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1 Introduction

It is our belief that a thorough understanding of the mathematical underpinnings of elasticity is
crucial to its analytical and numerical implementation. For example, in the analysis of rotating
structures, the coupling of the equations for geometrically inexact models, obtained by linearization
or other approximations, with those for rotating rigid bodies can easily lead to misleading artifi-
cial “softening” effects that can significantly alter numerical results; see Simo and VuQuoc [1986c]
(especially equations (3) and (5)). In this paper, we consider fully nonlinear geometrically exact
models for rods, plates (and shells) which take into account shear and torsion as well as the usual
bending effects in traditional rod and plate models. These models can be obtained either from the
three-dimensional theory by a systematic use of projection methods; see e.g., Antman [1972] and
Naghdi [1972], or by a direct approach within the context of Cosserat continuum. Remarkably, the
two approaches lead to essentially the same form of the governing field equations. In the present
context, we have chosen as a model problem a particular rod model which may be regarded as an
extension of the classical Kirchhoff-Love model (see Love [1944]) to include shear deformations, as in
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Reissner [1973, 1981], Antman [1974], Antman and Jordan [1975], and Simo [1985]. The counterpart
of this model for plates is also considered. Our objective is a systematic development of the Hamil-
tonian structure underlying the dynamics of these geometrically exact models in the material and
convective representations. The convective representation, which is often referred to as the body
representation in the context of rigid-body mechanics, is a useful counterpart to the more familiar
material and spatial representations. Understanding the relation between these alternative represen-
tations is useful for computational purposes and for coupling of these models to the dynamics of rigid
body motion, as in Krishnaprasad and Marsden [1987]. We confine our attention to the material
and convective representations only for simplicity; one can also treat the spatial representation and
in fact we shall use the latter in a subsequent work on stability of rigid bodies with geometrically
exact flexible attachments (see Krishnaprasad, Marsden, Posbergh, and Simo [1988]).

One of the topics that is of importance in the foundations of elasticity is a geometric formulation
of the equations in Hamiltonian form. This form is useful in the dynamical analysis of systems;
for example in the study of nonlinear stability (see Holm, Marsden, Ratiu, and Weinstein [1985],
Krishnaprasad [1985], and Lewis, Marsden, and Ratiu [1986a]), of bifurcation theory (see Golubitsky
and Stewart [1986] and Lewis, Marsden and Ratiu [1986b]) and of chaotic solutions (see Holmes and
Marsden [1983] and Guckenheimer and Holmes [1983]). Our own motivation is to provide additional
insight for work on rotating structures using geometrically exact models (see Krishnaprasad and
Marsden [1987] and Krishnaprasad, Marsden, Posbergh and Simo [1988]). Of course, independent
of this motivation is the fact that these Hamiltonian structures are of intrinsic interest for the
mathematical foundations of elasticity theory.

The Hamiltonian structure for the material (or Lagrangian) representation of elasticity is given in
terms of canonically conjugate variables—namely the placement field and its conjugate momentum,
the momentum density. This standard result is well known and is indicated in, for example, Marsden
and Hughes [1983, Chapter 5]. The relation between this and other structures in spatial and body
representations is an important result that goes back to Arnold [1966] and was developed by Marsden
and Weinstein [1974, 1982], and others. A noncanonical Hamiltonian structure for elasticity that
is partially a spatial representation is given in Holm and Kuperschmit [1983], and a Hamiltonian
structure for isotropic elasticity in spatial representation is given in Marsden, Ratiu, and Weinstein
[1984a,b]. We deal with these as well as the convective representation and also develop a Hamiltonian
formalism for rods and plates. A geometric setting that is useful for understanding the general
relation between the material, inverse material, spatial, and convective representations, and relies
partially on the present work is given in Holm, Marsden and Ratiu [1986].

The noncanonical brackets found in this paper are obtained by the general methods of reduction
from the canonical structure in material representation, as in Arnold [1966] and Marsden and Wein-
stein [1982]. When these procedures are done for fixed boundary problems, one obtains Lie-Poisson
brackets associated with the dual of a Lie algebra of a semi-direct product. (See Marsden, Weinstein,
Ratiu, Schmit and Spencer [1983] for a general introduction to this geometric theory.) These sorts
of brackets appear for example in the equations for compressible fluids and magnetohydrodynamics
(see Marsden [1982], Holm and Kuperschmit [1983] and Marsden, Ratiu and Weinstein [1984a,b]).
(The geometric reason for this appearance is that if a configuration space is a group G, then the
reduction of the phase space T ∗G by the isotropy subgroup Ga for a representation of G on a vector
space V is essentially the dual of the Lie algebra of the semi-direct product G?V. This result,
due to Ratiu, Guillemin and Sternberg, is proved in a sharpened version in Marsden, Ratiu and
Weinstein [1984a] (to which we refer for the original references). When free boundaries are present,
however, the brackets are only partially of the Lie-Poisson type. The geometric setting for these is
the “gauged Lie-Poisson” context of Montgomery, Marsden and Ratiu [1984]. This was applied to
free boundary fluid problems in Lewis, Marsden, Montgomery and Ratiu [1986]. In this paper, we
shall not require the fairly sophisticated context of the gauged Lie-Poisson structures, but rather
we shall obtain the results by a direct calculation. We do note, however, that when no boundaries
are present, the Poisson brackets we get for three dimensional elasticity do reduce to Lie-Poisson
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brackets for a semidirect product. For rods and plates, the brackets also reduce to the Lie-Poisson
type in the cases that the configuration space reduces to a group; for example, this happens for the
torsional motion of a rod.

The geometric point of view adopted in this paper has proven particularly useful in the numerical
solution of initial boundary value problems. For the geometrically exact rod model, for instance,
exact update procedures for the configuration, stress resultants and stress couples can be developed
by employing discrete algorithmic counterparts of the exponential map and parallel transport (see
Simo and Vu-Quoc [1986a,b, 1987]). These ideas also play a central role in the numerical analysis
of geometrically exact shell models, as in Simo and Fox [1988] and Simo, Fox and Ritai [1988a,b].
This methodology results in algorithms that exactly preserve the fundamental physical requirement
of material frame-indifference. Similarly, for three-dimensional nonlinear viscoelastic solids, by ex-
ploiting the convective representation, one can develop unconditionally stable algorithms, accurate
to second order, which exactly preserve covariance of the continuum formulation (see Simo [1987]).
Thus, these algorithms go beyond the notion of incremental objectivity, as proposed by Hughes and
Winget [1980]. Finally, we believe that the Hamiltonian structures developed in this paper will play
a central role in the future development, design and stability analysis of time-stepping integration
algorithms for nonlinear elastodynamics, which ensure not only conservation of energy (as in Chorin,
Hughes, McCracken and Marsden [1978] or Hughes, Liu and Caughy [1978]), but exactly preserve
other fundamental integrals of motion such as global angular momentum (see Marsden [1988] and
references therein).

2 Covariant Three-Dimensional Elasticity

We summarize the notation to be used in the description of three dimensional elastodynamics,
following to a large extent the usage of Marsden and Hughes [1983]. Emphasis is placed on a
covariant formulation of the field equations independent of the choice of coordinate charts.

The Configuration Space

Let (B,G) and (Y,g) be two smooth Riemannian manifolds carrying metrics G and g respectively.
Typically we have B ⊂ Y, where Y = R

3 is the Euclidean three-space with the standard Euclidean
metric. We refer to B as the reference configuration with points denoted by X ∈ B, and we speak
of Y as the ambient space in which the body B moves. Points in Y are denoted x ∈ Y. We shall
consider coordinate charts X̂A : B → R and x̂a : Y → R so that the local coordinates of the points
X and x are denoted by

XA = X̂A(X) for X ∈ B and xa = X̂a(x) for x ∈ Y. (2.1)

The configuration space C is the set of (orientation-preserving) embeddings ϕ : B → Y; we write

C = Emb(B,Y), (2.2)

and call the set ϕ(B) the current configuration. It is known that, when suitably topologized, C is a
smooth infinite-dimensional manifold (see Abraham, Marsden and Ratiu [1983], Ebin and Marsden
[1970] and references therein).

To construct the tangent space to C at a configuration ϕ ∈ C, consider a smooth curve ε �→ ϕε

such that ϕε|ε=0 = ϕ, By definition, dϕε/dε|ε=0 is tangent to C at ϕ. Let X ∈ B; then

d

dε

∣∣∣∣
ε=0

ϕε(X) ∈ Tϕ(X)Y, (2.3)
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where Tϕ(X)Y is the tangent space to Y at ϕ(X). Consequently, the map

X ∈ B �→ d

dε

∣∣∣∣
ε=0

ϕε(X) ∈ Tϕ(X)Y (2.4)

is a vector field over ϕ : B → Y. Hence, we define the tangent space TϕC as

TϕC = {Vϕ : B → TY | Vϕ(X) ∈ Tϕ(X)Y for all X ∈ B}. (2.5)

In local coordinates relative to the chart {XA} we have

Vϕ(X) = V i(X)
∂

∂xi
∈ Tϕ(X)Y. (2.6)

We often use the notation x = ϕ(X).

Kinematics

A motion is a curve of configurations; we let ϕt be the configuration at time t and write ϕt(X) =
ϕ(X, t). Given a motion ϕt, we define the following quantities:

(i) material velocity : Vt ∈ Tϕt
C given by

Vt(X) :=
∂

∂t
ϕ(X, t), (2.7)

(ii) spatial velocity: vt ∈ X(ϕt(B)) [the space of vector fields on ϕt(B)] is defined by

vt = Vt ◦ ϕ−1
t , (2.8)

(iii) convective velocity: Vt ∈ X(B) is defined by

Vt = ϕ∗
t (vt) := Tϕ−1

t ◦ vt ◦ ϕt = Tϕ−1
t ◦ Vt. (2.9)

The deformation gradient, denoted by Ft, is defined to be the tangent map of ϕt; we write Ft = Tϕt.
In coordinates,

Ft = F a
A

∂

∂xa
⊗ dXA; F a

A =
∂ϕa

∂XA
, (2.10)

where dXA is the basis dual to (∂/∂XA).
The following diagram illustrates these concepts.

Figure 2.1:

Proposition 2.1 The convected velocity is the negative of the spatial velocity of the inverse motion
ϕ−1

t : Y → B; i.e.,

Vt = −∂ϕ−1
t

∂t
◦ ϕt. (2.11)

Proof Applying the chain rule to the identity X = ϕ−1(ϕ(X, t), t) gives

∂ϕ−1
t

∂t
◦ ϕt + Tϕ−1

t ◦ Vt = 0,

and so the result follows by noting that Vt = Tϕ−1
t ◦ vt ◦ ϕt. �
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The Metric and Convected Metric Tensors. Convected Lie Derivative

We define the convected metric tensor by the pull-back relation:

Ct = ϕ∗
t (g); i .e., CAB = F a

AF b
Bgab ◦ ϕt. (2.12)

Ct is called the right Cauchy-Green tensor.
Let ∇ be the Levi-Civita connection associated with the spatial Riemannian metric g. The

corresponding Christoffel symbols are given by the standard relation:

γd
ab =

1
2
gdc

[
∂gac

∂xb
+

∂gbc

∂xa
− ∂gab

∂xc

]
. (2.13)

We define a Riemannian connection ∇̃ associated with the convected metric tensor C by the pull-
back relation:

∇̃WV := ϕ∗[∇ϕ∗(W)ϕ∗(V)], (2.14)

for any convected vector fields V and W ∈ X(B).
Using the properties of pull-backs and covariant differentiation, we find from (2.14) that the

coordinate expression for ∇̃ is

ΓC
AB :=

∂2ϕa

∂XA∂XB
(F−1)C

a + (F−1)C
c F b

BF a
Aγc

ab. (2.15)

It can be readily shown that the connection ∇̃ is the Levi-Civita connection for C with the Christoffel
symbols given by the standard formula:

ΓD
AB =

1
2
CDC

[
∂CAC

∂XB
+

∂CBC

∂XA
− ∂CAB

∂XC

]
. (2.16)

Let W ∈ X(B) be a convected vector field. We define the convected Lie derivative of W, denoted by
LVW, as the Lie derivative relative to the convected velocity field Vt. Consequently LVW is given
by the pull-back relation:

LVW := ϕ∗
t [LVt(ϕ∗W)]. (2.17)

Here LVw is the (spatial) Lie derivative of vector fields w ∈ X(ϕ(B)) defined by the formula (see
Marsden and Hughes [1983], §1.6)

Lvt
w := ϕt∗

∂

∂t
ϕ∗

t w. (2.18)

Acceleration Vector Fields

We define the material acceleration At : B → TS and the spatial acceleration at : S → TS associated
with the motion ϕt by the expressions

At = ∂2ϕt/∂t2 = ∂Vt/∂t, at = At ◦ ϕ−1
t . (2.19)

The convected acceleration At : B → TB is defined by the pull-back relation

At = ϕ∗
t (at). (2.20)

Proposition 2.2 The convected velocity and acceleration are related by the formula

At =
∂Vt

∂t
+ ∇̃VtVt. (2.21)

In coordinates, A is given by

AA = ∂VA|∂t + VCVA
,C + ΓA

CDVCVD. (2.22)
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Proof Recall (Marsden and Hughes [1983] p. 33) that the spatial velocity and accelerations are
related by

at =
∂vt

∂t
+ ∇vt

vt. (2.23)

Now pull back ∇Vt
Vt by ϕt to get

ϕ∗
t (∇vtvt) = ∇̃ϕ∗

t vtϕ
∗
t vt = ∇̃VVt. (2.24)

The Lie derivative formula (2.18) then gives

∂Vt

∂t
=

∂

∂t
(ϕ∗

t vt) = ϕ∗
t (Lvt

vt) + ϕ∗
t

(
∂vt

∂t

)
= ϕ∗

t

(
∂vt

∂t

)
. (2.25)

Adding (??) and (??) gives (??). �

Next, we record some formulae useful for our subsequent development of the convected equations
of motion. Let T ∗B be the cotangent bundle of B, and denote by � : TB → T ∗B the standard
index-lowering action (see Abraham, Marsden and Ratiu [1983]) induced by the convected metric
C. Given any vector field W ∈ X(B) there is a unique one-form W� defined by the relation

WA(X)UA(X) = CAB(X)WA(X)UB(X), (2.26)

for any U ∈ X(B) and X ∈ B; consequently, in coordinates, W� is defined as

W�(X) := CAB(X)WB(X)dXA. (2.27)

Similarly, following standard notation, we denote by � : T ∗B → TB the index-raising action induced
by C. Associated with any M : B → T ∗B there is a unique vector field M� ∈ X(B), with coordinate
expression

M�(X) = CAB(X)MB(X)
∂

∂XA
, (2.28)

relative to a chart {XA} on B. With this notation at hand we have

Lemma 2.3 For the convected velocity field, the following relations hold:

i. LVV� =
1
2
d|V|2C + (∇̃VV)�, (2.29)

which has the coordinate form

(LVV�)A =
1
2

∂

∂XA
[VBCBCVC ] + VA|BVB . (2.30)

ii. Ċ = LVC; i .e., ĊAB = VA|B + VB|A. (2.31)

Proof In a coordinate chart {XA} we have :

(LVV�)A = VA|BVB + VBVB |A

=
1
2

∂

∂XA
[VBVB ] + VA|BVB

=
1
2

∂

∂XA
[VBCBCVC ] + VA|BVB , (2.32)

where a vertical bar denotes covariant differentiation relative to the convected connection ∇. This
proves formula i. Since the Lie derivative is natural with respect to pull-backs, from (2.18) we have

LVtCt = ϕ∗
tLvt(ϕt∗Ct) = ϕ∗

tLvtg = 2ϕ∗
t d, (2.33)
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where d := [va|b +vb|a]dxa⊗dxb is the (spatial) rate of deformation tensor. Formula ii. then follows
by virtue of the well known relation Ċ = 2ϕ∗

t (d). �

In view of formula ii. one says that C is Lie-dragged by the flow generated by the convected
velocity field.

The Convected Volume Element and One-Form Densities

Next, we turn our attention to the definition of volume elements. Let d3X := dX1 ∧dX2 ∧dX3 and
d3x := dx1 ∧ dx2 ∧ dx3 be the standard coordinate volume elements in B and S, respectively, and
let Λ3

x(S) and Λ3
X(B) denote the space of 3-forms at x ∈ S and X ∈ B, so that d3X ∈ Λ3

X(B) and
d3x ∈ Λ3

X(S). Associated with g and G are unique volume densities, denoted by µ(g) and µ(G),
respectively, and defined locally as

µ(g) := {det[g]}1/2d3x, µ(G) := {det[G]}1/2d3X. (2.34)

We use notations µ(G) ∈ |Λ3(B)| and µ(g) ∈ |Λ3(S)| to designate volume densities.
The change of variables formula yields the local representation d3x = det[F]d3X. Since the

Jacobian Jϕ is defined as
µ(g) ◦ ϕ =: Jϕµ(G), (2.35)

we obtain the expression
Jϕ := det[F]{det[g]/det[G]}1/2. (2.36)

In the convected description, the C-volume density associated with the metric C is locally defined
as

µ(G) := {det[G]}1/2d3X. (2.37)

Since det[C] = det2[F]det[g], we obtain

µ(C) := Jϕµ(G) (2.38)

from (2.35), (2.36) and (2.37). A one-form convected density is a mapping M : B → T ∗B ⊗ Λ3(B)|
obtained as the tensor product of a convected one-form M : B → T ∗B with convected volume
element µ(C). Accordingly, we have

M = M⊗ µ(C) = JϕM⊗ µ(G). (2.39)

Next, we define the divergence operator, which is needed in the formulation of the equations of
motion. By recalling the covariant definition of the divergence (see e.g., Abraham, Marsden, and
Ratiu [1983] page 389), we have the following expressions in the convected and spatial descriptions:

(DivCW)µ(C) := LWtµ(C); (divgw)µ(g) = LWtµ(g), (2.40)

for all vector fields W ∈ X(B) and w ∈ X(ϕ(B)). Vector fields, volume force densities and Lie
derivatives are related in a simple manner. For the convected vector field density, one has the useful
formula:

LVW = LVW ⊗ µ(C) + (DivCV) ⊗Wµ(C), (2.41)

which follows at once from (2.40) and standard properties of the Lie derivative.
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The Stress Tensor and Covariance

We assume the existence of a stored energy function W : MS × C × MB → R, where MS is the
space of Riemannian metrics on S, and MB is the space of Riemannian metrics on B, of the form

W = W (g,F,G), (2.42)

where W depends only on the point values of g,F, and G. This dependence is in keeping with
the classical assumption that the stored energy function in an elastic material depends on the
configuration ϕ only locally through the point values of the deformation gradient F (see Marsden
and Hughes [1983], §§3.2 and 3.3). The dependence of the stored energy W on the metric tensor
g is essential to introduce the notion of covariance which embodies objectivity (or material frame-
indifference) as a particular case. Covariance is the statement of (left) invariance to the group of
spatial diffeomorphisms, whereas objectivity merely requires (left) invariance relative to the group
of spatial isometries. Clearly, the former notion implies the latter, but not conversely. We recall
that relativistic elasticity is a covariant theory.

To introduce the notion of covariance we begin by summarizing a few facts concerning the actions
of the groups of spatial and material diffeomorphism on the configuration space C = Emb(B,S) for
elasticity. For further details, including functional analysis issues not addressed here, we refer to
Ebin and Marsden [1973].

i. The groups of spatial and material diffeomorphisms. We denote by Diff(B) and Diff(S) the
groups of diffeomorphisms in B and S, respectively. Let ϕ ∈ C. Define the left and right translations
of ϕ ∈ C as the mappings

Lη : Diff(S) × C → C, Rη : C × Diff(B) → C, (2.43)

given by
(η, ϕ) �→ Lη(ϕ) := η ◦ ϕ, (ϕ, η) �→ Rη(ϕ) := ϕ ◦ η. (2.44)

The tangent maps associated with these actions are obtained in the standard manner as follows.
Consider a smooth curve ε �→ ϕε ∈ C such that ϕε|ε=0 = ϕ, and dϕε/dε|ε=0 = Vϕ. Then, the
tangent maps to Lη and Rη are computed as

(TϕLη)(Vϕ(X)) =
d

dε

∣∣∣∣
ε=0

Lηϕε(X) =
d

dε

∣∣∣∣
ε=0

η(ϕε(X)) = Dη(ϕ(X)) · Vϕ(X). (2.45)

Consequently,
TϕLη(Vϕ) = Tη ◦ Vϕ, (2.46)

for any η ∈ Diff(S). A similar calculation for η ∈ Diff(B) shows that

TϕRη(Vϕ) = Vϕ◦η−1 . (2.47)

The mechanical interpretation of these relations should be clear. We regard left translations by
Diff(S) as superposed motions, not necessarily rigid, onto the current configuration. By virtue of
(2.46), under any superposed η ∈ Diff(S) material vector fields at ϕ(X) are transformed tensorially to
vector fields at η(ϕ(X)). On the other hand, we regard right translations by Diff(B) as diffeomorphic
changes of reference configuration (B) that, by virtue of (2.47), shift material points X ∈ B to η0(X),
for any η0 ∈ Diff(B).

It can be readily shown that the action of Diff(S) on spatial vector fields is by push-forward; i.e.:

η∗(w) ∈ X(ϕ((B)) for w ∈ X(ϕ(B)). (2.48)

ii. Covariant stored energy functions. We say that a stored energy function is covariant if it is
left-invariant under the action of Diff(S); accordingly, in view of (2.46) and (2.48), W (g,F,G) is
covariant if:

η ◦ W (g,F,G) = W (η∗g, Tη ◦ F,G). (2.49)
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For any η ∈ Diff(S). The classical result that W depends only on the point values of C = ϕ∗(g) is
an immediate consequence of the covariant assumption (2.49). To see this, consider the case B ⊂ S,
so that Diff(B) ⊂ Emb(B,S). For η = ϕ−1, (2.49) becomes

ϕ−1 ◦ W (g,F,G) = W (ϕ∗g,Tϕ−1 ◦ F,G) = W (C,1,G), (2.50)

where 1 is the identity two-point tensor. Consequently, there is a function W of the point values of
metrics on B such that

W (g,F,G) = W (C,G). (2.51)

Let σ be the Cauchy stress tensor and let Σ be the convected stress tensor , which is defined by
the pull-back relation

Σ := ϕ∗(σ). (2.52)

Let �(x, t) and �0(X, t) denote the density functions in the current and reference configurations,
respectively. Define the convected density function as R := ϕ∗(�) = � ◦ ϕ. We then have the
following constitutive equations:

σ = 2�
∂W (g,F,G)

∂g
and Σ = 2R∂W (C,G)

∂C
, (2.53)

Relation (2.53) is referred to as the spatial Doyle-Ericksen formula (see Marsden and Hughes [1983]
§3.3, and, for the material counterpart, Simo and Marsden [1984]). In terms of the Lagrangian strain
tensor defined by E = (C−G)/2, and the Eulerian strain tensor defined by e = ϕ∗(E) = (g−b−1)/2,
where b−1 = ϕ∗(G) is the Finger deformation tensor, formulae (2.53) read

σ = �
∂W (e,F,G)

∂e
and Σ = R∂W (E,G)

∂E
. (2.54)

Note that the dependence of W on the material metric tensor G has been explicitly assumed in
equation (2.51), but that G is treated as a parameter as far as the covariance assumption is con-
cerned.

Next, we consider the invariance group of W on the right. According to (2.47), Diff(B) acts
on the right on vector fields Vϕ by shifting the base points. On the other hand, it can be readily
seen that the action of Diff(B) on convected vector fields W ∈ X(B) is by push-forward, i.e., for
η0 ∈ Diff(B),

W ∈ X(B) �→ η0
∗W ∈ X(B). (2.55)

[This is called the adjoint action]. Then, the stored energy function, W (C,G) is right-invariant
under Diff (B) if :

W (C,G) ◦ η0 = W (η0
∗C, η0

∗G), (2.56)

for any η0 ∈ Diff(B). That right-invariance is equivalent to isotropy follows by considering the case
B ⊂ S. Choosing η0 = ϕ we conclude from (2.56) that

W(C,G) ◦ ϕ−1 = W(g,b−1), (2.57)

which is the classical expression for the stored energy function of an isotropic material. Thus,
whereas left-invariance under Diff (S), i.e., covariance, is a fundamental physical requirement, right-
invariance under Diff (B) merely expresses a particular constitutive behavior; namely isotropy.
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The Hamiltonian

In the Hamiltonian formalism for the material description, the kinetic and potential energies are
expressed in the variables on T ∗C; i.e., in the variables ϕ ∈ C, and its conjugate momentum Mϕ.

We start by defining the cotangent space T ∗
ϕC at ϕ ∈ C as a vector space in duality with TϕC by

means of a weakly nondegenerate pairing

〈·, ·〉 : T ∗
ϕC × TϕC → R, (2.58)

which is constructed as follows. Let αϕ = αϕdV be a one-form density covering ϕ ∈ C, where
dV = µ(G). As in (2.39), ᾱϕ is given locally as (αi(X)dVX)dXi. The natural pairing between
one-form densities ᾱϕ(X) ∈ T ∗

ϕ(x)S ⊗ |ΛX(B)| at ϕ(X) and vectors Vϕ(X) ∈ Tϕ(x)S is given locally
in coordinates as

〈ᾱϕ,Vϕ〉 :=
∫

B

αi(X)V i(X)µ(G), (2.59)

where Vϕ(X) = V i(X)(∂|∂xi). With this pairing, T ∗C becomes

T ∗
ϕC := {ᾱϕ : B → T ∗S ⊗ |Λ3(B)||ᾱϕ(X) ∈ T ∗

ϕ(X)S ⊗ |Λ3
X(B)|}. (2.60)

We consider next the Hamiltonian for elasticity in the material, convected and spatial descriptions.

i. Material description. We derive the appropriate expression by starting with the Hamiltonian
relative to TC, which is expressed in terms of configurations ϕ and material velocities Vϕ, is given
by

H(g;Vϕ,G) :=
∫
B

�0(X)|Vϕ(X)|2gµX(G) +
∫
B

�0(X)W (g(ϕ(X)),F(X),G(X))µX(G) (2.61)

where | · |g denotes the length induced by the spatial metric g. Observe that the Hamiltonian (2.61)
depends parametrically on the spatial metric g; i.e., H : MS ×TC ×MB → R. We get the material
description of (2.61) by transforming it to a function defined on T ∗C. For this purpose we introduce
the weak Riemannian metric on C defined by the kinetic energy; i.e.:

〈〈Vϕ,Wϕ〉〉X :=
∫
B

V i(X)W j(X)gij(ϕ(X))�0(X)µX(G). (2.62)

In finite dimensions, a metric on a manifold induces a bundle metric on the co-tangent bundle.
In infinite dimensions, on the other hand, this need not be the case. In the present situation we
give an explicit construction following Marsden, Ratiu and Weinstein [1984b]. Let ᾱϕ = αϕdV
and B̄ϕ = BϕdV ∈ T ∗C ⊗ |Λ(B)|, where dV = µ(G) is the volume element. Then ᾱϕ/(�0dV ) and
B̄ϕ/(�0dV ) are one-forms over ϕ ∈ C that when evaluated at ϕ(X) are elements of Tϕ(X)S. Now,
Tϕ(X)S is a finite-dimensional Riemannian manifold with metric g(ϕ(X)). Consequently, we have
the standard index-lowering and index-raising actions induced by g(ϕ(X)); explicitly, as in (2.27)
and (2.28) for any Vϕ(X) ∈ Tϕ(X)S and αϕ(X) ∈ T ∗

ϕ(X)S we define the associated one-form and
vector field by

V�
ϕ(X) = gij(ϕ(X))V j(X)dxi; α�

ϕ(X) = gij(ϕ(X))αj(X)
∂

∂xi
. (2.63)

These definitions induce a bundle metric on T ∗C by the expression

(ᾱϕ, B̄ϕ := 〈〈Vϕ,Wϕ〉〉, (2.64)

where Vϕ(X) = [ᾱϕ(�0dV )]� = [αϕ/�0]� and Wϕ(X) = [B̄ϕ/�0dV )]�. We denote by || · || the bundle
norm defined by the metric (2.64).
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With this notation, we define the material momentum density as

Mϕ := �0V�
ϕµ(G) ∈ T ∗

ϕC. (2.65)

In view of (2.62), (2.64) and (2.66), the kinetic energy term in (2.61) becomes ||Mϕ||/2 and the
Hamiltonian takes the form:

H(g;ϕ,Mϕ;G) =
1
2
||Mϕ||2 +

∫
B

�0W (g · ϕ,Ft,G)µ(G). (2.66)

Again, we observe that H : MS × T ∗C ×MB → R depends parametrically on the metrics g and G.
In addition, H is subject to the covariance assumption.

ii Convected description. To express the Hamiltonian in the convected representation we first
transform the kinetic energy term using relation (2.9) between convected and material velocity fields.
We have, in coordinates,

||Mϕ||2 =
∫
B

�0(X)V a(X)V b(X)gab(ϕ(X))µX(G)

=
∫
B

�0(X)F a
A(X)F b

B(X)gab(ϕ(X))VA(X)VB(X)µX(G)

=
∫
B

�0(X)CAB(X)VA(X)VB(X)µX(G). (2.67)

Sometimes, we shall write µX(G) as just µ(G), suppressing the variable ξ. In view of the integrand
in (2.67), we define the convected one-form momentum density to be M = M⊗ µ(C), where M is
a one-form on B, and µ(C) is the convected volume element defined by (2.37), as

M := [�0(X)CAB(X)VB(X)]dXA ⊗ µ(G)
= [R(X)CAB(X)VB(X)]dXA ⊗ µ(C). (2.68)

(Recall that R is the convected density). Consequently, we have the equivalent expression

M := �0V�
t ⊗ µ(G) = RtV�

t ⊗ µ(C), (2.69)

where � : TB → T ∗ denotes the lowering-index action induced by C, as defined by (2.27). Again
this construction induces a bundle metric given, locally, by the expression

〈M,M〉 :=
∫
B

1
�0

(M�,M�)Cµ(G), (2.70)

where
(M�,M�)C := (�0(X)VA(X))(�0(X)VB(X))CAB(X) (2.71)

is the local inner product induced by C on TXB. The Hamiltonian in the convected description then
becomes

H(M,C,G) :=
1
2
〈M,M〉 +

∫
B

�0W (C,G)µ(G). (2.72)

Note that the kinetic energy is now a function of M and C alone. We also note that the kinetic
energy is just one half the squared length of the momentum density in the metric on the space of
convective momentum densities that is induced by (2.70). We regard (2.71) as the energy induced on
the original phase space of ϕ, Mϕ,g after factoring by the group of spatial diffeomorphisms Diff(S).
(Again G enters parametrically.) This idea is central to the reduction procedure explained in the
next section.
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iii. Spatial description. The expression for the kinetic energy in the spatial description readily
follows by recalling relation (2.8) between material and spatial velocity fields. We have

1
2
||Mϕ||2 =

1
2

∫
B

�0(X)V a(X)V b(X)gab(ϕ(X))µX(G)

=
1
2

∫
ϕt(B)

�t(x)vq(x)vb(x)gab(x)µx(g). (2.73)

Thus, we define the spatial momentum density mt as

mt := �v�
t ⊗ µ(g) (2.74)

where � : TS → T ∗S now denotes the lowering-index action induced by the spatial metric g. As in
the convected description, this process defines the bundle metric

〈m,m〉 :=
∫

ϕt(B)

1
�t(x)

ma(x)mb(b)(x)gab(x)µx(g) (2.75)

in terms of which, the kinetic energy in the spatial description becomes 〈m,m〉/2.
The central issue in the Hamiltonian formalism in the spatial description concerns the appro-

priate formulation of the potential energy term in such a way that the assumed form of the stored
energy function does not preclude anisotropic response. Early attempts, e.g., by Marsden, Ratiu and
Weinstein [1984], have been restricted to isotropic response. In the present context we proceed as
follows. Let

ft := −Tϕ−1
t ; i.e., ft(x) = −∂(ϕ−1)A

∂xa

∂

∂XA
⊗ dxa, (2.76)

be the negative of the inverse deformation gradient. Assume a covariant stored energy function of
the form

W = w̃(g, ft,G ◦ ϕ−1), (2.77)

where, as in the preceeding descriptions, we regard w̃ as depending parametrically on G. Covariance
is now understood to be right invariance relative to the group Diff(S):

w̃(g, ft,G ◦ ϕ−1) ◦ η = w̃(η∗g, ft ◦ Tη−1,G ◦ ϕ−1 ◦ η−1). (2.78)

Before proceedings further we remark on the interpretation of ft : TS → TB. By performing a
straightforward coordinate calculation we find

∂

∂t
fA

a +
∂fA

a

∂xb
vb + fA

b

∂vb

∂xa
= 0. (2.79)

It is apparent that (2.78) is the coordinate expression in a chart {xa} of a one-form on S. This fact
motivates the interpretation of ft as a collection of one-forms: πA : S → T ∗S, (i.e., a vector-valued
one form) rather than a two-point tensor:

ft =
∂

∂XA
⊗ πA

t ; πA
t := fA

a dxa. (2.80)

Expression (2.78) then reads:
∂

∂t
πA

t + Lvtπ
A
t = O. (2.81)

That is, ft is Lie-dragged by the flow of the spatial velocity field. By virtue of these observations,
the Hamiltonian in the spatial description now reads:

H(g,m; ft,G) =
1
2
〈m,m〉 +

∫
ϕt(B)

�w̃(g, ft, G ◦ ϕ−1)µ(g). (2.82)
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Equations of Motion

We conclude this section with a summary of the equations of motion in the spatial, material and
convected descriptions.

i. Conservation of mass. Let ϕt ∈ C be a motion, U ⊂ B a compact set, and ϕt(U) ⊂ S.
Conservation of mass requires that∫

U
�0(X)µX(G) =

∫
ϕt(U)

�t(x)µx(g). (2.83)

By the change of variables formula, assuming enough smoothness, we have

ϕ∗
t (�t(x)µx(g)) = (�t ◦ ϕt)(X)ϕ∗(µx(g)) = �0(X)µX(G). (2.84)

Alternatively, since µ(g) ◦ ϕ =: Jϕµ(G) by (2.35), we have the equivalent expression

ϕ0(X) = (�t ◦ ϕt)Jϕ(X). (2.85)

i.a. Spatial Description. From (2.84) it follows that

ϕt∗
∂

∂t
ϕ∗

t (�tµ(g)) = 0. (2.86)

The Lie derivative formula (2.18) then yields

Lvt
[�t ⊗ µ(g)] = 0. (2.87)

Alternatively, using the fact that Lvµ(g) = (divgv)µ(g), we recover from (2.87) the classical ex-
pression

∂�t

∂t
+ divg(�tvt) = 0. (2.88)

Note, however, that either expression (2.84) or expression (2.87) is more convenient than the classical
relation (2.88). This observation is crucial in our subsequent development of the Poisson bracket in
the convective representation.

i.b. Convected Description. By taking the pull-back of (2.84) and using standard properties of
the Lie derivative we obtain

0 = ϕ∗
t [Lvt(�t ⊗ µ(g))] = Lϕ∗

tvt(ϕ
∗
t �t ⊗ ϕ∗

t µ(g)). (2.89)

Using (2.15), (2.35) and (2.38) we obtain

LVt(Rt ⊗ µ(C)) ≡ LVt(�0 ⊗ µ(G)) = 0. (2.90)

Equivalently, by exploiting the connection between Lie derivatives and volume elements we have

∂Rt

∂t
+ DivC(RtVt) = 0. (2.91)

i.c. Material Description. From either (2.84) or (2.90) we obtain:

∂�0

∂t
= 0, (2.92)

which constitutes the statement of conversation of mass in the material description.
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ii. Conservation of Momentum. We summarize below the covariant version of the classical forms
of the local momentum equations in the spatial, convected and material descriptions.

ii.a Spatial Description. Assuming for simplicity zero body forces, we have the classical equations

divgσ = �t

[
∂vt

∂t
+ ∇vt

vt

]
. (2.93)

To express (2.93) in covariant form; i.e., in a form independent of the choice of coordinates, and in
terms of the spatial momentum density, we proceed as follows. The time-differentiation of definition
(2.74) for mt and the use of (2.93) yields

∂mt

∂t
=

∂�t

∂t
v�

t ⊗ µ(g) − [�t(∇vtvt)� − (divgσ)�] ⊗ µ(g). (2.94)

On the other hand, by the Lie derivative formula:

Lvt
mt = �t(Lvt

v�
t) ⊗ µ(g) + (d�t · vt)v�

t ⊗ µ(g) + �tv�
t ⊗ Lvt

µ(g). (2.95)

Again using the fact that Lv(µ(g)) = [divgv]µ(g) along with the spatial counterpart of (2.31), we
convert (2.95) to

Lvt
m̄t = [�t(∇vt

vt)� +
1
2
�td|vt|2g + (d�t · vt)v�

t + �t(divgvt)v�
t ] ⊗ µ(g). (2.96)

Adding (2.94) and (2.96) and using the continuity equation (2.88) we finally obtain

∂mt

∂t
+ Lvt

mt =
[
(divgσ)� +

�t

2
d|vt|2g

]
⊗ µ(g), (2.97)

which is the desired expression.

ii.b. Convective Expression. A pull-back of the classical balance of momentum equations (2.92)
yields

DivCΣ = R
[
∂Vt

∂t
+ ∇̃Vt

Vt

]
, Σ = ΣT . (2.98)

The covariant version of (2.98) may be obtained by the same argument as that leading to (2.97),
now phrased in the convective description. Alternatively, since

∂Mt

∂t
=

∂

∂t
ϕ∗

t mt = ϕ∗
t

[
∂mt

∂t
+ Lvt

mt

]
(2.99)

by the pull-back of (2.97), one finds

∂Mt

∂t
=

[
(DivCΣ)� +

Rt

2
d|Vt|2C

]
⊗ µ(C). (2.100)

ii.c. Material Representation. For completeness we also record the form of the momentum
equations in the material description. Making use of the Piola transformation (cf., e.g., Marsden
and Hughes [1983, Chap. 1]) from the spatial form (2.93) we obtain

DIVGP = �0
∂Vt

∂t
; PFT

t = FtPT . (2.101)

where P := JϕσF−1
t is the (non-symmetric) first Piola-Kirchhoff tensor.

In the next section, we show that the field equations in the convected description are Hamiltonian
relative to a non-canonical Lie-Poisson structure on the material phase space reduced on the left by
the group of spatial diffeomorphisms.
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3 The Hamiltonian Structure of Three-Dimensional Elas-
ticity in the Material and Convective Representations

In this section we show that the equations of elastodynamics in the convective representation are
Hamiltonian relative to a non-canonical Poisson structure on the space of pairs (M, C), where M is
the convective momentum density and C is the Cauchy-Green tensor, as in the preceeding section.
This means that the equations of elastodynamics are equivalent to the following condition: For any
function f(M,C),

ḟ = {f, H}, (3.1)

where H is the Hamiltonian, given by (2.72), and the bracket { } appearing in (3.1) satisfies the
usual conditions for a Poisson bracket, including Jacobi’s identity (see, for example, Marsden and
collaborators [1983]).

This bracket is obtained by reducing the canonical bracket on T ∗C by the group of spatial
isometries of the metric g on S. Equivalently, as in Marsden, Ratiu and Weinstein [1984a, b],
we can incorporate the metrics g and G as parameters and then reduce the cotangent bundle
T ∗(MS × C × MB) by the left action of MS × Diff(S) × MB. As is shown in this reference, the
result is the same as reducing MS × T ∗C ×MB by the action of Diff(S). This reduction procedure
will be explicitly explained by direct calculation in what follows. Before reading this section, the
reader may find it helpful to review first the parallel case of rigid body dynamics in §4.

The Canonical Bracket on the Material Phase Space

We start with the canonical phase space T ∗C; the space of configurations ϕ ∈ C and their canonically
conjugate momenta Mϕ = Mϕ ⊗µ(G), the material momentum densities, in addition, to accommo-
date the covariance assumptions and the influence of the reference configuration (i.e., anisotropy),
one introduces the spatial and material metrics, g ∈ MS and G ∈ MB, as additional parameters.
Consequently, we consider the material phase space

Pcan := MS × T ∗C ×MB. (3.2)

We write f(g;ϕ,Mϕ,G) for functions f : Pcan → R.
To define the canonical bracket on Pcan we start by introducing the notation of the partial Fréchet

and functional derivatives of a function f : Pcan → R. The partial Fréchet and functional derivatives
of f : Pcan → R relative to Mϕ is defined by considering a curve ε �→ Mϕ + εδMϕ and setting

DMϕ

f · δMϕ :=
d

dε

∣∣∣∣
ε=0

f(g, ϕ,Mϕ + εδMϕ,G), (3.3)

where δMϕ := δMϕ ⊗ µ(G) is a one-form density covering ϕ ∈ C.
The definition of the partial Fréchet derivative of f : Pcan → R with respect to ϕ ∈ C requires

some caution since T ∗C is not simply a product space. Essentially, one needs to “fix” Mϕ while
allowing ϕ ∈ C to vary. To formalize this intuitive notion, we proceed as in Lewis, Marsden,
Montgomery and Ratiu [1987]. We identify T ∗

ϕS with ϕ(B)× (R3)∗ and denote by M̃ϕ : B → (R3)∗

the principal part of Mϕ; i.e., the projection of Mϕ onto (R3)∗. Thus we regard Mϕ as the mapping

Mϕ = ϕ × M̃ϕ : B → ϕ(B) × (R3)∗ ∼= T ∗
ϕS. (3.4)

As usual, we set Mϕ := Mϕ ⊗ µ(G).
With these identifications, let ε �→ ϕε ∈ C be a smooth curve such that

δϕ :=
d

dε

∣∣∣∣
ε=0

ϕε ∈ TϕC. (3.5)
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Then, set
Mϕε

:= ϕε × M̃ϕ ⊗ µ(G),

and define

Dϕf · δϕ :=
d

dε

∣∣∣∣
ε=0

f(g;ϕε,Mϕε ;G). (3.6)

Next, we define partial functional derivatives. Since boundary conditions are involved, we consider
two possible situations.

i. Pure displacement boundary conditions. The configurations ϕ ∈ C are restricted by

ϕ|∂B = ϕ̃ (prescribed). (3.7)

Consequently, the admissible variations Vϕ ∈ TϕC must satisfy

Vϕ(X) = 0 for X ∈ ∂B, (3.8)

so that
Mϕ(X) = 0 for X ∈ ∂B. (3.9)

We now define the partial functional derivative, δf̄/δϕ = (δf/δϕ) ⊗ µ(G), as the one-form density
covering ϕ ∈ C, which is given by the relation

Dϕf · δϕ =
∫
B

δf

δϕ
· δϕ =

∫
Ḃ

δf

δϕ
· δϕµ(G). (3.10)

Similarly, the partial functional derivative (δf/δMϕ), is a vector field covering ϕ ∈ C given by

DMϕ

f · δMϕ =
∫
B

δf

δMϕ

· δMϕ =
∫
B

δf

δMϕ

· δMϕµ(G). (3.11)

With these definitions, the canonical Poisson bracket {·, ·} : F(Pcan)×F(Pcan) → R takes the form

{f, g} =
∫
B

[
δf

δϕ
· δg

δMϕ

− δg

δϕ
· δf

δMϕ

]
. (3.12)

ii. General Boundary conditions. Next we consider general boundary conditions of mixed type.
Assuming dead loading, we have

ϕ|∂ϕB = ϕ̃ (prescribed), (3.13)

PN̂|∂σB = t̃ (prescribed) (3.14)

where P is the first Piola-Kirchoff tensor, introduced in (2.101), N̂ is the normal to ∂σB, and

closure (∂ϕB ∪ ∂σB) = closure (∂B), ∂ϕB ∩ ∂σB = ∅. (3.15)

To account for the traction boundary conditions on ∂σB, we modify our definition (3.10) of functional
derivative as follows. We set

Dϕf · δϕ =
∫
Ḃ

∆f

δϕ
· δϕ +

∫
∂σB

∂f

δϕ
· δϕ|∂σB, (3.16)

for all variations δϕ ∈ TϕC satisfying the essential boundary conditions; i.e.,

δϕ|∂ϕB = 0. (3.17)
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Here, ∆f/δϕ is a one-form density defined on points X ∈ ∂σB. For further elaboration on the pos-
sible alternative definitions of partial functional derivatives that account for the (natural) boundary
conditions (3.14) we refer to Lewis, Marsden, Montgomery and Ratiu [1986].

We define
δf

δϕ
:=

∆f

δϕ
+ δ(∂σB)

∂f

δϕ
;

δf

δMϕ
≡ ∆f

δMϕ
, (3.18)

where δ(∂σB) is the Dirac delta measure on B concentrated on ∂σB. Then the standard definition
(3.12) of the canonical bracket now becomes

{f, g} =
∫
B

∆f

δϕ
· δg

δMϕ

− ∆g

δϕ
· δf

δMϕ

+
∫

∂σB

[
∂f

δϕ
· δg

δMϕ

∣∣∣∣
∂σB

− ∂g

δϕ
· δf

δMϕ

∣∣∣∣
∂σB

]
γ(G) (3.19)

where ∆f/δϕ := ∆f/δϕ ⊗ µ(G) is a one-form density covering ϕ : B → S, and γ(G) is the surface
area element on ∂σB induced by G.

Proposition 3.1 The canonical Hamilton equations ḟ = {f, H} on material phase space, Pcan,
yield the material balance laws:

∂ϕ

∂t
= Vt in B, (3.20)

∂Mϕ

∂t
= DIVGP ⊗ µ(G); P = �0

∂W (g ◦ ϕ, Tϕ,G)
∂F

∂ϕ̃

∂t
= Vt on ∂ϕB, and t̃ = PN̂ on ∂σB.

Proof The Hamiltonian in the material (Lagrangian) description is given by (2.62), i.e.,

H(g;ϕ,Mϕ,G) =
1
2

∫
B

�0|Vt|2µ(G) +
∫
B

�0W (g ◦ ϕ, T, ϕ,G)µ(G)

−
∫

∂σB
ϕ · t̃γ(G), (3.21)

where Mϕ = Mϕ ⊗ µ(G) = �0V�
t ⊗ µ(G). By considering a curve ε �→ ϕε ∈ C with ϕε|ε=0 = ϕ and

(dϕε/dε)|ε=0 = δϕ, and keeping in mind the identifications elaborated upon above, we find

DϕH · δϕ =
∫
B

�0
∂W

∂F
: GRAD δϕ ⊗ µ(G) −

∫
∂σB

δϕ · t̃γ(G)

=
∫
B
−[DIVGP ⊗ µ(G)] · δϕ +

∫
∂σB

(PN̂ − t̃) · δϕγ(G). (3.22)

It follows that
∆H

δϕ
= −DIVG[P ⊗ µ(G)];

∂H

δϕ
= (PN̂ − t̃) ⊗ γ(G). (3.23)

Similarly one finds
δH

δMϕ

= Vt. (3.24)

The canonical bracket (3.19) then becomes

{f, H} =
∫
B

∆f

δϕ
· Vϕ +

δf

δMϕ

· [DIVG(P ⊗ µ(G)]

+
∫

∂σB

[
∂f

δϕ
· Vϕ|∂σB + (t̃ − PN̂) · δf

δMϕ

∣∣∣∣
∂σB

]
γ(G). (3.25)
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On the other hand, for any f : Pcan → R we have

ḟ =
∫
B

∆f

δϕ
· ∂ϕ

∂t
+

δf

δMϕ

· ∂Mϕ

∂t
+

∫
∂σB

∂f

δϕ
· ∂ϕ

∂t

∣∣∣∣
∂σB

γ(G). (3.26)

By comparing (3.25) and (3.26) we obtain the result. �

Theorem 3.2 The reduced Poisson bracket on the convective phase space has the following equiva-
lent expressions:

{f, g} =
∫
B
M ·

[
δf

δM
,

δg

δM

]
+

∫
B
C :

[
δf

δM
⊗ DivC

(
2

δg

δC

)
− δg

δM
⊗ DivC

(
2

δf

δC

)]
µ(C)

−
∫

∂σB
C :

[
δf

δM
⊗ 2

δg

δC
N̂ − δg

δM
⊗ 2

δf

δC
N̂

]
γ(C) (3.27)

=
∫
B

M ·
[

δf

δM
,

δg

δM

]
+

∫
B

[
δf

δC
: L δg

δM
C − δg

δC
: L δf

δM
C

]
−

∫
∂ϕB

C :
[

δg

δM
⊗ 2

δf

δC
N̂ − δf

δM
⊗ 2

δg

δC
N̂

]
γ(C) (3.28)

=
∫
B

M ·
[

δf

δM
,

δg

δM

]
+

∫
B
C :

[
L δg

δM

δf

δC
− L δf

δM

δg

δC

]
−

∫
∂ϕB

C :
[

δf

δM
⊗ 2

δg

δC
N̂ − δg

δM
⊗ 2

δf

δC
N̂

]
γ(C)

−
∫

∂B

[(
C :

δg

δC

) (
δf

δM
· N̂

)
−

(
C :

δf

δC

) (
δf

δM
· N̂

)]
γ(C). (3.29)

Proof Expression (3.27) follows from (??) by the divergence theorem. Expression (3.28) follows from
(??) by the coordinate expression for the Lie derivative L δf

δM
C and by the symmetry of δf/δC.

Finally, expression (3.29) follows from (3.28) by integration by parts. �

We observe that for pure displacement boundary conditions, the boundary term vanishes in
expression (3.27) since ∂σB = ∅, whereas for traction-free boundary conditions the boundary term
in (3.28) vanishes since ∂ϕB = ∅.

Corollary 3.3 Hamilton’s equations ḟ = {f, H} are equivalent to the convective equations of motion

∂M
∂t

=
[
1
2
Rd|V|2C + (DIVCΣ)�

]
⊗ µ(C)

∂C
∂t

= LVt
C (3.30)

ΣN̂ = 0 on ∂σB (with M = 0 on ∂σB).

This follows, as we remarked earlier, by the general theory of reduction. For completeness we include
a direct verification of this statement.
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Proof of Corollary 3.4 From (2.72), the Hamiltonian in the convective description is

H(C,M,G) =
1
2

∫
B
R|V|2Cµ(C) +

∫
B
RW (C,G)µ(C) (3.31)

where M = M ⊗ µ(C) = RV� ⊗ µ(C) ≡ �0V� ⊗ µ(G). The partial functional derivatives are
computed in the standard fashion by considering curves ε �→ Cε ∈ S2(B) and ε �→ Mε ∈ X∗(B) and
using the directional derivative formula. One finds that

δH

δC
=

1
2
[−RV ⊗ V + Σ] ⊗ µ(C);

δH

δM
= V. (3.32)

Using (3.32) and the definition of the Lie bracket of vector fields in X(B), we write the first term in
(3.28) as ∫

B
M ·

[
δf

δM
,

δH

δM

]
=

∫
B
M ·

[
δf

δM
,V

]
=

∫
B
M · L δf

δM
V. (3.33)

The second term in (3.28) reduces to∫
B

δf

δC
: L δH

δM
C =

∫
B

δf

δC
: LVC. (3.34)

The last term in (3.28) requires a more elaborate computation. First, we use the derivative property
of Lie derivatives to obtain:

−
∫
B

δH̄

δC
: L δf

δM
C = −

∫
B
L δf

δM

(
C :

δH

δC

)
+

∫
C : L δf

δM

δH

δC
. (3.35)

The substitution of (3.32) into (3.35) and the use of standard additional properties of the Lie
derivative yields

−
∫
B

δH

δC
: L δf

δM
C =

∫
B

1
2
L δf

δM
[|V|2C ⊗Rµ(C) − (C : Σ) ⊗ µ(C)]

−
∫
B
C :

[(
L δf

δM
V

)
⊗ V ⊗Rµ(C)

]
+

|V|2C
2

⊗ L δf

δM
[R⊗ µ(C)]

+
∫
B

1
2
C : L δf

δM
[Σ ⊗ µ(C)]

=
∫
B

[R
2

d|V|2Cµ(C) −M · L δf

δM
V

]
+

1
2

∫
B

[
C : L δf

δM
Σ − L δf

δM
(C : Σ)

]
⊗ µ(C). (3.36)

By exploiting the symmetry of Σ and the expression in local coordinates for the Lie derivative, we
obtain

1
2
C : L δf

δM
Σ =

1
2
d(C : Σ) · δf

δM
−

(
∇̃ δf

δM

)
: Σ

=
1
2
L δf

δM
(C : Σ) −

(
∇̃ δf

δM

)
: Σ, (3.37)

where in coordinates, (∇̃δf/δM) : Σ = (δf/δMA)|BCADΣDB . The substitution of (3.37) into
(3.36), the integration of the resulting expression by parts and the use of the Gauss theorem then

19



yield

−
∫
B

δH

δC
: L δf

δM
C =

∫
B

δf

δM
·
[R

2
d|V|2C + DIVCΣ)�

]
⊗ µ(C)

+
∫
B
−DIVC

(
Σ

δf

δM

)
⊗ µ(C) −M · L δf

δM
V

=
∫
Ḃ

δf

δM
·
[R

2
d|V|2C + (DIVCΣ)�

]
⊗ µ(C)

−
∫

∂B

δf

δM
· (ΣN̂)�γ(C) −

∫
B
M · L δf

δM
V. (3.38)

Substituting (3.33), (3.34) and (3.38) into (3.28) yields

{f, H} =
∫
B

δf

δC
: LVC +

δf

δM
·
[R

2
d|V|2C + (DIVCΣ)�

]
⊗ µ(C)

−
∫

∂B

δf

δM
· (ΣN̂)�γ(C)

−
∫

∂ϕB

[
V ·

(
2

δf

δC
N̂

)�

− δf

δM
· (ΣN̂)� −M(V · N̂)

]
γ(C). (3.39)

Since V|∂ϕB = 0, the boundary term in (3.39) collapes to

−
∫

∂σB

δf

δM
· (ΣN̂)�γ(C). (3.40)

On the other hand, for any f : Pconv → R, we have

ḟ =
∫
B

δf

δC
: Ċ +

δf

δM·
·
M . (3.41)

A comparison of (3.39)–(3.40) with (3.41) yields the desired result. �
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