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The Dynamics of Coupled Planar Rigid Bodies.
II. Bifurcations, Periodic Solutions, and Chaos
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We give a complete bifurcation and stability analysis for the relative equilibria
of the dynamics of three coupled planar rigid bodies. We also use the
equivariant Weinstein-Moser theorem to show the existence of two periodic
orbits distinguished by symmetry type near the stable equilibrium. Finally we
prove that the dynamics is chaotic in the sense of Poincaré—Birkhoff-Smale
horseshoes using the version of Melnikov’s method suitable for systems with
symmetry due to Holmes and Marsden.
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1. INTRODUCTION

In Part I of this paper (Sreenath er al, 1988), hereafter denoted [1], we
studied the Hamiltonian structure and equilibria for interconnected planar
rigid bodies, with the primary focus being on the case of three bodies
coupled with hinge joints. The Hamiltonian structure was obtained by the
reduction technique, starting with the canonical Hamiltonian structure in
material representation and then quotienting by the group of Euclidean
motions. For three bodies, this Hamiltonian structure is as follows (see
Fig. 1): the phase space is P=S"'x S' x R? parametrized by the two joint
angles #,; =: ¢ and 05, =:y and three momenta p= (u,, u,, u;) [conjugate
to the three angular variables (0,, 6,, ;) for the three bodies] with the
Poisson bracket
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tho=(L-L)% (&7

oy Ous) 0 \Om, Ou,/) 0
0 0 0 0 0 0
Ouy Ops/) Oy duy  Ous) oY

This phase space is obtained by first reducing to center of mass coordinates
and then eliminating rotations via

T*(S'xS'xS")

p= <7 =~

S'x STxR3.

Given a Hamiltonian H(4, ¥, puy, po, s),  the evolution equations
f=1{/, H} are equivalent to

_oH
#1_6¢9
. _0H 0oH
#Z_al’b 6¢,
0H
b= =5 (1.2)
_oH _oH
duy  Opy”
_oH_oH
Ous  Opp

center of mass of bodies 1, 2, and 3

Fig. 1.
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For this system, the Hamiltonian is shown in [I] to be

H=Yo,Jo)=4uJ"'w (1.3)
where

(wy, 03, 03)= (91» 02, 93):-]#

is the angular velocity vector and

I, A2(¢) An(d+y)
J= 112(¢) 72 123('//) (1-4)
As(@+y) Ax(¥) I,

is the effective moment of inertia matrix; the entries are defined as follows:
let ¢, b, e, d be the positive distances shown in Fig. 1 (i.e., distances between
the centers of mass and the hinge points; assume here that the center of
mass of the central body is between the hinge points) and let &,=

m;m;/(m +my+ms), I, I,, I be the planar moments of inertia of each
body,

Ii=1+(ex+e3) 2, I= (¢33 +813) d%,
L=L+ (e +3) b + (655 + &13) €%+ 2¢13be cos «
be the augmented moments of inertia, and

Aix(@) = (€12 + &13) bc cos ¢ + &,5ce cos(g + a),
Ay (6)=¢5¢d cos o,

A23(¥) = (23 + &13) de cos( — a) +&,3bd cos .

Equilibrium solutions are determined by setting the time derivatives in
(1.2) to zero:

oH_OH _

9 o

¢ v (1.5)
6—H—6—H~6—H—w a constant

Ouy  Opp  Ous 0’ .

To further simplify the problem, we will assume that the center of mass of
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the second body is alligned with the two hinge points; ie., that =0 (see
Fig. 1). Then (1.5) is equivalent to the system

oH
ou;
sin(¢ + )= —1sin ¢, (1.6)

sin Yy = k sin ¢,

=CU0,

where
_e3(b+e)c+ebe

K=
e13(b+e)d+eyde’
and " 2 (1.7)
. _epplbt+e)+enb

&5d ’

as was shown in [1].
It was also shown in [I] that there are always four or six equilibria,
among which are the four fundamental equilibria:

(4, ¥)=(0,0), (0, n), (=, 0), (m, m). (1.8)

K2-12=1

Fig. 2.
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When (k, 7) belongs to the shaded region in Fig. 2, ie., |[t1—1| <k <1+ 1,
there are two other equilibria determined by

1 — (k% +1%) K2—12—1

cos ¢p = and cos Y = = (1.9)

2Kt
Correspondingly, the pairs (¢, ) lie in the shaded region of Fig. 3.

For example, if m;=m,=m;, b=e=ud, and ¢= Ad, then x =1 and
=3y, so the condition for four equilibria, |[t— 1| <x <741, becomes
[3u—1|{<A<3pu+1. For instance, if p=1, this condition is 2 <l1<4.
Thus, as A leaves the range [2, 4], the number of solutions drops from six
to four.

In [I], it was shown that the equilibrium (0, 0) representing the
straight stretched-out solution is stable for all system parameters. In Sec-
tion 2, we study bifurcations of these equilibria and we determine the eigen-
value evolution of these bifurcations and thereby determine that the solu-
tions that are not formally stable are not only unstable, but are spectrally
and hence exponentially unstable, with nonzero eigenvalues of the
linearized equations on the real axis. In Section 3, we use the version of the
Weinstein-Moser theorem according to Montaldi ef al. (1988) to show the
existence of two families of periodic orbits (with symmetries) near the
stable equilibrium (¢, )= (0, 0); they are shown to be spectrally stable
when they are nonresonant. Finally, in Section 4, we show that the

\

21

Fig. 3.
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problem is, in general, nonintegrable. This is done using the Melnikov
method in the version given by Holmes and Marsden (1983) to show that
the homoclinic orbit present in the integrable case d=0 leads to transverse
homoclinic orbits for small d+# 0. General conditions for integrability are
not known to us.

We believe that the periodic solutions found in Section 4 are related to
traveling waves in a long chain of n-coupled bodies (with torsional springs)
or in the corresponding continuum limit # — co. This will be the subject of
another investigation.

2. BIFURCATION OF EQUILIBRIA

In this section, we relate the bifurcations of equilibria to the
degeneracies of the Hessian of the energy function. This is used in the next
~ section where we discuss the stability indices.

First of all, one can see directly from the equilibrium equations, as in
[I], that a Hamiltonian pitchfork-type bifurcation occurs at each of the
three unstable fundamental equilibrium solutions, as in Fig. 4.

lf
/@@@\\Mm\

Fig. 4.
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For example, if m, =m,=m,, c=Ad, and b=e=d, the evolution of
equilibria as A ranges from 1 <2 to 1>4 is shown in Fig. 5.

These bifurcations, which can all be seen by direct calculation, will
now be related to the second variation, or Hessian, of the Hamiltonian.
The symplectic leaves P, of the phase space P are defined by setting
Ui+ o+ p3=p, a constant. Equilibria for the system are exactly critical
points of H,,, the restriction of H to P,. At these points, the Hessian of H u
is simply the restriction of the second variation of H to tangent vectors of
P, at the equilibrium point in question. Since the Hamiltonian vector field
restricted to the leaf has a zero eigenvalue iff the Hessian does, it is a priori
clear that a bifurcation of equilibria occurs only if the Hessian along the
leaf has a zero eigenvalue.

The Hessian is computed at one of the fundamental equilibria to have

the form
5°H= I:JO B} 2.1

as a 5 x 5 matrix with the variables in the order (u,, 5, i3, @, ) restricted
to the subspace defined by oy, + dp, + dp; =0, where J is given by (1.4)
and where

cos¢+lcos(¢+¢) lCOS(IIH"P)
B = (positive constant) f 1 i 1
;cos(qﬁ-l—lﬁ) ;cos¢+;005(¢+¢)

(2.2)
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Ignoring the positive constant, we note that at the fundamental equilibria,

L R

B(0,0)= Do) B(n, 0) = R
| T K 1 | T K 1 (2.3)
R B

B(0, =)= 1T 111 . Blm)= K1 1T |
Tk« |« Kk T

Since J is positive definite, bifurcations of equilibria are determined by zero
eigenvalues of B. Since

11 1
det B(0,0)=—+-+—>0,
K T K

(0, 0) never bifurcates. Since

-1
det B(n, 0)= "
KT
1—5—
det B(0, m) = —~—°
KT
and
—k—1
det B(n, n) = L ,
KT

we can expect these equilibria to bifurcate at k=t+1, k=1-—r1, and
k=1— 1, respectively. As we saw above, this is confirmed by a direct
analysis of the equilibria. )

To analyze the stability of these equilibria, notice first that the
stretched-out state (0,0) is always stable, as we already know from [I].
For the state (=, «), note that

T—rk—1 2Kk—TK—1
det B(n, n) = ——, trace B(n, 1) = ——,
KT Tx
so B(zn, ) has k
x >1— 1: one negative and one positive eigenvalue,
Kk =1 — 1: one negative and one zero eigenvalue,

Kk <1— 1: two negative eigenvalues.
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‘There are similar statements for the equilibriav(n, 0) and (0, ) where 7 — 1
is replaced by 7+ 1 and 1 — 1, respectively.

Theorem 2.1. The equilibrium (0,0) is always stable and the other
Sfundamental equilibria are unstable, and in fact spectrally unstable.

The proof relies on
Lemma 2.1. Let A and B be two real nxn symmetric invertible

matrices with different numbers of negative eigenvalues. Then the
infinitesimally symplectic matrix

0 Bl [0 1|4 ©
-4 0] | -1 oJlo B
has at least one positive (and so one negative) real eigenvalue.

Proof of Lemma 2.1

B —
s (it 2y PY)=au(* 7)

(notice that 470 since we assume that A4 and B are invertible)

1
I _IB
= A" det |
0 I+PAB

” 1
= A" det (1 + AB) =det(4*>+ 4B).
The lemma follows from this sublemma.

Sublemma 2.1. Under the same hypothesis as Lemma 2.1, the matrix
AB has at least one negative eigenvalue.

Proof of Sublemma 2.1. Since we assume that A4 is invertible, 4 ! has

865/1/3-3
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the same inertia index (number of negative eigenvalues) as 4. Now, con-
sider the 1-parameter family of symmetric matrices M(¢)=t4 "'+ (1 —1)B,
0<t< 1. We know that the set of invertible symmetric matrices has n+ 1
components that are characterized by inertia indices. Since M(0) and M(1)
have different indices and so are contained in different components and
{M(1)} is connected, there must be some 0 < ¢, < 1 for which M(z,) is not
invertible, i.c., there exists a nonzero vector v such that M(z,)v=0, i.e.,

(to A"+ (1 — t5) B)v=0.

Multiplying by 4, we get

ABv= ——°

Here, —t,/(1 —t,) is negative since 0 < 7, < 1. Therefore, 4B has a negative
eigenvalue. |

Remarks 2.1. We can refine this lemma to allow one of the matrices
not to be invertible. More specifically, let us assume that A is invertible and
is of type (p, q) i.e., A has (p positive and g negative eigenvalues) and B
is of type (p', ¢’, ¥} where r is the number of zero eigenvalues. Then 4B
must have at least one negative cigenvalue if p> p’+r or g>¢’ +r. This
then yields Lemma 2.1 as before.

Remark 2.2. Similar criteria for Krein collisions (Hamiltonian Hopf
bifurcations) would be of use in the case of three-dimensional coupled rigid
bodies (cf. Grossman ez al., 1988; Cartan, 1928).

Remark 2.3. Some related results and applications are given in Oh
(1987).

Lemma 2.2. In the reduced symplectic space P,, the Hessian of the
reduced Hamiltonian has the form

(J’O
0 B/

where J' is a positive definite 2 x 2 matrix and B is the matrix (2.2) in the
canonical coordinate near the equilibria given by (¢, Y, vy, v,), where

Ho— Hi— Hy
y, = Y, =—"=

1= 2 ’ L2 2
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Proof of Lemma 2.3. This follows from the fact that, at the equilibria,
d*H are given by (2.1) in T*(S'x S'x S')/S" which is parametrized by
(.ula Has U3, ¢5 ‘/j) and the fact that

Ho— W H3— o
Crateat)

are canonical coordinates on P, near the equilibria; the latter is checked
directly from the bracket (1.1) }

Proof of Theorem 2.1. We know that, in canonical coordinates, the
symplectic structure is given by
0 I
-1 0

and, by Lemma 2.3, the Hessian has the form

J 0

0 B
where the number of negative eigenvalues of J’' is zero and, as we
illustrated at B(n, n), B has at least one negative eigenvalue. Therefore, by
Lemma 2.1, the linearization of the Hamiltonian vector has least one

negative eigenvalue. Therefore, by Lemma 2.1, the linearization of the
Hamiltonian vector field at the equilibria, namely,

(51 oo )

has at least one real eigenvalue and so is spectrally unstable and so is non-
linearly unstable. ||

Finally, we study the stability of the bifurcation branches at the equi-
libria. By Theorem 2.1, we know that the linearization of the Hamiltonian
vector field at (n, #) [similarly for (0, %), (%, 0)] has at least one and so
two real eigenvalues. This came from observing that

1 1
-——1, =
T

1 1 1

E
T T K

B(r, )=

865/1/3-3*
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K>1-1 K=1-1 K<1t-1

Fig. 6.

has

det B(n, ) >0 if k<t—1,
det B(m, 1) <0 if k>t—1.

Using Lemma 2.1, we get Fig. 6 for the positions of eigenvalues of
DX (n, m) with respect to the parameters (z, k).

By the spectral property for the eigenvalues of an infinitesimally sym-
plectic matrix, any small perturbation of the DX, (n, n) at x =1t — 1 must
have real eigenvalues. Hence the DX, at the bifurcated equilibria must
have real eigenvalues at least near the bifurcation parameter. Thus we have
the following theorem.

Theorem 2.2. All of the bifurcation branches from unstable equilibria
are themselves unstable.

3. PERIODIC SOLUTIONS

We have seen that the straight stretched-out state (¢, ) =(0,0) is
stable for all system parameters. Correspondingly, the second variation of
the Hamiltonian on the symplectic leaf is positive definite at this point. If
w, denotes the angular velocity of this solution, its angular momentum is

3
M=+ s+ 3= Z J;(0,0) .

Lj=1

and its energy is

3

Lj=1
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where J is the matrix (1.4). The theorem of Weinstein (1973, 1978) and
Moser (1976) gives the following: :

Theorem 3.1. For any small ¢>0, there are at least two distinct
periodic orbits near this equilibrium on the energy surface H™'(Ey+ €) in the
leaf P,.

These periodic motions in the reduced symplectic manifold produce
quasi-periodic motion on a torus in the original phase space
T*(S'xS'xS') by S* symmetry.

Theorem 3.1 does not directly tell us properties of these periodic
orbits, such as their spatial structure. We will obtain such information in
the case of a symmetric system by applying an equivariant version of the
Weinstein—Moser theorem according to Montaldi ez al. (1988).

We assume that the 3-body system is symmetric under the transforma-
tion of configuration space given by

0y, 0,,0,)—(05,0,,0,) in S'xS!xS. (3.2)

This means, in effect, that bodies 1 and 3 are mechanically identical. This
assumption gives the symmetries J,, =J;; and J,=J,; of the metric J
besides J being symmetric. The transformation (3.2) on S!'xS§!'x S!
induces a Z,-action on the phase space T*(S'xS'xS') and the
Hamiltonian (=the kinetic energy) is invariant under this action; this is
our symmetry assumption. Obviously, this Z,-action commutes with the
diagonal S!-action and so it induces a symplectic Z,-action on the reduced
space P,. In canonical coordinates (¢, ¥, v, v,) on P, where ¢ =0,—0,,
Yy=05—0,, vi=(u,—u,)/2, and vy=(u;—pu,)/2, this Z,-action can be
written as

(¢s ‘//, Vi, Vz)—’(—‘//, —¢s —Vy _vl)' (33)
Its fixed manifold is given by
F={(051,03,v,,v;) | ¢+ ¢ =0(mod 2m) v, +v,=0}. (3.4)

We have the following general facts about fixed manifold under symplectic
actions:

Proposition 3.1. Let a compact Lie group G act symplectically on a
symplectic manifold P. Then each component of the fixed point set Fix(G) is
a symplectic submanifold of P.

Proof. See, for instance, Guillemin and Sternberg (1984). |
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Proposition 3.2. Let H: P> R be a G-invariant Hamiltonian and let
X, be the associated Hamilionian vector field. Then X, is tangent to each
component of Fix(G) and X, | Fix(G) has the Hamiltonian H | Fix(G).

Proof. See Golubitsky and Stewart (1987). |

From these propositions, we see that F is a symplectic submanifold (in
fact, one can easily check this without referring to Proposition 3.1) and the
restriction of the Hamiltonian H will give a Hamiltonian on F. Notice that
F is actually diffeomorphic to T*S' which is two-dimensional, and so the
dynamics on it is completely integrable. From the general fact that zeros of
X, in F are zeroes of X, , we can see that X, - has two zeroes and
corresponding to (¢, Y )=(0,0) and (=, n) among the four fundamental
equilibria.

Focusing on the induced dynamics on F= T*S", notice that any level
surfaces of the reduced Hamiltonian in F are compact since those of the
original Hamiltonian H are. Since we have proved that the induced
Hamiltonian vector field X, | . has one stable equilibrium and one unstable
one, the dynamics is qualitatively similar to the reduced dynamics of the
coupled 2-body case. In particular, we conclude that the original
Hamiltonian system in P, has infinitely many periodic orbits and at least
two homolinic orbits.

We summarize the above discussions:

Theorem 3.2. For the symmetric coupled planar 3-body system, every
symmetric initial condition gives rise to a symmetric periodic motion (up to
diagonal action by S') unless the initial energy is the same as the energy of
the two equilibria (0,0) and (m, m). Moreover, the energy surface of the
unstable equilibrium (m, T) contains two homoclinic orbits issuing from it.

From this theorem, we may expect that the slightly unsymmetric
system will have chaotic phenomena. This may be proved by an adaptation
of the Melnikov method (see Section 4).

We consider the dynamics on the energy surface H'(E, + ¢) for small
&¢> 0. We already know from Theorem 3.1 that this level surface contains
at least two distinct periodic orbits. To get information on their symmetry,
we use the following: ‘

Theorem 3.3 [Equivariant Weinstein—-Moser Theorem (Montaldi
etal., 1988)]. Let G be a group acting symplectically on a symplectic
manifold (P, Q) and H be an invariant Hamiltonian. Let z€ P be a fixed
point for the corresponding Hamiltonian vector field and assume:
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H1 the Hesian d*H(z) is nondegenerate; and

H2 d’H(z,) restricted to a resonance subspace V, is positive definite. [V,
is the subspace of T, P that is the real part of the direct sum of all the
generalized eigenspaces of eigenvalues of L =DX 4(z) that are multiples
of the purely imaginary eigenvalue A.]

Then for every isotropy subgroup 2 of the G x S action on V, and for ¢ >0
sufficiently small, there are at least

L dim Fix(Z, V,) (3.5)

periodic trajectories of X, with periods near 2n/|A| and symmetry group
containing X, on the energy surface H=E,+¢.

To apply this theorem, we need information about the eigenvalues and
generalized eigenspace of the linearization DX ,(z) of the Hamiltonian
vector field at the stable equilibrium. The Hamiltonian is quite complicated
and so it is tedious to find the eigenvalues and eigenspace directly.
Fortunately, we do not have to do this. Instead, we will fully exploit the
Z ,-symmetry and solve using general facts about symplectic representations
(see Guillemin and Sternberg, 1984). We identify the tangent space to P,
at the stable equilibrium with C2? by setting

21=¢.+ivl and 22="b+in. (3.6)

Then the induced Z,-representation on this tangent space is decomposed
into irreducible representations; C>=C,@® C, where C, is the trivial piece
and C, is the nontrivial piece. In fact, Cy= {(z,, z,) | z; +z, =0}, which is
the tangent space to F at the equilibrium and C, = {(z,, z,) | z, — z,=0}.
The group Z, acts on C, trivially and on C, by (z,z)—~(—2z, —2z).
Since Hessian of H at this equilibrium is positive definite, all eigenvalues of
the linearization of X are imaginary and come in pairs +il,, +iA, where
A, and A, may be the same. Since C, is the tangent space to F, the
linearization will have C, as a generalized eigenspace corresponding to,
say, til,. Since we know that each generalized eigenspace is symplectic
and pairwise orthogonal, C, will be the generalized eigenspace of +id,.
We summarize the above discussions:

Proposition 3.3. The tangent spaces at the stable equilibrium identified
with C* by (3.6) are decomposed into irreducible pieces of the induced
representation of Z,;

‘132:@0@@1
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where
Co={(z1,22) | 2, +2,=0} and Ci={(z1,22) | 2y —2,=0}. (3.7)

Moreover, these irreducible components correspond to generalized
eigenspaces of the linearization of X, with the eigenvalues +il,, +il,,
respectively, 11, A, >0. ‘

From this proposition, we conclude that the flows of the linearization
L on C, and C, are equivalent to

multiplication by e*™** on C, and multiplication by e***? on C,.  (3.8)

Thus, we have Z, x §' actions on C, and C,, respectively.
Next, we find the isotropy groups of these actions on each of C,
and C;:

On C,, the isotropy group is Z,x {1} and whole space C, is the fixed
point space of real dimension 2.

On C,, the isotropy group is {—1}x {—1} and again the whole space
C, is the fixed point space of real dimension 2.

Therefore, we have the following refinement of Theorem 3.1:

Theorem 3.4. For any small ¢>0, we have at least one periodic orbit
with Z,-symmetry and at least one periodic orbit with {—1}x{—1}
symmetry on the energy surface H '(Ey+¢) in P,.

Remarks 3.1. As we mentioned before, these periodic orbits give
quasi-periodic orbits in the original phase space T*(S'x S'xS'). They
have the pictures in Fig.7 in the stick representation viewed from a
rotating frame, ie., up to the diagonal S'-action.

Remark 3.2. When 4, # 1,, one can apply an equivariant version of
the Liapunov Center Theorem to produce smooth families of periodic
orbits with corresponding symmetries bifurcating from the stable equi-
librium.

o
~
- »
______
o -
. .

- -~

Z,-symmetry {-1} x {~1}-symmetry

Fig. 7.
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Remark 3.3. We conjecture that these periodic solutions are related
to traveling waves for many bodies and in the continuum limit.

Finally, in this section, we examine some aspects of stability. If we let
¢, be the Hamiltonian flow, then the Floguet operator M(u) of a periodic
orbit u(z) with period T is defined by

M(u) = D¢ (u(0)): TyoyP = Ty P. (3.9)

If M(u) has all eigenvalues on the unit circle, then u is called spectrally
stable. Note that M(u) always has a generalized eigenspace of dimension at
least 2 with eigenvalue 1 because

u'(T) = D¢ (u(0)) -u'(0) =u'(0). (3.10)

Now, let u; and u, be the periodic solutions in Theorem 3.4, whose
periods T, and T, are near 2n/|4,| and 2n/|1,|, respectively. Then we have
the following result about the spectral stability.

Theorem 3.5. If A, and A, are nonresonant, then the two periodic
orbits that were found in Theorem 3.4 are spectrally stable if ¢ >0 is small.

Proof. Note that the Floquet operator M(u;) is close to exp
(—T:DX4(z)) as e = 0. Note that T,~2x/|4,| and exp((—2n/|4,|) DX 4(2))
has eigenvalue whose corresponding generalized eigenspace is of dimen-
sion 2 and so has one simple eigenvalue pair that lies on the unit circle. By
the general rigidity of the behavior of the eigenvalues of perturbations of a
symplectic matrix, we conclude that the eigenvalues of M(u;) stay on the
unit circle if ¢ >0 is small. |

4. CHAOTIC SOLUTIONS

In this section, we show that the dynamics of the three coupled rigid
body system is not integrable, having chaotic solutions of horseshoe type.
This is done using the Holmes and Marsden (1983) version of Melnikov’s
method to perturb a homoclinic orbit in a problem with S' symmetry.
There are several homoclinic orbits that one can use to perturb; a pair was
described in Theorem 3.2. Here we perturb the two body problem by
adding a third body near the center of mass of the second.

We first need to derive an expression for the Hamiltonian that is
written so the perturbing terms are isolated. Refer to Fig. 8.
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(0]
Fig. 8.

Let

O be the origin of the inertial reference frame;

A be the hinge point of bodies 1 and 2;

B be the hinge point of bodies 2 and 3, and also the center of mass of
body 2;

a, b, d be the vectors between the centers of mass and hinge points of
bodies 1, 2, 3 in the reference configuration;

R(6) be the rotation through angle 6;

r be the vector from O to the system center of mass;

19, 1, rJ be vectors from the system center of mass to the body centers
of mass;

0,, 0,, 0, be rotation angles from a reference configuration to the
current configuration;

X,, X,, X; be position vectors for points in bodies 1, 2, 3 in the
reference configuration; and

X, X,, X, be position vectors for points in bodies 1, 2, 3 in the current
configuration.

As in [I], we have
x;=R(0,)X, +1, (4.12)
r,=r;+ R(0,)a+ R(0,)b, (4.1b)
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rs=1,+R(0,)d, (4.1c)
my =m I + m,r, +msr;. (4.1d)

We compute the total kinetic energy as in [I] as

2

H= i ltrace(w I"wT)-i—f—-
) T 2m
1 my+ms . . ms . 2
+ —ml - '——(R18+R2b)——R3d
2 m m
1 1 5 3 2
+ Emz —(R13+R2b)——R3d
1 . , .2
+ 3 m %(R1a+R2b)—ml+m3 R3d1 . (4.2)

Assume p =0, without loss of generality, and that the reference configura-
tion is chosen so a, b, and d are parallel. Then we can write

H=Hd=H0+dH1+0(d2) (4.3)
where d= ||;1|| is our small parameter,

Hy =3I, +ea®) o2 + X1, + eb*) 3 + eab cos pw,w, + 31,03,  (4.4a)

and
H,=v(acos(¢ +) w,w;+ bcos Yyw,mw3) (4.4b)
where
8=m3(m1+m2)’ y=m1m3, and 0(d2)=m3(m1+m2) L.
m m
We can rewrite H as H=1(w, J,0) where o = (o, 0,, 0;)7,
I, gabcos ¢ yadcos(¢+ )
J;=| eabcos¢ A ybd cos Y (4.5)
yad cos(¢ + ) ybdcosy I,

and .

my(m; +m,)
m

I,=1+ea®, TL=L+e?, TL=L+ d>.
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Write J,=J, + dJ, + O(d?) where

1, eabcos¢ O
Jo=| eab cos ¢ I, 0

0 0 I
and
0 0 ya cos(¢ + )
J = 0 0 vb cos
yacos(p+y) ybcosy 0

We need to write the kinetic energy with respect to the momentum g
rather than the angular velocity. This is done using u=J,0:

Hy(u)=3$m J7'u> = Ho(p) + dH (1) + O(d?)

where
0H, oJ
Hp=—" =- 0 Ty = =< IS IS ). (46
=5 == {ws, R u> I35 . (46)
Here,
1 A —e¢ab cos ¢ 0
Jo'=| 4\ —eabcos ¢ T, 0
0 0 !

(where 4 =T, T, — ¢%a®b* cos® 0), and so J, 'J,J5 ' becomes

[ Iy )
0 0 yj (T,a cos(¢ + )
— eb%a cos ¢ cos i)
0 0 s [(—ea®b cos(¢ + )
a4
-cos @)+ 1,hcos )]
-1 —1
% (720 cos(¢+ ) % [(—ea®h cos(d+ ) 0
L — &b’acos ¢ cosy) -cos ¢) + 1, b cos )] y

Therefore,

| B - 1
Ho=ﬁ(lzﬂf+11ﬂ§_2ﬁab cos ¢H1.U2)+513_1ﬂ§ (4.7a)
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and

_yi'a

H =
! A

w1 3T cos(g + ) — eb? cos ¢ cos )

I3 'h

y o pt3( —a® cos(¢ + ) cos ¢+ 1, cos ). (4.7b)

Now, notice that, when d=0, i.c., B coincides with the center of mass of
body 3, the system is completely integrable and we know that the reduced
system has two homoclinic orbits, given in Fig. 1 of [I]. This system is in
the framework of the Melnikov method with an S' symmetry as
generalized by Holmes and Marsden (1983).

From (4.7a), we see that the unperturbed Hamiltonian H, has an
additional S' symmetry given by i-rotations; or, equivalently, by
0;-rotations in the original system, which induces the obvious Poisson
action whose moment mapping is exactly u;: T*(S'xS!'xS")/S'—>R.
Note that u, +u,+ u; is the moment mapping corresponding to the
simultaneous uniform rotation, ie., the diagonal action of S§'. The H,
and Hyflows restrict to the symplectic leaf P, = {p,, U, tz, ¢, ¥ |
Ui+ us+pus =M}, and (Y, u3) are conjugate variables in this symplectic
leaf. Note that the equations of motion for H,, are given by

_0Hy . _0Hy OHy . _ 0y

#1—a¢, K= 26 o Hy= PR “s)

j_0Ho 0Hy  0Hy 0H, |
opy  Ouy’ Ops  Opy

By regrouping Eqgs. (4.8), we see that (u,, u,, ¢) can be separated; after
solving this system, we can substitute back to get the equations for (us, ¥).
Since ¥ is the cyclic variable for Hy,

) T
fiz=0, '70=131“Z(11#2_30b005¢l‘1) (=03 —w,)
= Q(1).
Let x(1) = (u;(2), u5(1), #(t)) be a homoclinic orbit for the (u,, -, ¢)-

dynamics in u, + g, + 43 = M, u;=J where M, J are given constants.
As in Holmes and Marsden (1983), if we set

W)= Q) ds-+ o,
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we have only to prove that the Melnikov function

M(po) = : {HO, %}(x(t), jo Q(s) ds+ o, J) dt (4.10)

has simple zeroes to get “horseshoes,” where { , } is the bracket in the
variables (i1, o, @) in {p+p+pus=M, ps=J}.

Note that 2 is an explicit function depending on y,, u,, and so will
not be a constant as time changes. For reasons that will become clear, we
will consider, instead of the function M(y,), the function

1
N(o, J) -=M('//o)'y—JT;

/1,
ie.,
o0 }I1 1
— Lw {HO, m}(m; fo Q(s) ds + o, J) dt. (4.11)
Now,
. H, 1 .
1 Em= -3 {a(lyp; — eaby, cos @) cos(¢ + )

+ b cos (T, p, ~ pyabe cos §)}.

From now on, we will drop ~on I, and T,, remembering 7, > ea®
and T,>¢b’. Let wus first consider N(Y,,0). Then ()=
—(I,p, —eab cos gu,)/4, and ‘

H
={b cos i + a cos(¢g + )

Hy Ly, —eabu, cos ¢
Q

Iy, —eaby, cos ¢

= {b (cos Jl Q(s) ds - cos Y, —sin JI Q(s) ds -sin 'l/o)
0 0

Ly, —eabu, cos

T Ly, —eabyu, cos ¥ cos <¢ + J;) Q(s) dS) cos Y,

_ sin <¢ + jo Qs) ds) sin lp} (4.12)

We can assume without loss of generality that u, and u, are even functions
and ¢ is an odd function; then 2 is an even function and so

jot Q(s) ds
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is an odd function of ¢. Thus

H; d Ly, —eabu, cos ¢
Ly
{HO, Q} { 0, b COS J.O Q(s)ds—i_alluz—eabulcosgﬁ

X COS <¢ + fot Q(s) ds)} cos Y,

Ly, —eaby, cos ¢

—lH, bsin [ Q(s)d
{ 0 smfo (s) S+allu2—sabu1cos¢

« sin <¢ + jo Qs) ds)} sin

Ly, —eaby, cos ¢ t
=<H
{ 0, T, i, — sabyi; cos ¢ cos| d+ fo Q(s)ds )y cos i,

Ly, —sabu, cos¢ .
a {HO’ ¢ Iy, — eabp, cos ¢ <¢+J e )dS)} sin Vo.
(4.13)

By symmetry, the first term of (4.13) will vanish after integration.
Thus,

{Ho,alz'ul by €08 § <¢+j (s)ds)}dtsin¢0.

Mo, 0)= - | Ty s —sabp, 005 6 °
(4.14)

— 0

Thus, what we have to do is prove that

© Iu, —eabu, cos ¢
H .
jw{ et ¢+j Q(s)ds | b dr 20

Assume, for example, that I, =7,=1 and a=b=1. Then the integrand
becomes

Iy, —eu, cos ¢ t
o g (¢4 [ 200
=¢ = {M&M sin (qﬁ + JI Q(s) ds)}
O0¢ | Iu,—ep, cos ¢ 0

. (0 0 \[In—epycosg
- 1(% 5#1>{m ‘“(‘/’*f 9(S>dS>} (4.15)
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Here
d , \_ elsing(ui—ul) . ‘
3 T U= cosgpp <¢ +[, 26 ds)
Ty, —ep, cos ¢ !
S Per— (¢+ L (s) ds) (4.16)
and

o 0 _ (P —¢*cos’ g)(p + pta) . ‘
(G 3) U=~ e g (44 a0 )@

Let us express y,, i, as functions of ¢ for one of the homoclinic orbits
that is in the (u,, 4,, #)-dynamics. It is given as the intersection of
Mg+ py=M—J and

LM—gp

4.18
4 JI—¢ ( )

1
Hy=>~ (Ip3 + I3 — 26 cos gy ) =

(the energy of the homoclinic orbit).
Set v=p, —p,. Then we can write

H—l((M_J)2+ v ) (4.19)

°"4\I+ecos¢ I—ccosg
When
1/(M~-J)?
Hy=-|—"—
0 4< I—¢ )’
we get
v=+./T (M—1J)
where
B 1 — B cos ¢ €
r=——11 —_ p=-. .
l—ﬁ( +COS¢)1+Bcos¢ and B 7 (4.20)
Consider the homoclinic orbit obtained from v= \/7" (M —J). Then,
1+ 1-/I
Uy = 2\/— M=) and U= f(M—J). (4.21)

2



The Dynamics of Coupled Planar Rigid Bodies. IT 293

Substitute (4.21) into (4.16) and (4.17) to get

2_{ - 4ﬂsm¢\/1_"
"7 {(1=Bcos g)+/T(1+pcos §)}?

x sin <¢+ f Qs) ds)

(1—ﬁcos¢)—ﬁ(1+ﬁcos¢)
(1—Bcos¢)+ﬁ(1+ﬁcos¢)

X oS <¢ + jo (%s) ds>, (4.22)

(i_i) _ 40— pcos® g)(M —J)~!
o, o, {(1—Bcos ¢)+/T (1+ Bcos $)}2

« sin <¢ + fo Qs) ds>. (4.23)

And

dﬂl ; I’
h= 3 (M=), Tt

Thus, N(,,0)=4,+ A4, + A5, where

y _[Oo —4f sin ¢ /T §
Vs (1= Beos ¢) + /T (1 + f cos 4))?

by =

x sin <¢ +f Q(s) ds> dr, (4.24a)

y =_Jw (1—ﬁcos¢)—\/f‘(1+ﬁ005¢)
2 —w(l—ﬁcos¢)+\/l—"(1+ﬁ005¢)

% ¢ cos <¢ + jo Q(s) ds> ar, (4.24b)

A =f°° 1—p%cos® ¢ I
’ —oo((1—ﬁcos¢)+ﬁ(1+ﬂcos¢))2ﬁ

« ¢sin <¢ + jo Qs) ds> dt. (4.24¢)
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Now, note that

: Ty, — £ cos gu
1 pp— B cos du,
o — B cos buy 4.
1 1-pPcos’ -

and that all of the integrand decays exponentially as ¢ — +oo0. Therefore,
all of the above integrals are analytic functions with respect to 1/I and f,
0< B<1, 0<1/I, and are continuous in the range 0 <f <1, 0<1/I. We
will consider the limiting case when I=o0. Then, Q=0 and so (4.24)
becomes

4,=| ” —4psin /T4 sin ¢ d1, (4.26)
—w ((1— B cos ¢) + /T (1+ B cos $))?

4ym —fw (1—pcos @) — /T (1 + f cos ¢)

70@(1_ﬂcos¢)+\/f(1+ﬂcos¢)¢cos¢dt’ (4.266)

Ay= jw —fcos ¢ dsin ¢ dr. (4.26¢)

(1—ﬁcos¢)+ﬁ(1+ﬁcos¢))2ﬁ

Changing variables, these become

A=

r —4Bsin® ¢ /T dg (4.27a)

= ((1— B cos @)+ /T (1 + B cos ¢))>’

A= — r (1—pfcos¢)— \/7“(1+ﬁcos¢)

d .
(1 foosp) b T (14 Beosg) 0 4T

" 1— % cos? ¢ I
A= de 427
3= Ln((l—ﬁcosqﬁ)%— /1:(1+Bcos¢))2\/'sm¢ $. (4.27¢)

It appears to be difficult to check directly whether the sum
A, +A,+ A, is not equal to zero. To deal with this, let us compare the
order of 4,, 4,, and A4, as \/‘-+ 0. The order of 4, is O(B*?). For 4, and

A, set \/_ d to get
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™ (1—-8%cos¢)— \/1+cos¢ — 5% cos? @)
_n(1—5zcos¢)+\/1__52\/(1+cos¢)(1—54cosz¢)

X COS ¢ do. (4.28)
b (14 cos ¢)(1+ 6% cos ¢)

T 1~~
— 5
_J v1=9 1207900 osgap (429)

5 [dtcosd)(l+d cos )
/1_ 52 1—6%cos ¢

The integrand is equal to

L 01+ 10° + 0(0*)(1 +6% cos § + 00 THeosd
14+6(1 42624+ 0(8%))(1 + 6% cos ¢ + 0(8%)) /1 +cos ¢

=(1=(6+30*(1 +2 cos ¢) + O(5%)) /1 + cos ¢)
x {(1=6(1+ 56%(1 +2 cos ¢) + O(6*)) /1 + cos ¢)
+ 31 4+ cos ¢) 6*(1 + 15%(1 + 2 cos @) + O(6*))?

47-[1_!_

+ (1 +cos ¢)*? 8°(1 + $6%(1 + 2 cos ¢) + O(5*))*} cos ¢ + 0(8*)
=cos {1 —2./1+cos ¢ 5+ 3(1 +cos ¢) 5*} + O(3%). (4.30)

Now check the coefficients of 6 and 62 in (4.29); the coefficient of § is equal
to

2fn 1/1+cos</5cos¢a'¢:=§\/§.

For A,,
e B —sin ¢(1 — B* cos® ¢) + 2B sin ¢ cos #(1 + cos @)
1= (14 B cos ¢)?
Thus, the coefficient of 6 =./f in the expansion of 4, is computed as

T —gin® ¢ 8
)
j—n,/l-i—cosgzﬁ v 3\/5
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Unfortunately, the first order term in 6 in (4.29) vanishes, so we must
check the coefficient of 6°. From (4.30), the coefficient of 6% in A, equals

=i

—n

cos ¢(1 + cos @) dp = —6m.

Similarly, the coefficient of 32 in the expansion of 4; is computed to be

[" 2sin g dgp=an

Thus, the coefficient of 62 in 4, + 4, + A, is given by —6m+4n= —2r #0.
Therefore, the coefficient of §? in the expansion of N(i/,, 0) with respect to
f when I—- oo is not equal to zero. From this, we can conclude that the
Melnikov integral has only simple zeros for generic parameter values if the
distance between the hinge points and the center of mass of the third body
is small. We summarize as follows.

Theorem 4.1. If the distance between the center of mass of the third
body and its hinge point is sufficiently small, then, apart from isolated values
of the system parameters, the dynamics of the three body system has
Poincaré—Birkhoff—Smale horseshoes, and so is nonintegrable.

Nonintegrability here means that there are no analytic integrals other
than the energy and total linear and angular momentum. The latter is a
well-known consequence of the existence of horseshoes [see, for instance,
Moser (1973)].

5. DISCUSSION

In this paper, we have developed a fairly complete picture of the
dynamics of the planar 3 body system. The kind of analysis that we have
presented enables one to study equilibria and their stability, bifurcations of
equilibria, periodic and chaotic solutions. Computer graphics of the
dynamics illustrating these features has been developed by Sreenath (1987).

While this analysis may be difficult to extend to a complex structure
of n bodies, the detailed understanding of the dynamics of 3 bodies helps
us to understand the relation among chaos, coherence, and stability in
more complex structures and in the continuum limit # — co. In fact, it has
been proved by Y.-G. Oh that the straight-out configuration of the
finite coupled rigid n-body system is always stable, but its continuum
analogue turns out not to be formally stable. Moreover, we also have a
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good understanding of the special structure of periodic orbits bifurcated
from the equilibrium for the symmetric coupled rigid body system.

We also point out that the detailed understanding of the Hamiltonian
structure via symmetry reduction should assist in the development of
numerical algorithms and the control theory for these systems.

In Grossman et al. (1988), the dynamics of coupled three-dimensional
rigid bodies is studied. The analysis there indicates that there may be a
symmetric Hamiltonian Hopf bifurcation leading to interesting periodic
and chaotic motions. Again one can conjecture the possibility of interesting
three-dimensional waves, such as helical waves, being built from an under-
standing of the few degrees of freedom situation. An eventual goal is to link
this theory with the infinite-dimensional case in Krishnaprasad and
Marsden (1988), Simo et al. (1988), and Krishnaprasad et al. (1988).

NOTE ADDED IN PROOF

After this work was finished, we learned that an infinite dimensional
version of Lemma 2.1 was obtained by M. Grillakis in connection with the
stability problem for the nonlinear Schrodinger equation (Comm. Pure and
Appl. Math. 41, 747-774 (1988)).
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