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Abstract

Both upper and lower estimates are established for the separatrix splitting of rapidly
forced systems with a homoclinic orbit. The general theory is applied to the equation

Q+sing= Ssin(-é)

for illustration. T here are two types of results. First, fix >0 and let O<e €1 and
0 < 5 < 8, where 8y is sufficiently small. If the separatrices split, they do so by an

amount that is no more than
1(=®
CSexp(—E(-z-—T\))

where C = C(8p) is a constant depending on 8q but is uniform in € and 3.
Second, if we replace 5 by €78, p28, thenwe have the sharper estimate

C, 5 e < splitting distance < Cltzp 5e "

for positive constants C, and C, depending on 8 alone. In particular, in this second
case, the Melnikov criterion correctly predicts exponentially small splining and
transversal intersection of the separatrices. After developing this theory we discuss some
of its applications, concentrating on a 2:1 resonance that occurs in a KAM
(Kolmogorov, Arnold, and Moser) situation and in the forced saddle node bifurcation
described by

i+ px+x2+x = B .
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Introduction )

In Poincaré's celebrated memoir [1890] on the 3-body problem, he introduced the
mechanism of transversal intersection of separatrices which obstructs the integrability of the
equations and the attendant convergence of series expansions for the solutions. This idea has been
developed by Birkhoff and Smale using the horseshoe construction to describe the resulting chaotic
dynamics. However, in the region of phase space studied by Poincaré, it has never been proved
(except in some generic sense that is not easy to interpret in specific cases) that the equations really
are nonintegrable. In fact Poincaré himself traced the difficulty to the presence of terms in the
separatrix splitting which are exponentially small. A crucial component of the measure of the
splitting is given by the following formula of Poincaré [1890, page 223]:

—8xi

)

which is exponentially small (or beyond all orders) in . Poincaré was well aware of the
difficulties that this exponentially small behavior causes; on page 224 of his article, he comments
that "En d'autres termes, si on regarde | comme un infiniment petit du premier ordre, la
distance BB', sans &tre nulle, est un infiniment petit d'ordre infini. C'est ainsi que la fonction
e-1M est un infiniment petit d'ordre infini sans &tre nulle .... Dans l'example particulier que nous
avons traité plus haut, 1a distance BB' est du méme ordre de grandeur que l'integral J, c'est & dire

que exp(—n/ ‘\I 2 ).

In this paper we overcome some of the essential difficulties that are encountered in this
type of problem, in KAM theory, and in chaotic motions occurring in the unfoldings of degenerate
singularities. Based on numerical evidence and formal calculations, it is known that one should
get exponentially fine splittings and exponentially long escape times for problems of this type.
Some rigorous but rough upper bounds for this phenomena have been given by Nekhoroshev
[1971,77] and Neishtadt [1984]; see also the discussion in Amold [1978], p.395ff and 407,
-Chirikov [1979] and Simo and Fontich [1985]. The analyticity argument of Cushman [1978] and
Kozlov [1984] (and reference therein) uses the Poincaré-Melnikov method to prove that the
separatrices do split for most parameter values. However, it is not easy to prove from these
arguments that splittings really do occur for specific parameter values and what the sharp upper and
lower estimates for the splitting distances are. The seriousness and significance of this difficulty
was further emphasized by Sanders [1982]).
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In KAM theory one also finds that the splitting of separatrices is governed by systems of
the form considered here, and so would be formally beyond all orders if a power series in the
perturbation parameter were developed. Indeed, a formal calculation based on the Melnikov
method shows that the splitting of separatrices is probably of exponentially small order, 2
phenomenon discussed in Amold’s book (see especially page 397). Zehnder [1973] also shows
that there are transverse homoclinic orbits for generic nonlinearities in KAM theory. In a similar
fashion, the same type of behavior arises in the unfolding of degenerate singularities, such as the
interaction of the Hopf and the pitchfork or wanscritical bifurcation (see Guckenheimer and Holmes
[1983] and Scheurle and Marsden (1984] for discussions of this bifurcation and for further
references). See also the paper of Dangelmayr and Knobloch [1987] for the case of symmetry
breaking bifurcations and the work of Golubitsky and Stuart [1986] for the application of
unfolding techniques to the Taylor Couette problem, where it is expected that similar phenomena
will occur. Since these splittings are exponentially small, standard methods for detecting them
based on averaging, normal forms, or perturbation expansions using power series in €, will not
succeed. This is also behind the fact that one has, in general, divergence of the Birkhoff series.

In this paper, we give a new method that overcomes many of these difficulties. We give
sharp upper bounds, with the constant in the exponential being the distance of the nearest pole in
the complex t-plane of the unperturbed homoclinic orbit to the real axis. If a high enough power of
g is present in front of the forcing term then there is a lower bound for the splitting, which is also
exponentially small with the same exponential factor. In the latter case, the Melnikov integral is
sufficient to predict the transversality of, and to estimate the magnitude of the splitting. In general,
however, it appears that one must go to higher orders to obtain a predictable criterion, in which
case one has to revert to an intricate calculation, or else use the Cushman-Koslov analyticity
argument, which only gives a generic result.

Our approach is based on a convergent iteration scheme using the Liapunov-Perron
method and a special extension of the scheme to the complex t plane that enables us to estimate the
splitting distance. A naive extension will run into difficulties since the forcing term sin(t/g) is
exponentially big for t in a complex strip. As mentioned above, these estimates relate the
singularities in the complex plane and the factor in the exponential [the separatrix for the
homoclinic orbit in the pendulum case has one component given by sech t, which has simple poles
at t = Hn/2, and the corresponding exponential factor is exp(-n/2¢).] Because of this, one can
conjecture a connection between the results here and the Painlévé property. The work of Ziglin
[1982], van Moerbeke [1983] and Bountis et.al.[1986] may be helpful in this regard. The key to
our method is that the special iteration scheme preserves the exponentially small structure, with the
same factor in the exponent at each stage, controls the possible accumulation in the pole behavior,
and exhibits the cancellation of terms that move each of the stable and unstable manifolds (and the



Exponentially Small Splittings 4

hyperpolic fixed point) an amount that is algebraic in €, even though the difference between them
is exponentially small. The key points of the proof are given here; a more detailed paper is in
preparation.

_ There have been other approaches to exponentially small phenomena based on asymptotic
methods. For example, the works of Meyer [1976] on adiabatic variation, Meyer [1982] on wave
reflection and quasiresonance, Segur and Kruskal [1987] on breathers in the ¢4 model, and
Kruskal and Segur [1987] on dendritic crystals, use this technique. While there seem to be some
points in common with our approach, it appears that additional work would be needed to apply and
justify the estimates that we obtain for separatrix splitting.

Acknowledgements We thank B. Birnir, J. Carr, B. Chirikov, W. Eckhaus, M. Golubitsky,
J. Guckenheimer, K. Kirchgassner, M. Kummer, R. Meyer, and H. Segur for useful comments.
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81 Preliminaries
We begin by recalling a few basic facts about the standard Poincar€ - Melnikov method.
The phase portrait of the simple pendulum
d+sing =0 1.1

is as shown in Figure 1 in the (¢, v) plane, where v =dd/dt. The homoclinic orbits shown there
are explicitly given by the solutions

o) = £2 tan~(sinh 1)
(1.2)
v(t) = £2 sech(t)

We observe for later use that sech t has poles in the complex t-plane at t= 1t in/2.
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Figure 1. Phase portrait of the simple pendulum.

If we modify (1) by including a T-periodic forcing, we get the equation
$+sino =ef(® , (1.3)
for which the dynamics is conveniently described by the Poincaré map P(to) : R* - R? defined
by mapping initial conditions (&g, Vo) attime t to the solution after one period, at time o+ T.
For small €, the hyperbolic fixed points for (1.1) get perturbed to fixed points for P(ty) (G.e.,

periodic orbits for (1.3)) and P(tp) has stable and unstable manifolds at these fixed points which,
in general, intersect. This leads one to define the splitting distance

d = mt:x d(ty) (1.4)

and the splitting angle

o= mgx alty) (1.5)

where, for any tg, d(tp) and o(ty) are shown in Figure 2.
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Figure 2. The splitting distance and angle.

This splitting distance and angle are correlated with the thickness of the stochastic layer;
the trajectories of some sample points are shown in Figure 3 for illustration. One should be
cautious, however, that there is little analytic work on the precise relation between the splitting
distance and angle and the thickness of the stochastic layer. However, the celebrated horseshoe
construction of Poincaré, Birkhoff, and Smale does establish that a transversal intersections (o #
0) implies the existence of complicated orbits (and periodic orbits with arbitrarily high period) and
thus warrants using the word "chaotic” to describe the dynamics.
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1.3) for f(t) =(0.1)sint

Figure 3. Orbits of points under the Poincaré map of (
(plot courtesy of B. Bimir).

The splitting distance is typically measured by a Poincaré-Melnikov function. For a

planar Hamiltonian system

_oH oK

q—-a_P— o (1.6)
3H oK | '

P=-"3q “3q

where K =K(q, p,t) is a perturbing T-periodic Hamiltonian, the Poincaré - Melnikov function is

‘the T-periodic function

M) = j" (K. K}G(O, PO, 1+t dt a7

the splitting distance is proportional to
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d= emgle(to)l-i—O(ez) ,

and the angle is proportional to
o= em:le'(to)HO(ez) :

This follows readily from an analysis of the first variation equation. See,

and Marsden [1982] and Guckenheimer an
example, for

$+sin¢ = esinot,

one finds

M(ty) = 2nsech (%(2') cos (wtp)

by evaluating (1.7) using residues, noting the pole of sech t at in/2. Thus,

d = 2ne sech (-%9-) and O =2nEE scch(%cl)

§2 Exponentially Small Splittings

To illustrate the main idea, first consider the rapidly forced pendulum

d+sing = e sin(t/e) .

If one applies equation (1.12), one finds the splitting distance should be of the order

4 = 2nee ™= .

d Holmes [1983] for discussions and proofs.

(1.8)

(1.9)

for instance, Holmes

For

(1.10)

(1.11)

(1.12)

(2.1

(2.2)
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(The constant 27 is not jmportant -- it depends on the units of measure; for example, it may be
convenient to use the unperturbed energy as a distance measure.) However, (2.2) is not easy t0
justify; for one thing, the errors in (1.8) are O(€?), while (2.2) is already smaller than any power

of &
There are two main results for

problems of this sort as follows:

UPPER ESTIMATE Consider

$+sin¢ = dsin(te) . (2.3)

For any M > O thereisa 8o > 0 and a constant C = C(n\, 8y) such that, for all € and o

satisfying 0<e<1 and 0< 5 < &), we have
]- (2.0

m]=-

splitting distance < Cd exp[— (-12':- - n)
There is a similar estimate for the splitting angle.

LOWER ESTIMATE AND SHARP UPPER ESTIMATE Consider

b +sin ¢ = €8 sin(ve) . (2.5)

If p28,thenthereisa 8o>0 and (absolute) constants C, and Cy such that, for all €,0

satisfying 0<€<1 and 0 < & € &y, we have

C,eP5e ™% < Splitting Distance < C,eP8e ™% (2.6)

Observe that w/2, which appears in the exponent in both estimates, is the distance from

the real axis to the closest pole of sech t; see Figure 4.
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Figure 4. The exponent in the exponential estimate is the distance to the nearest pole of the
homoclinic orbit in the complex t-plane.

These estimates are special cases of estimates for a planar system

a = glu, &) +€°0hlu, €, %), (2.7

where one assumes:

« g and h areentirein u and €;

« h is of Sobolev class H! (for the splitting
results) and T-periodic in the variable 0= tE;

as a homoclinic orbit u(e,t) analytic in t on a strip in th

distance results) or H? (for the splitting angle

«u=glue) h e complex

t — plane, with width 1.

under additional assumptions on the fundamental solution of the first variation equation

v=D,g{u, €) - v
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which can be checked to hold in the pendulum example, there are analogues of the upper and lower
estimates above for this general situation, with 7/2 replaced by T. We shall give additional details
in the subsequent sections. The proofs depend on detailed estimates of the terins in an iterative
process in the complex strip that are used to define the invariant manifolds. It is important to
extend these iterates to the complex strip in the proper way; as we have mentioned, sin(t/€)
becomes very large for complex t and naively extended jteration procedures for the stable and
unstable manifolds will Jead to unbounded sequences of functions.

§3 The Hypotheses and Set-Up.

We recall some of the general theory and the ideas involved in the proofs from Holmes,
Marsden and Scheurle [1988] for the convenience of the reader. We consider 2 differential
equation of the following form

u=gl,€) + e d h(u, €, %) (3.1)

where p is a positive integer (one can think of the term €P as being part of h or as being divided
between & and h asis appropriate), u = (x,y) € R2, £>0, gu,€) : C2x C — C? is entire,
h is entire in (u, €) and is 2n-periodic and C! (or of Sobolev class H! ) in its third arguement t /€.
Both g and h are assumed to be real for real values of their arguments. (The H! assumption on h
is needed below to get bounds on the splitting distance; for exponentially small bounds on the
angle ata wransversal intersection, we need to assume that h is of class H? in t/€ -see
Remark 1 at the end of section 5.)

Although it is not really needed, we shall introduce a symmetry condition for simplicity.
(A more general case without this condition is discussed at the end of this paper.) Namely, we
assume that the system (2.1) is reversible in the sense that there is a real linear reflection operator
R:R?—> R? ie.a 2 x2 matrix satisfying R? = 1dentity, with eigenvalues 1, and satisfying the
following conditions:

g(Ru, €) =— Rg(u, €) and h(Ru, €,-V€)=- Rh(u, &, VE). 3.2)
For instance, for the example given in the preceding section, We take

g(x, y) = (y,— sin x), h((x.y), &, t/e) =(0, sin(t /e)) and Rk, y)=(-% ).
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Assume that the homogeneous equation u= g(u, ¢) has a homoclinic orbit I'e which is
asymptotic t0 a hyperbolic fixed point; we write the homoclinic orbit as u =Tg(t). We shall assume

that’ Ug(t) hasan analytic continuation in the complex t planeinto a complex strip S defined to
be the set of complex numbers z such that |Imz| <1 , where re is some positive real number.
Typically, U(t) will be an analytic function in t, and will be analytic in a strip, with T¢ smaller than
the smallest distance of the poles to the real axis. We assume that the initial condition of the
homoclinic orbit satisfies Rig(0) = T¢(0), s0 that R Tg(~t) = Tg(t). In the example, the homoclinic
orbit is given by

(), T = 2(tan-(sinh 1), sech 1)

where { = do/dt, so this assumption is clear.

As indicated in section 2, there are two Cases to consider. In the first, we choose p = 0
and 1, =(®2)-N for a fixed 1 >0 and in the second, we choose 1 = (% 2) — € (and later we

will require p 2 8).
The first variation equation

v =D g(@:),€) v (3.3)

has exponential dichotomies corresponding to t in R+ and R— (see for example, Hartman
[1982], Ch. 13). That is, the plane splits into two subbundles

R? = X.c ©® Yie- (3.4)
that are invariant under the evolution of the first variation equation, such that the components @,
and @, of the fundamental solution matrix @(t, T), which are defined by restriction of @ to X;¢ and

Y, ¢ respectively, satisfy the inequalities:

lo,t, 0l sk lEl @120 (3.52)

lo . onl ske™ lnl GfT<) (3.5b)
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for t, T satisfying —o° < 1,7 < 0,and where £ € X and N € Y . For simplicity of
notation, we have suppressed the possible € dependence of @, @1, and ¢,. Similarly,

o606 sk lEl TSy (3.62)
oy oml ske™ Inl @121 (3.6b)

fort, T satisfying 0 £ T, t <% and where £ e X;cand N€ Yee. In these equations o and K
are positive constants. The constant o is related to the eigenvalues of the linearization of the

equation at the hyperbolic fixed point. We choose the dichotomies amongst all possible ones by the
requirement thatat t = 0, the bundles satisfy

Xo, is the eigenspace of R corresponding to the eigenvalue -1
Yo, isthe eigenspace of R corresponding to the eigenvalue 1

In the example, we take the bundles to be the tangential space to the homoclinic orbit and the
normal direction at the point t = 0 swept out by the flow of the first variation equation. The first
variation solution is explicidy found in this case to be as follows

1 . secht
@,(t, 1§ =5 [{cosh T+ secht—TsechTtanh T}y = {sinh T+7 sech ﬂu](—sechttanht)

(3.7a)

( sinh t+tsecht t) (3.7b)

1
ot TN = i[{sech tunh thy - {sech 1}0] cosh t + sech t—t sech t tanh

where v has components (¥, v) in the original coordinate system and where g and 7 are the
projections of v onto the spaces Xre and Yqe respectively.

§4 The Iteration Method.

We shall locate the stable and unstable manifolds of the perturbed equation using a special
Liapunov-Perron type iteration scheme that is coupled with a Fourier expansion and a certain
extension to the complex t-plane. It will be important to keep track of the estimates during the
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iteration process itself. We write the perturbed stable and unstable manifold of the hyperbolic fixed
point as follows:

v, tp &0 =0 lt—1t) + 5vit- tplp&d @.1)

where t 2 t; in the + case, andtStointhe—case.Dropping the + and writing s = t—to , we getan
equation for v, regarded as a function of s, 1y, € and O by substituting (3.1) into (2.1); the stable

and unstable manifolds will later be picked out by looking for bounded solutions of the resulting
fixed point problem. We first compute (suppressing the € and & dependence for the moment):

v — A(s)v = F(v, 5, (s + 10)/€) 4.2)

where

A(s) =D, g{U(s), €) @4.3)
and

s+1,
s = )7

1 - p. |- s+,
-5[g(ﬁs(s)+8v,e)—g(ue(s),e)—A(s)Sv] +¢€ hlu(s)+dv. e, —¢

4.4)
Here the P is grouped with h, but we also could group appropriate powers with & ; this freedom

is important later. We look for solutions of (4.2) that are uniformly bounded in the + cases by
reformulating it as a fixed point problem for the following integral equation

s+t
=K F(v. s, =g 0 ) (4.5)

“where K£ are the linear operators (again with the € dependence supressed) that are given by
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(K+ f)(s) =-[o ®,(s, 0) f,(0) do - ‘[ P,(s,0)f(0)do  forall s20 (4.6a)

-

X D)= j ¢,(s,0) f,(0) do + J' 0,05, 0) f,(0)do  forall sX0 (4.6b)
0 o

Here the projections of f onto the dichotomy subspaces (2.4) are denoted f; and f, . With K+
thought of as operating on the space of bounded continuous (vector valued) functions on R%, one
gets a contraction mapping for sufficiently small 8, and a unique fixed point that can be solved for
iteratively (see, for example, Hartman [1982], Chapter 12, part III). The stable and unstable
manifolds are determined by the fixed points, which we denote by v*(s, t5) and v—(s, tg),where
we again suppress the dependence on € and 8. We start the iteration scheme in each case with the
zero solution and then define inductively

S+t
tn+ 1)v:t(s, to) =K F{ (n)vi(s, tg) S __e_o ) 4.7)

so that (vt (s, ty) convergesto vi(s,ty) as n—eo.

85 Estimates for the Splitting Distance

The next step is to estimate the splitting distance between the stable and unstable
manifolds. To do this we estimate the following quantity:

Alty, £,8) = [u'(ty 1 £, 8) — 1 (tg 1 &, 8) | =8 V(0,15 £,8) - v (0, 1, e.8)|  (5.1)

where u#(s+tg, ty, € 8) = Ug(s) + & vi(s, tp, €, 8) are the stable and unstable manifolds of
the perturbed equation. The splitting distance is defined to be the maximum of A(ty, €, 8) over
one 2ne period in ty. We extend each of the solutions of the iteration scheme (4.7) to strips in the
complex t plane. We do this in a way that makes the iterates uniformly bounded in the appropriate
(e &ependcnt) half strips

s*={zeCl|Imz| £ r, andRez20}
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s-={zeCl|Imz|< 1, andRez<0)}

and the vertical segment

0= {zeCl |Imz|< 1, and Rez=0}.
Thus, a uniform exponential estimate on the distance between the iterates

Dty e, 8= 8 N0, 16,8~ V0,1, 8] (5.2)

produces the corresponding result for the limiting solution asn —» ee.
Let 6 =(s +ty) /€ and consider the following iteration scheme for an (e and &

dependent) function w(s, 9):

(4%, 8) = L F( ®w'(s, 0), 5, 0) (5.3)

where we start with w =0, and define L* as follows. For any vector valued function

f(s,8)= D, f(s)e ,where se §* andOe R,

= =—00

we set

L= ) a(s)e, (5.4)

k =—co

where we define

ay(s) = jocpl(s,c) £01(0)d0 = [ @,(5,0) fy5(0) do (5.52)

a(s) = [ 9,(5.0) £ (0)do + [ 9,(5,0) (o) do (5.5b)
0 - 00
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s oo

) = | 9,(s,0) ek g (0)do - [ @y(s,0) eie-De £ y(c)do  (5.62)
8

tirg

and )

i) = | 9,(5,0) 5O f (0)do+ [ 9,(5,0) eKOIES, (G)do  (5.6b)
xirg -*

Here the projections of the f, on the dichotomy subspaces (2.4) are denoted fy; and f 5, and in
(5.6) we choose "+" if k>0 and "-" if k <0.

One now introduces the function spaces XE of fs with the Sobolev H! norm in the
variable © and the sup norm over S% in the variable s. Also, let X? be the space of fs
endowed with the H! normin 0 and the sup norm with weight expl(rg —Is))/ €] in s over

SO, We make the assumption that the fundamental solution @(t, T) of the linear equation (3.3) has
an analytic continuation into the complex swrip Sg inboth t and T such that the estimates (3.5)
and (3.6) hold with t and T on the right hand sides replaced by Re t and Re t. This is verified
in our example using the representation (3.7).

Fact 1 Define the (€ and & dependent ) maps
Gt : w(s, 0) » LEF(w(s, 0),s, 0) 5.7

where F and LT are defined in (4.4) and (5.4). Then for each € and 3, G is a bounded map
(maps bounded sets to bounded sets) of XT 10 itself.

This is proved using Sobolev type estimates; in fact it is useful to break the argument into
the two steps of consideration of the maps w +* F(w, s, 8), to which a standard composition (or
Q lemma) argument can be applied and a study of the operators L* using explicit Fourier series
methods. In general, the bound on the image set depends on &; it could grow as € — 0. To
prevent this one needs to balance the growth of the norm of L* and the accumulation of poles in
w with the powers of £ in front of h. It is at this stage that some powers of € in front of h are
needed to get uniformity in €; this is required for the lower and upper estimates that have the exact
distance to the pole in the exponent, and not a smaller one.
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Fact 2 With the assumptions as above, let B* be a bounded subset in X* . Then there
exist constants C, and C, depending only on the bounds of the set B* such that for any pair of

functions w+ and w- in B%, we have -
I G(w™ )0~ G*(w*) g0 I° < C; || wg0- w* s0I° + C, (5.8)
where || « 10 is the norm on the space XO.

This is proved by an analysis of the formulas explicitly representing the maps G* and G-.
For example, to estimate the difference of the terms coming from the first terms of (5.6 a,b), we
use a Lipschitz property of the composition map w —* F(w, s, €, 8) and this contributes to the
first term on the right hand side of (5.8). To estimate the second terms in (5.6a,b), for k > 0, one
uses Cauchy's theorem to shift the path of integration in complex c—plane along the real axis from
s 10 o to a path up the imaginary axis to the point ir; and then along the line InG=rg to .
Because of the way the extensions to the complex plane have been chosen and the bounds obtained
in Fact 1, the integral along the line Im o =1, contributes to the second term on the right hand
side (5.8). After subtraction with the corresponding terms in (5.6b), the other terms contribute to
the first term on the right side of (5.8).

In the preceding argument, the case k = 0 requires special attention. These terms would
contribute algebraic, not exponentially small terms, were it not for a crucial cancellation. As above,
one first reduces to the case s = 0 by noting that the difference of the terms contributes to the first
term on the right hand side of (5.8). Then we are left to estimate the difference between the terms

oo 0
A, = jocpz(o, 0)fy,(0)do and A, = — | 9,0, 0)fy,(0)do (5.9)

But one checks that we have the symmetry A; =R A, = A,, and so these terms cancel. (See the
remark below regarding this symmetry assumption).

Now assume that there are bounded neighborhoods B* in X* of 0 which are
independent of €and & and which are mapped into themselves by the € and & dependent
mappings G* and so our iterates remain in B* for all n. This requires an estimate on the poles
that occur in the mapping G2 and the balance between this behaviour and the factors of € in front of
the nonlinear inhomogeneous term h. By choosing 8y sufficiently small, we can arrange that C,
in Fact 2 is less than 1/2. By the contraction mapping principle, the iterates ™w?* converge to
w¥ in X*. Forreal s, w¥ are related to the stable and unstable manifolds in the following sense:
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Fact3 Foreachreal t,there are t§ with |t—t5| of order & such that for all real t,
ut(t, to, €, 8) = Tg(t—§) + 8 w (1 - t§ , ve)

We prove the required estimates as follows. Making the inductive assumption that [| w+
- w= 10 is bounded by 2C,, the estimate (5.8) shows that the next iterate obeys the same
inequality. Passing to the limit, using Fact 3 and rescaling back to the original variables then
gives the desired result that the splitting is bounded above by 2 C; d exp(—r1./€). To get a lower
bound, one needs to show that the higher iterates are of lower order than the first iterate. The first
term in the iteration is the same as one would get from the Melnikov method, which, in the

example can be evaluated explicitly. To estimate the higher order terms requires one to show that
the power of € in front of h can be used to control the growing norm of the operators L* and L-

as £ — 0, and still produce an overall power that increases with each iteration. This is how the
condition p 28 arises in the example; in that case, we divide €8 into €3 to gowith h and €5 to
go with 8. These specific powers are chosen to (i) balance the growth in the norm of L as € >
0 and (ii) to ensurethat the difference between the first and the higher iterates will be small
compared to the first iterate. Notice that this analysis is not based on an asymptotic series
argument, but rather on a comparison between the first term in the iteration scheme and the
subsequent iterates.

Remark 1 From the reversibility assumption, it follows that A(0, €, 8) =0 for all € and 6.
Therefore, the separatrices obviously intersect in this case. However, the proof of the
transversality of the intersection requires additional estimates for

2
GCLLIIN |

which measures the angle of intersection of the separatrices. Estimates for this again come in two
cases, namely upper and lower estimates. These estimates are of the same exponentially small form
as those for the splitting distance, with an additional factor of 1/ €. Estimates for the t; derivatives
of the iterates in (5.2) can be obtained by the same techniques as for the iterates themselves using
the space H? instead of H' in the above setting. In the example, again the assumption that p 2 8

implies that the separatrices do have a transversal intersection with an exponentially small angle of
intersection. ¢
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Remark 2 If we consider a one parameter unfolding

@ = g(u, & A)+eSh (u, e,é, x), where Ae R, - (5.10)

which agrees with the problem (3.1) for A = 0, then under a certain non-degeneracy condition
with respect to the parameter A, a slight modification of our method yields the following result
without the reversibility assumption. For sufficiently small §j,all ty € R,and all € and &
satisfying 0< € <land 0< & < §;, there exists a value of A given by an expression of the
form

?L = %(8, 8) + A'].(t()) €, 8)

such that for this A-value, (5.10) has a unique solution which is dp-close to Ug(t —to) (that is, the
difference in the sup norm is < Const - §p) for all t € R. In fact, one can find sucessive

approximations A, of this A-value such that in (4.7)

My+(0, t o) = Wv-(0, t o)

holds for all n. Thus it follows that v+(0, t5) = v—(0, tg), and the desired solution is given by

us + tg, t, €, 8) = We(s) +8v (5,15, €,8) forall s<O

u(s + g, tg, €, 8) = TUg(s) +8v (s, 1, €, 8) forall s<0 (5.12)

Here Ay(g, 0) =0, and we have the estimate
|A(tp, €, 8) | € Cdexp(-r./€). (5.13)

Moreover, near A = 0, there are no other A-values such that (4.10) has a solution which is 8¢-

close to Tg(t—ty) for some ty. Thus, if we replace & by £ for example, then there is an
exponentially thin wedge-like zone in (g, A) - space such that the local stable and unstable

manifolds of the perturbed hyperbolic fixed point intersect if and only if (g, A) is contained in this
zone. Also, the splitting distance is bounded above by C € exp(-r/e) for such values of € and
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. This zone of (€, A) - values corresponds to the Amold tongues of perturbed periodic solutions
(cf. Scheurle [1986]).

Our techniques also show that A(tg, €, 8) in (5.1) is bounded above by Cdexp(-t./¢€)
as € — 0 whenever the stable and the unstable manifolds of the perturbed hyperbolic fixed point of
(3.1) intersect in a solution which is 3p-close to Ug(t ~ tp) with some ty = t; (g, &) for all small
€. Besides reversible problems, where t5(€, §) =0 for all &, Hamiltonian systems also have this
property (cf. Amold [1965]). We point out, however, that the equation that we have considered as

an example is locally, but not globally Hamiltonian. Our theory requires a homoclinic orbit, so we
have chosen the phase space to be the cylinder. ¢

§6 A 2:1 Resonance and KAM Theory

In KAM theory, arguments based on numerical evidence and formal calculations lead to
the conjecture that one has exponentially fine splittings and exponentially long escape times.
Some rigorous but rough upper bounds for this phenomena have been given by Nekhoroshev
[1971, 77] and Neishtadt [1984); see also the discussion in Arnold [1978, pp. 395ff and 407],
Chirikov [1979], and Simo and Fontich [1985]. The analyticity argument of Cushman [1978] and
Koslov [1984] (and reference therein) uses the Poincaré-Melnikov method to prove that the
separatrices do split for most parameter values. However, it is not easy to prove from these
arguments that splittings really do occur for specific parameter values and what the sharp upper and
lower estimates for the splitting distances are. The seriousness and significance of this difficulty
was emphasized by Sanders [1982].

Exponentially fine phenomena appear to be prevalent in a number of situations beyond
those discussed here and in the next section. For example:

1 The action appears to change by an exponentially small amount in adiabatic theory (see, for
example, Lenard [1959], Meyer [1976], and Berry [1985] - see also Marsden, Montgomery
and Ratiu [1988]). We expect that our techniques will be relevant for these problems.

2 The existence of breathers in the ¢* model involves exponentially small phenomena (see

_ Segur and Kruskal [1987]).

3 The growth of dendritic crystals also involves exponentially small phenomena (see Kruskal
and Segur [1987]).

4 Various problems in critical phenomena in water waves also seem to involve these issues; cf.
Hunter and Scheurle [1987].
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5 Exponentially small phenomena are known to occur in the study of relaxation oscillations; cf.,
Eckhaus [1982]
6 Finally, it has been suspected for some time that these problems also arise if the unfolding of
degenerate singularities; see for example, Takens [1974]. We shall illustrate the basic ideas in
-§7.

Here we consider a simple illustration of why these problems come up in KAM theory.
Consider the dynamics of two coupled oscillators with Hamiltonian, written in action angle
variables, of the form

940,1,6,1,€) = FO)+J+€K(@,1,9). (6.1)

We have taken the second oscillator to be a harmonic oscillator and the coupling independent of J
purely for simplicity. If we set H = constant, (3.1) determines J. We can alsolet ¢ =t be the

new time, so (3.1) becomes equivalent to a forced one degree of freedom system with Hamiltonian
H(,1,t,€) = F(I) +eK(0, 1, 1). (6.2)
For example, choose K(8,1,¢) = Isin20 cos ¢ and F(I) =1-12/2. Then one sees that the

circle I=1/4 resonates with the forcing in a 2:1 resonance. To study it, we make the change of
variables

1=1-vep, 0=3+y (63)
1o get

Vv =VeRp)+e [%cos 2y + cos 2(y + t) - %cos t] .
6.4)
p= ‘\E[—- 1gsin 2y + sin 2(y + t)] +€ [%sin 2y + sin 2(y + t)]

Now one removes the t-dependence at order \/; by the averaging transformation

y=v , p=p’—%—w82(v+t). (6.5)
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Dropping the primes, the new system becomes Hamiltonian with

H = JEF(‘V, P) + EG(‘V’ P. t) , - (6-6)
where _
2 1
Fly,p) = p --1—6-cos2\|;,
and

Gy, p, t,€) = -g— [2 cos 2y +3 cos 2(y +t) -4 cos t] + o' .

Rescaling time to T= ‘\j: t, (6.6) transforms to

H = Fy, p)+4€c(w, D, 7‘_;) 6.7)

which has our form of a rapidly forced perturabation of the Hamiltonian F, which has homoclinic
orbits with

1
= ——— . .
p=1t i sech (4V21) (6.8)

The situation is shown in Figure 5, represented in (I, 8) coordinates, viewed as polar

coordinates. With the addition of \jg Gy, p, t/ \j: ), one develops stochastic layers around the
homoclinic orbits shown in figure 5.
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e=0 ai

averaged to order €2 and truncated
(viewed in a rotating frame)

Figure §

A formal Melnikov calculation suggests the splitting distance is of order

b1 T
h|——, 6.9)
256V e (sﬁ )

which is exponentially small. Our upper estimate shows that

splitting < CVE exp (— (?«% —n) _«JI_E') (6.10)

with a similar estimate for the splitting angle. Note that (6.10) is compatible with (6.9), although
(6.9) suggests a sharper result.
Our lower estimates do not apply to (6.7) since the same power of € appears as an

amplitude coefficient in front of G and also as the denominator of ©/ \j; . Our analysis of the

estimates suggests that it may be very difficult to rigorously establish an estimate above and below
by an expression like (6.9). However, one can show the following: Consider the same system
with an additional term:

2

H= I—%+J+elsin26cos¢+82H2 . (6.11)
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We choose H, such that after averaging, terms of lower order in € cancel, leaving only higher
order terms in € and our lower bound now does apply. The algebra involved to get H, is a little
involved, so we illustrate the result with a simpler explicit example. Consider

¢+ sin¢ = £sin (lJ . (6.12)

E

Again, the upper bound Cee~™"2-1)¢ is valid, but an optimal upper and lower estimate are not
known. However, we can modify (6.12) a bit to

d+sind = ¢ sin[l) + ezh(-[-, £, q;] , (6.13)
3 €
where
el g
h(t,e,p)=€ecos@sint + 5 sin @ sin’t — 5 cos9 sin’t (6.14)
so that (6.13) satisfies
C,e'2e™* < splitting < Cye'%e ™ | (6.15)

f

This is done by choosing@ so that after averaging, the system has the form required for both our
upper and lower estimates.

Thus, while we cannot prove the upper and lower estimates for (6.12), there is a nearby
system (6.13) for which they are valid. We conclude that while the upper estimates are fairly
robust, the lower estimates appear to be very delicate and in fact one can perturb a given system
slightly to get a splitting distance (and angle) much smaller than one might have expected -- see
the extra power of €!2 in (6.14). Even more extreme, one can sometimes add a term which
completely cancels all the higher order terms and the perturbed system becomes completely
integrable! For instance, a trivial example of this sort is the completely integrable system

IO - _!_)
X=y Esm(E

(6.16)
)}:Sinx+ecos(%)
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m which is simply a complicated way of writing the pendulum equation. This general behavior

appears to be rather common and shows that an asymptotic estimate good enough to give lower
bounds independent of (or robust with respect to) all higher order terms is not possible.

87 Exponentially Small Splittings in a Bifurcation Problem

We consider the problem of a Hamiltonian saddle node bifurcation

5E-i-|.1x+x2 =0 7.1

with the addition of higher order terms and forcing:

X+ px +x2 + hot. = 5f(t) . (7.2)

The phase portrait of (7.1) is shown in Figure 6.

y )

Gﬁ%\

(@)
R
~

p<oO p=0 >0

Figure 6
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The system (7.1) is Hamiltonian with
1 1 1 3 -
H(x, p) = 5p2+§p.x2+-§-x . ] (7.3)
Let .us first consider the system without higher order terms:
X+ px+ x> = Sf(t) . (7.4)
To study it, we rescale to blow up the singularity:
x(t) = AE(®) (7.5)
where A=|pu| and ‘t=t‘\jx . We get
" d 1
§—€+§2=—f( ) , u<O0, (7.6a)
W \V=p
(’W\
E+E+E? = sf(T] L>0 (7.6b)
T
5 | upper estj lid if
/ PP 51.2?\] 1
SLInPY

lower estimate valid if
o< |up

Figure 7
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Our exponentially small estimates apply to (7.6a and b). We will get upper and lower
estimates in algebraic sectors of the 3-p plane, as in Figure 7. The power p depends on the
nature of f.

Now we consider B
. 2 3
X+ux+x°+x° = 8f(t) . a.n
With § = 0, there are equilibria at
x=0,-r1 0r - E—
T
(7.8a)
x=0
where
1+V1-4
r = s (7.8b)

which is approximately 1 when p=0. The phase portrait of equation (7.7) with § =0 and 1 =
—% is shown in Figure 8. As p passes through 0, the small lobe in Figure 8 undergoes the

same bifurcation as in Figure 5, with the large lobe changing only slightly.

Figure 8
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Again we rescale by (7.5) to give )
E-g+E2-pE’ = -—sz-f(;_u) . m<O0, (7.92)
m -
E+E+E2+pE = -%-{\,—".—) , >0, (7.9b)
K K

Notice that for 8 = 0, the phase portrait is i-dependent. The homoclinic orbit surrounding the
small lobe for p <0 is given explicitly in terms of £ by

T
Er) = —— . (7.10)

3

which is p-dependent. An interesting technicality is that without the cubic term, we get y-
independent double poles at T==in +log 2 -1log 3 in the complex 7-plane, while (7.10) has a

pair of simple poles that splits these double poles to the pairs of simple poles at

1= iin+1og(-§-iim) (7.11)

where again A =|t|. (There is no particular significance to the real part, such as log 2 —log 3 in
the case of no cubic term, since this can always be gotten rid of by a shift in the base point §(0).)

If a quartic term x4 is added, these pairs of simple poles will split into quartets of branch
points and so on. Thus, while the analysis of higher order terms has this interesting M-

dependence, it seems that the basic exponential part of the estimates,

T
- 12
m( ﬂu'i) ' (7.12)

remains intact. &£
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Discussion and Conclusions We have given conditions under which one can obtain
transversal intersection and both upper and lower estimates for the angle of intersection and for the
splitting distance of separatrices in a rapidly forced system with a homoclinic orbit; the bounds
obtained are exponentially small in the frequency parameter. Our main example is the rapidly
forced pendulum equation, which is related to the pendulum suspended from a very stiff elastic
rod. This example is a nonautonomous conservative system with a homoclinic orbit. With the
addition of damping, exponentially small splitting and intersections of the separatrices typically
occur only in an exponentially small wedge in parameter space (see Remark 2 above).
Exponentially small splittings also occur in the unfolding of degenerate singularities and in KAM
theory as was discussed in the last two sections. In future work we shall be applying these ideas to

other problems, including sharp exponential estimates for adiabatic invariants of the sort that occur
in Berry's phase. ¢
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