
relative to a varying group action. In this paper, we average a connection varying with respect to a
fixed (M independent) group action. The second key observation is that the correct connection to
average is one due to Cartan [1923]. The Cartan connection encodes the ficticious forces—the
centrifugal, Euler, and Coriolis forces—due to an accelerating inertial frame, namely the one
attached to the moving constrained system. Putting these two observations together we find that the
correct connection encoding the phase shift of Hannay and Berry for constrained systems is
obtained by averaging the Cartan connection. This connection we call the Cartan-Hannay-
Berry connection.

§2 Moving Systems

Consider a Riemannian manifold 5, a submanifold Q, a space M of embeddings of Q
into S, and let m & M be a given curve. If a particle in Q is following a curve (), and if Q
moves by superposing the motion m,, then the path of the particle in § is given by m,(q(0)).
Thus its velocity in § is given by

Ty, 40 + Zm(Q®)) 1)

where Z(m(q) = %m[(q). Consider the Lagrangian on TQ of the form
Lo (@ V) =5 [ Tgm, - v + Zm@)T P - V@ - Ulm(@) @)

where V is a given potential on Q, U isa given potential on §, and T denotes projection onto
the tangent space to the (moving) image of Q. Taking the Legendre transform of (2), we get a
Hamiltonian with momentum '

p= (T m, - v+ Zm @) 3)

where P denotes the index lowering operation determined by the metric on . Physically; if § is
R3, then p is the inertial momentum (see the hoop example in §3). This extra term Z[(m[(q))T
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. leads to a connection called the Cartan connection on the bundle Q xM — M, with horizontal
lift defined to be Z(m) — (T 1 Z(m)T, Z(m)). (See for example, Marsden and Hughes [1983]
for an account of some aspects of Cartan's contributions.) The Hamiltonian picks up a cross term
and so takes the form ‘

H, (0. p) =5 IpI? - 2Z) + 1 I Z |2 + Vi@ + Um(q) @)

where the cross term is A Z,)(q, p) = {p, Z:f(q)). The Hamiltonian vector field of this cross term
Xfl’( 7z, Tepresents the noninertial forces and also has the natural interpretation as a horizontal lift of

the vector field Z; relative to a certain connection on the bundle T*Q x M = M, which we also
call the Cartan connection.
Let G be a Lie group which acts on T*Q in a Hamiltonian fashion and leaves H,

(defined by setting Z=0) in (4)) invariant. In our examples G is either R acting by the flow of
H,, (the hoop), or a subgroup of the isometry group of Q whichleaves V and U invariant, and

acts on T*Q by cotangent lift (the pendulum). In any case, we assume G has an invariant
measure relative to which we can average.
Assuming the "averaging principle” (cf. Arnold [1978], for example) we replace H z by

its G-average,
M) @ P =5 IpI2 = (B Z) + 31 ZF I2) + V(@) + (Um(@))- ®)

In (5) we shall assume the term %([I ZY 1) is small and discard it. Thus, consider
Haq,p, v = % lip I = (P2} + V(@) + (Um,(@)) = Hy(q. p) —{RAZY) +{U(m(q)) (6)

where % = % Ip 1% + V(q). We shall consider the dynamics on T*Q x M given by the vector
field
Xy L = Ky = Xipzyy ™ Xwomyy Z). @

The vector field representing the extra terms in this representation due to the superposed motion of
the system, namely

hOI'(Zt) = ( - X(fP(Z[)) » Zt) (8)

has a natural interpretation as the horizontal lift of Z; relative to a connection on T*Q xM, which

is obtained by averaging the Cartan connection and so we call it the Cartan-Hannay-Berry
(CHB) connection. The holonomy of this connection is the Hannay-Berry phase of a
slowly moving constrained system.
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§3 The ball in the hoop and the Foucault pendulum

We now give two examples of the formalism. “The procedures used in the ball in the hoop
example are due to J. Anandan. L

Example 1 Ball in the Hoop Consider a2 hoop (not necessarily circular) in which a bead
slides without friction, as in Figure 1 below. As the bead is sliding, the hoop is rotated in its plane
through an angle 0(t) with angular velocity o(t) = é(t)k. Let s denote the arc length along the
hoop, measured from a reference point on the hoop and let q(s) be the vector from the origin to
the corresponding point on the hoop; thus the shape of the hoop is determined by this function
q(s) . The unit tangent vectoris q’(s) and the position of the reference point q(s(t)) relative to an
inertial frame in space is Romq(s(t)) , where Ry is the rotation in the plane of the hoop through
an angle 0.

q’(s)

Figure 1 The ball in the hoop

The configuration space is diffeomorphic to the circle Q =S! with length L the length of
the hoop. The Lagrangian L(s, s, t) is simply the kinetic energy of the particle; i.e., since

S Rogy 460) = Ry (50) 0 + Rogol(® x q(s(D)]
weg set

LEs, & 1) = %—m I q'(s) §+ o x qls) I 1)

The Legendre transformation yields

p=ms+ q’(s) - [(t) x q(s)] = inertial momentum
and

1 1
H= 5op?= Pzl @xT I
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’

, T denotes projection onto the hoop's tangent, and

Fle

. Here

P=pq'(s) - (@® xq@) =pliqll sinals) @)

(sec Figure 1). Pds is the instantaneous slippage of the bead due to the hoop s rotation.
For « small relative to p itis a good approximation to replace H by

9= 5 p? — (). 3)

@y=1 § 2as=Fro @

where A is the hoop's area and L its length. (This is seen by Stokes' theorem: d(rsin o ds) =
r cos oo do A ds = 2dA.) Now

Xy{=-lrﬁ g wZAg %)

is the (approximate) dynamic vector field. The second term in (5) gives the Hannay-Berry angle.
After one full revolution in the space of motions (J odt =2x) the integral of this second term is

4
—- ]IiA = Hannay-Berry angle for hoop. ©

Equation (6) gives the holonomy of the CHB connection, and expresses the displacement of a bead
of inertial momentum % after one full revolution of the hoop, compared to where it would have
been after this same amount of time with the same inertial momentum, but without rotating the
hoop.

Example 2 The Foucault Pendulum The Foucault pendulum is a spherical pendulum
at co-latitude o on the surface of the Earth. Denote by q the position of the pendulum on the
sphere of radius £, the length of the pendulum arm (see Figure 2).

Let ry denote the vector from the center of the Earth to the point of suspension of the
pendulum. Due to the rotation of the Earth the point q moves to the point R (ry+ q), where R,

is the rotation about the Oz-axis. Let ® =-— denote the angular velocity of the Earth's rotation.

2n
- ~ r, .
The potential energy of the pendulumis V(q) =mgl q - r,, where ry = ”—-8—”- . The velocity
r
0
of the point q on the sphere during Earth's rotation is therefore
q+Rfwx(ry+ q)] 0]

where we identify @ with the vector wk.
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Figure 2
The Lagrangian is
L = gmllox@ +@+4 [P~ V@ ®)
so that the Legendre transformation gives
p = m@+ax@+q) = mg+@xF, +q)] C))

by identifying T*S? with TS? via the standard metric; here (@ x (fy + ¢))T denotes the
tangential component of @ x (ry +q) . Then

q = —p-[0xF+ el | (10)
and '

G+oxFy+q) = =p+oxF+ @, an

where (@ X (fy+q)* denotes the normal component of ® X (Fy+ q) to the sphere. Therefore

the Hamiltonian is given by

. 1 ~
H=pg-L =—|plP-Lp- (@x G+ )T

- (51; I p I+ 50 (0 x (Fy+ @)y 17— V(q))

ﬁ;ll P+ Vi@~ P-ZI (mx(i-0>+ )t IP (12)

where

P=1p @x@+)T =Lp (©x@+) B ¢
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since p is tangential.
Letting M be the space S! of embeddings of the sphere of radius £ in R® obtained by
rotating a fixed initial sphere tangent to the Earth at co-latitude o, as in Figure 2, we recognize

that P is the Hamiltonian defining the induced Cartan connection on T*$2 x §1 (see §4).

Since (@ x q)* =0, we have [0 X (ry x @)]* = (@ X rp)t = constant. In the equations
of motion one can drop this constant. Had we considered a Foucault pendulum on an ellipsoid,
this term would not be constant, but it would be of order ®?, which is the general case.

According to the averaging principle, one ignores this term.

Let Srl0 be another circle, acting on the phase space of the pendulum by rotation about the
r, axis. Asin the ball in the hoop, and consistent with the theory sketched in §4, the horizontal

lift of the induced Hannay-Berry connection is given by the Hamiltonian vector field of 2, ie.,
by {p-[®x (ry x @1). Butif v is any constant vector,

(p-v) = (p T}V Ty (14)

since the Srt -action over which we average has r; as its axis of rotation. Setting v = Xry,

this implies that

(p' ((DXI‘O)> = Os
and hence
plox@,+ql) ={p- @xq) .
Let I=p-(ryxq) be the momentum map of the Srl0 -action. By (14)
(p-@xq) = {0 (@xp) = [(gxp) ry{w-ry) =locosa

since - ry is constant. Thus,

{(PY = Twycos o (15)

20

infinitesimal generator of the Srlo—action, corresponding to I. Therefore the horizontal lift of the

ad .
and so the horizontal lift of ® is given by (- Xy W)= (— o Ccos o %’ 0)) , where L s the

curve @(t) = ot in M is determined by the differential equation

0 = —mwcosx

so that if this curve is a loop parametrized on [0, g—n} we get
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‘ | o ;
o). —6(0) = —Jomcosad; = —-olcosa = —2mcos (16)

which is the deviation of the plane of oscillation in the laboratory frame (i.e. a frame fixed on the

Earth) of the Foucault pendutum during 24 hours. Equation (16) is essentially Foucault's classic

formula.

T
5
North Pole, where =0, the plane rotates in the opposite direction to that of the Earth's rotation,

For example, if we are at the equator, where o =75, there is no deviation. If we are at the

performing a full circular motion. These results are in an inertial frame. The usual Foucault result
is for a lab frame attached to the Earth.The two frames are related by Q.40 = R, (fg + qpp)- In

24 hours this means we must add 2rx to our A8 to get the angle shift in the lab frame.

For a nice elementary discussion of Foucault's pendulum also see Berry [1988].

§4 Construction and Properties of the Hannay-Berry Connection

In this section we summarize the properties and construction of a general Hannay-Berry
connection and specialize this to the case of moving systems. The general theory is a
generalization of that developed for trivial bundles with symplectic fiber by Golin, Knauf, and
Marmi [1989] and Montgomery [1988]. The freedom we allow of choosing an arbitrary
background connection is essential in the construction of the CHB-connection discussed below.

These background connections need not be principal connections but they are Ehresmann
connections.

§4A Ehresmann Connections and Holonomy

If m:E—> M is alocally trivial fiber bundle, an Ekhresmann connection is a smooth
subbundle H of TE such that H@® V = TE, where V = ker T is called the vertical
subbundle and H is the horizontal subbundle of the connection. Alternatively, an
Ehresmann connection is given by a one-form I'e QNE, V) on E with values in V and which
is the identity on V, or by a horizontal 1ift, i.e., a map hor sending smooth vector fields on M
to smooth sections of H.

Let m(t), te [0, 1] be a smooth path in M. A horizontal lift of m(t) is a smooth
path p(t) in E such that m(p(t)) =m(t) and the tangent vector p(t) to p(t) is horizontal for every
te {0,1]. If w:F — M is alocally trivial fiber bundle, then given a smooth path m(t), in M
with m;=m(0),0<t<1 and pe n‘l(mo), there is a unique horizontal lift p(t) of m(r)
satisfying p(0) = p. The map sending p to p(l) defines, by uniqueness of horizontal lift, a
bijection from Tc‘l(mo) to n‘l(ml). By smooth dependence of solutions of ordinary differential
equations on initial conditions, it followsvthat this map is a.diffeomorphism; it is called the
parallel transport operator.
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Now let m(t), t e [0, 1] be closed path in M satisfying m, = m,,. The diffeomorphism
of ﬂ:“l(m-o) onto itself given by parallel transport along m(t) is called the holonomy of the
path m(t). Itis easy to see that parallel transport sends juxtaposition of loops based on mj into
the composition of diffeomorphisms of n‘l(mo). Thus the holonomy operation is a group
homomorphism of £{my), the loop group at my, to the diffeomorphism group of the fiber =~
1(n'lo); its image H (my) is called the holonomy group at m,,. It is straightforward to see that
if M is connected, all holonomy groups are conjugate: H(my) and H(m,) are conjugate by the
parallel transport along any path connecting m,, to m,. Thus if M is connected, we speak of H
, the holonomy group of the connection.

If ©:E — M is a principal bundle with abelian structure group and € is the curvature of
a principal connection T, the holonomy is given by the group element

holonomy = exp (- ”. dl’) =exp (—_[ Q),

where the integral is taken over any two-dimensional submanifold in M whose boundary is m(t),
assuming one exists.

§4B The Hannay-Berry Connection

We summarize below the main properties and the construction procedure of the Hannay-
Berry connection. The proofs will be omitted since they are straightforward generalizations of
those in Montgomery [1988] once the following theorem is proved.

4.1 Theorem Averaging of Connections Let n: E — M be a fiber bundle and let T
e QUE, V) be an Ehresmann connection. Suppose a compact Lie group G acts on E by
bundle transformations, not necessarily covering the identity. Then the average {I') of T (see

equation (3)) is also an Ehresmann connection. Moreover the G-action commutes with the action
of parallel translation with respect to (I').

The proof is a consequence of the following two facts: 1 The average of a collection of
points sitting inside a convex set is again an element of that set. 2 The set of connections is a
convex (in fact affine) subset of the set of (2,1) tensor field on E. (For example, these two facts
are used when one averages a Riemannian metric to obtain a new metric for which G acts by
isometries.)

Let n:E — M be a Poisson fiber bundle, i.e., T is a surjective submersion, all fibers are
Poisson manifolds, and the transition functions are Poisson maps. Let G be a Lie group. A
family of Hamiltonian G-actions on E is a smooth (left) G-action on E such that each
fiber m1(m) is invariant under the action and the action restricted to each fiber is Hamiltonian, i.e.
it is Poisson and it admits a fiberwise momentum map I:E — g* . This means that for each & €

g , we have
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§E0) =X ®) - M

where I‘i denotes the real valued funcuon defined by I‘i(p) =I(p)-&,for pe E and £ g,

Exp) = (exp €€ - p) is the mﬁ_mtesnnal generator of the action defined by & and XK )]

o |
is the Hamiltonian vector field on the fiber through p defined by the function E:E-R.
restricted 1o this fiber. Since the action on each fiber is Hamiltonian, the symplectic leaves of the

fiber are G-invariant. Also, note that the Casimirs are G-invariant.

An Ehresmann connection on & : E — M is called Poisson if its horizontal lift hor; isa
Poisson bracket derivation, i.e.

(hory Z)({£, h}] = ((hory Z)If}, h} + {f, (hory Z)(h]} )]
forall f,h:E—R and Ze X(M) . Equivalently, this says that
Dy(f, h) - X = {Dyf- X, h} + {f, Dsh- X} 2"

for all X € X(E), where D, is the covariant differentiation defined by hor,.

For example, let

hory Z=X_p,+Z 2"

be the Cartan connection on E = T*Q x M defined in §2. Then

Dyf-Z={f,- P Z).

(The bracket is defined by restricting f to T*Q x {m}.) It follows from the Jacobi identity that
the Cartan connection is Poisson.

4.2 Definition The Hannay-Berry (HB) connection induced by a Poisson-Ehresmann
connection hor is the Ehresmann connection on n: E — M obrained by averaging hor,. (See

Equation (3).) We will let D denote its covariant derivative, hor its horizontal lift, and Yy e
QUE, ker Tr) its connection one-form.

If hory is the Cartan connection, then we will call the resulting average the Cartan-

Hannay-Berry (CHB) connection. Its horizontal lift was given in §2:

hor - Z=X_<T.Z> +Z.
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If A is any tensor field defined along (as opposed to on) a G-invariant submanifold of E,
its average (\) is the smooth G-invariant tensor field of the same type defined along the same
submanifold by

1 ,
Q) = I—G—IJG ((I)Z A dg, \yhere (3)

®:GXE —>E is the G-action on E. Note that {A) is a G-invariant tensor field.

The following two propositions summarize the important properties of the HB connection.

4.3 Proposition Suppose G is compact and connected. Then the HB connection satisfies
the following properties:

i It is Poisson.

il If ve T M then its HB horizontal lift is given by

horv = (hor, v).

iii hor Z = horyZ + Xy , , for a smooth function K-Z:E—R and Ze X M.
iv The connection one-form of the HB connection is giver by

') = Iyv) = Xy ), for ve T E. )

v (K- 7Z) is afiberwise Casimir function.
vi D(A) = (DA) = (dA) o P, _,forany Ae QXE), k=0, 1,.., where P

hor 1S the
horizontal projection relative to hor.
vii DIé - horZ=¢( DOI‘i' hor Z) is a Casimir for each & e g, Ze X(M). Moreover,

DI =(D, 1) and hence DI=0 iff (D, I)=0.

Remark Property vi holds for any averaged connection. The rest of the properties are
consequences of the following general principle:

If E has structure group G, and both Ty and G preserve this structure, then (I'y) also
preserves this structure. In the HB case, G is the group of Hamiltonjan automorphisms of the
fiber.

4.4 Proposition Ler hor be the horizontal lift of an Ehresmann connection on T:E — M
satisfying
a DI=0,where D is the covariant differentiation given by hor ; this says that parallel
translation relative to hor preserves the level setsof T,

b hor Z =horyZ + Xy, for some smooth function K-Z:E - R, where Z-> K-Z
is linear;
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c K-vyisa Casirﬁir function on ©~Hm) where ve T M; replacing K-v by
K - v—{(K - v}, we can assume that this Casimir is zero.
Then I such a connection is unique;

il such a connection exists if and only if the 'adiabatic condition’
{Dh =0 ' (A).

holds, in which case the connection equals the Hannay-Berry connection.

Remarks 1 According to Proposition 4.3iii the covariant derivative of a function f with
respect to the HB-connection is

Df-u=Dyf-u+ {f, K- u}. (B)

2 We call condition (A) the 'adiabatic condition' because in the context of a family of
completely integrable systems this equality is the content of the classical adiabatic theorem.

3 If G is semisimple and 1 is equivariant the 'adiabatic condition' (A) automatically
holds. Consequently, the HB connection satisfies properties a8, b, and ¢ of Proposition 4.4.

Indeed, properties vi and vii of Proposition 4.3 we have DI =(DI) = D(I). By
equivariance (I)5 =X®, forevery £ e g. Now (&) is an Ad-invariant vector. Since G is
semi-simple, the adjoint representation is irreducible and so (€) = 0; consequently (I)= 0, and
thus DI = 0.

4 Suppose, foreach ve T, M there is a function K-v: wl(m) — R satisfying

dié - horyv + (15, K- v} =0 ' @)

forall £e g. Set K-v= K-v-(K- vyand hor v = horgv + Xy .. Assume (DyI) =0, so
hor defines the HB connection. This is proved by verifying the conditions in Proposition 4.4.

We now specialize to the case of the Cartan connection, ending with the main theorem of
this section. Assume that a Lie group G acts on T*Q on the left with equivariant momentum map
i T*Q - a*. Then G defines a family of Hamiltonian actions on T*Q XM by letting G act
trivially on M. Its parametrized momentum map is simply I thought of as a function of two
variables, independent of M. Notice that the adiabatic condition

(DyI) =0

holds for the Cartan connection. This is a consequence of the following lemma, applied to the
functions f=P- Z
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. 4.5 Lemma Let nt: E — M be a Poisson fiber bundle endowed with a family of Hamiltonian

G-actions with equivariant parametrized momentum map I E — a*. Then for any f:E - R we
have ({I5£})=0 forall £ e g.

Proof Apply the Fubini theorem and use the fact that <§£—> =0 when G=S. m

4.6 Main Theorem The CHB connection is a Poisson connection for T'Q x M — M. Its
horizontal lift is given by

hor Z = (—X(rp- Zy Z)
and satisfies
DI =0;

together with the rest of properties a, b, ¢ of Proposition 4.4, and i - vii of Proposition 4.3.
Its holonomy defines the Hannay angles of a slowly moving constrained mechanical system.

This follows from the adiabatic condition and Propositions 4.3 and 4.4.

Recall that the holonomy of a closed loop relative to an Ehresmann connection is the
diffeornorphism of the fiber given by parallel translation. In the case of the Hannay-Berry
connection induced by a Cartan connection, the fiber is T*Q. Thus if ¢(t) is a closed loop of

embeddings of Q in S the differential equations for the horizontal lift of c(t) in T*Q are

dc

Hamilton's equations for the Hamiltonian —<’_I" T/

§5 Concluding Remarks

' An expanded version of the present paper is available. In addition to the theory for moving
systems described here, we also discuss the following.

§5A Symplectic Fiber Bundles

Suppose the bundle E — M of §4 is a symplectic fiber bundle, that is, its fibers are
symplectic, so that each fiber has a symplectic form ®; and these fit together smoothly. It is a
basic fact that Poisson connections hor, (with Hamiltonian holonomy) are in one-to-one
correspondence with closed extensions ® of the fiber 2-form w; to all of E. The

correspondence is

Hor, = Vert®,
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where @ denotes the w-orthogonal complement. (This fact is due to Gotay, et al. [1983] and was
presented to us in this more digestible fashion by V. Guillemin.)
This means that our averaged connection can be obtained by averaging the 2-form:

. Hor = Vert(“)> ;

This approach has many simplifying virtues, and is the one taken by Golin, et al. [1988]. For
example, if ® =-d0, it immediately leads to

= <i§Ee>

for the momentum map. One checks directly that this is the standard formula @ pdq for actions in

the case where the group is abelian. Also, these automatically satisfy the adiabatic condition (D,l)
=0.

§5B Normal Forms

Suppose in §2, that the external potential U is independent of M, and that we are
averaging over the flow of H;. Then

Xy, hor Z,) =0,

and our approximate dynamics is defined by the vector field

X Z) = XHO +hor Z.

It follows that in this case the HB connection hor Z,, can be viewed as the second term in a

normal form for the true dynamics (2.4).

To see this, recall that the normal form for a (time-independent) vector field X =X, +€X,
+ 0(82) , € a formal parameter, is obtained by changing variables using the flow of Xy In the
new coordinates X = X, + &Y, where {X,, Y} =0 and Y, is the average of X, with respect
to the flow of X. See Churchill, Kummer, Rod [1983], or Cushman {1988] for more regarding

this point of view on normal forms.

§5C Reconstruction of Reduced Moti'ons

We begin as in §2 with a simple mechanical system H =K + V, together with a group G
acting in such a way as to preserve K and V. Here K is kinetic energy on T*Q. We have the
momentum map I: T*Q — g%, and the reduced spaces (T*Q)“ = I—l(u)/Gu for pe g™ see
Marsden and Weinstein [1974].
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Motions with momentum (. push down to solutions to the reduced Hamiltonian system on
(T*Q)u.. (One example of this is the planar Kepler problem. There 1 is angular momentum, and
(T*Q)u is coordinatized by the radius and the radial momentum variables.) The basic problem is

to reconstruct the original dynamics from the reduced dynamics. Consider the-bundle
Flw - (T°Q), ®R)

with fiber G’l representing the "angles" we ignore in reducing. The idea is then to horizontally

lift the solution curve on the reduced space, to a curve c(t) in I-1(u). Writing

c(®) = g(» - <),

we get a first order differential equation for the desired angles g(t) € Gu' If G}L is abelian (as it
must be generically) this equation is solvable in quadratures, and the reconstruction is complete.

The new ingredient needed is a connection with which to obtain the horizontal curve ¢.
We construct this connection out of the natural connection on Q — Q/G}L . This is the connection

for which
— RN
Horq = (Tun Q.

where | is taken relative to the kinetic energy metric. (For this to be an honest connection, we

must assume that the G action is free.)
§5D Tower of Bundles

The HB connection and the 'reconstruction connection' just described can be put together
to define a connection on each post of the tower of bundles

) - Fw/G, » M ()

The HB connection is a connection for I"}(1) — M, and the reconstruction connection gives a

fiber-wise connection on

(), - FW,/G,

for each m e M. The two connections can be put together thus defining connections on either
Fw —» ' w/G, ,

hoped that these connections can help give fairly complete descriptions of the dynamics in the

or, on the bundle of sympelctic reduced spaces I—l(u)/Gu — M. Itis

averaging approximation. This situation appears to be appropriate, for example, for the dynamics
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of slowly moving coupled rigid bod,iés (e.g., coupled rigid bodies in orbit about the earth). The . .

first bundle in (T) is the bundie cbr'résp'onding to interna} versus overall rotational modes and the
second to the parametrized motion of the system. See also §5E.

§5E An Optimal Control Problem

Go back to the setting of §5C but now view it as the set-up for a control problem. The
desired result will be a holonomy g e G. The control parameter space will be Q/G, based at q,
whose holonomy is g. The optimal control problem is to find the shortest such loop.

One of the motivating problems is the following. Let Q be the configuration space for a
sytstem of coupled planar rigid bodies relative to an inertial frame. G =80(2) represents rigid
rotations. Then Q/G is the set of shapes, which can be parameterized by the hinge angles, which
we assume that we can control.

The holonomy g resulting from a given shape change is exactly the rigid rotation which
the system undergoes after a given manipulation of the hinge joints. the connection with respect to

which we calculate the holonomy is the constraint: "angular momentum equals zero”. This is the .

same connection as the one alluded to in §5C, i.e. the connection defined by kinetic energy on Q.

The optimal control question has been answered by Montgomery [1989] in the sense that it
has been reduced to an o.d.e. Somewhat surprisingly this is the same o.d.e. which governs the
motion of a "charged particle in an electromagentic field" (on the space Q/G).
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