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We present results on numerical mtegrators that exacrly preserve momentum maps and Poisson brackets. thereby inducing

imegrators that preserve the natural Lie-Poisson structure on the duals of Li¢ algebras. The techniques are based on time-stepping
with the generating function obtained as an approximate solution to the Hamilton-Jacobi equation, following ideas of deVogelaére,
Channell. and Feng. To accomplish this, the Hamilton-Jacobi theory is reduced from T*G to g*. where g is the Lic algebra of'a
Lic group G. The aigorithms exactly preserve any additional conserved guantities in the problem. An explicit algorithm is given

for any semi-simpic group and in particular for the Euler cquation of rigid body dynamucs.

1. Introduction

This note 1s motivated by symplectic integrators
as developed i refs. |1-4] and other references
therein. This algorithm is based on the use of gen-
erating functions together with Hamilton-Jacobi
theory for canonical hamiltonian systems. One ver-
sion of this algorithm proceeds as follows: Start with
a given configuration manifold Q and construct the
corresponding phase space T*Q with canonical co-
ordinates (¢'. p,). (We use finite dimensional co-
ordinates; however, the constructions are also valid
in the infinite dimensional case.) Next, find an ap-
proximate solution S(g'. gi,. t) of the time depen-
dent Hamilton-Jacobi equation

as / m%‘)
g =0 )
at . (q dg' ) th
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Now generate a canonical ransformation ¢4 (g,

DPa)e (g, p) for a time step. which we shall denote Ar.

using the standard formulae
a8 i8S

Doy=— =", P,= 7. (
n oy

o
S

Choosc an initial condition so that .5 generates the
identity transformation at 1=0, such as

- ! / 1y
S= i’; ((] -—({“)‘ .

The resulting time dependent map is iterated N times
to get the approximate dynamical solution for longer
times /=N Ar. Here 1t is assumed that the first cqua-
tion in (2) can indeed be solved for ¢’ in terms of
gi, and p,, which is then substituted into the sccond
cquation of (2). This procedure has several inter-
esting features. The (irst, as explained in the papers
of Channell and Scovel, and Feng, is its apparently
better accuracy in representing the hamiltonian dy-
namics, especially the long term dynamics. Not only
1s the transformation generated this way exactly

134 0375-9601/88/% 03.50 © Elsevier Science Publishers B.V. .
( North-Holland Physics Publishing Division )




voturie 133, numbee 3

symplectic, but it appears 1o typically conserve en-
&gy more accurately than other methods. { We thank
Swan Kim for demonstrating properties of this al-
gorithm for use at Cornell.)

There are several other versions of the algorithm
that one can also treat. For example. if specific co-
ordinates arc chosen on the phasc space. one can use
a generating function of the form S(¢', py,. ). In this
case one can get a simple formula for a first order
algorithm simply by using S=p, g’ — At I {q". pu,).
which is casy to implement, and for hamiltonians of
the form kinctic plus potential. leads to an explici
symplectic algorithm.

In this paper we are interested in algorithms of this
sort for systems with symmetry and in reducing them.
For-this purpose. 1t seems that only generating func-
tions of the form S(¢'. ¢/.. t} arc capable of a global
treatment, which is important for systems with sym-
metry and their reductions.

2. Conservation laws

The first thing we point out is that if .S is invariant
under a group action. then the map ¢, defined by eq.
(2) exactly preserves the corresponding conserved
quantity. To precisely state this, we recall a bit o ter-
minology. Suppose G is a Lie group that acts on
and henee on T*Q by point transformations (cotan-
gent lifts) with the corresponding equivariant mo-
mentum mapping J: T*Q »g* with the associated
map J:g- . #(T*Q) defined by

J() () =<y - (3)

where g is the Lic algebra of G. . #(T *Q) is the space
of smooth functions on T*Q. ¢, e T:Q is a covector
at ge Q. and &, is the infinitesimal generator of the
action of G on Q. (See¢ ref. [5] for further expla-
nation of the notation.) We give the result for gen-
erating functions of the form S{(g¢'. ¢},. 7). but of
coursc. there are analogous results for the other forms.
and these can be casily checked numerically (for ex-
ample. the choice S=p, g = Arll(qg' p,) satisfies
the requisite invariance properties).

Proposition 1. Supposc that $: Q< Q --R is invar-
want under the diagonal action of G. ie., S(gq.
£490) =S(4. gu). Then the momentum map J is in-
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variant under the canonical transformation ¢, gen-
erated by 5, e, Jopg=J.

This follows by differentiating the invariance con-
dition assumed on S with respect to geG in the di-
rection of eg and utilizing the definitions of p.. J
and &, The following 15 also trues IF G oacts on Q
freely. and a given canonical transformation ¢ con-
serves W/, then its generating function .S can be de-
tined on an open sct of QxQ which is invariant
under the action of (5. and .S is invariant under the
action of 5. This is proved in ref. [6].

Note that if /1 1s invariant under the action of G,
then the corresponding solution of the Hamilton—Ja-
cobi equation is G invariant as well. This follows
from the short time uniqueness of the gencrating
function of the type assumed for the flow of the ham-
iltoman vector field X, determined by /7. It also fol-
lows trom proposition | that if the approximate
solution of the Hamilton-Jacobi equation is chosen
to be G invariant. then the corresponding algorithm
will exactly conserve the momentum map.

3. Conserving energy

We recall that there are other algorithms which ex-
actly preserve energy. some of which also preserve
other conserved quantities: see refs. [7-107 and fur-
ther references therein. However, these algorithms
cannot be symplectic, according to the following re-
sult of Ge [11]:

Let /1 be a hamiltonian which has no other con-
served quantities (in a given class .. for example
analytic functions) other than functions of /1. That
is. i {F H =00 then F(z)y=F,(H(z)) for a function
Fi. Let @, be an algorithm which is defined for small
Arand is smooth. If this algorithm is symplectic, and
conserved H exactly, then it is the time advance map

Jor the exact hamilionian system up 1o d reparaine-

trization of itime. In other words, approximate sym-
plectic  algorithms cannot  preserve energy for
nonintegrable systems.

This result is in fact casy to prove. The algorithm,
being symplectic, is generated by a time dependent
function F(z. 1). which we assume belongs to 4.
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Since @, preserves H. and /1 1s assumed to be time
independent. F commutes with /1. and so
F(z)=F,(II(z)). It follows that the hamiltonian
vector tields of I and /{ are parallel. so their integral
curves are related by a time reparametrization,

For systems that have integrals. the above theorem
can be applied 1o the induced algorithm on the sym-
plectic or Poisson reduced spaces, as described be-

low. On these reduced spaces, the assumption of

nonintegrability is reasonable.

The above result suggests that conserving energy
15 a good criterion for a test of the accuracy of the
algorithm. Numerical evidence (sece. for example, ref.
{471} suggests that the constraint of conserving the
symplectic structure is sufficiently strong that the
method has good encrgy behavior, despite the fact
that it cannot conserve energy exactly. We have seen
in proposition 1, however, that algorithms can casily
be symplectic and also preserve other conserved
quantities. such as angular momentum. The reason
for the good long time energy behavior of symplectic
schemes in some cases 1s not well understood at the
present time.

4. The Lie-Poisson Hamilton-Jacobi equation

Now assume we are dealing with the above situ-
ation and produce a G invariant generating function
S, Since 1t is G invariant, it can be reduced. cither
by symplectic or Poisson reduction to produce an al-
gorithm on the reduced space. 1t also gives rise 1o a
reduced version of Hamilton-Jacobi theory. This can
be applied to. for example. the rigid body in body
represcntation or, in principle. to fluids and plasmas
in the spatial representation. (See ref. [12] for an
account of this theory.) Instead of giving the gen-
ceralities of the theorv. we shall illustrate it in an im-
portant casc, namely, with the case of Lie-Poisson
reduction, whereby we take Q=G, so the reduced
space T*Q/G is isomorphic with the dual space g*
with the Lie-Poisson bracket (with a plus sign for
right reduction and a minus sign for left reduction).
We shall give the special case of the rigid body for
tlustration, taking G =SO(3). Since the momentum
map 18 prescrved. onc also gets an induced algorithm
on the coadjoint orbits, o1 in the more general cases.,
on the symplectic reduced spaces. The proofs are
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routinely provided by tracing through the defini-
tions. so we will just state the results. We begin with
the reduced Hamilton-Jacobi equation itself. Thus,
let H be a G invariant function on T*G and let H,
be the corresponding left reduced hamiltonian on g*.
(To be specific, we deal with left actions - of course
there are similar statements for right reduced ham-
iltonians.) If S i1s invanant. there is a unique func-
tion S, such that S(g. g,)=S (¢ 'g,). (One gets a
slightly diffcrent representation for S by writing
gy 'ginplaceof g 'g,.)

Proposition 2. The left reduced Hamilton-Jacobi
cquation is the following equation for a function
S G OR:

(‘]Sl - - -
m +1, (=TRY-dS, (£))=0. (4)
4

which we call the Lic-Poisson Hamilton-Jacobi
cquation. The Lie-Poisson flow of the hamiltonian
1, is generated by the solution Sy of (4) in the sense
that the flow is given by the Poisson transformation
of g*: /1, 11 defincd as follows: Define ge G by solv-
ing the cquation

Hy=—-TL:-d,5; (5)
for ge G and then setuing
H=Ad; .11,. (6)

Here Ad denotes the adjoint action and so the ac-
tion in (6) is the coadjont action. Note that (6) and
(5) give IT=~TR%-dS, (g). Note also that (5) and
(6) are the analogues of eq. (2) and that (4) is the
analoguc of (1). Thus, one can obtain a Lie-Poisson
integrator by approximately solving (4) and then us-
ing (5) and (6) 1o generate the algorithm. This al-
gorithm (6) manifestly preserves the coadjoint orbits
(the symplectic leaves 1n this case). As in the ca-
nonical case, one can generate algorithms of arbi-
trary accuracy this wayv. Sec refs. [6,11] for
additional related results.

There may be conditions necessary on /7, for the
solvability of eq. (5). This is noted in the example
of the rigid body below.

For the case of the rigid body, these equations read
as follows. First. ¢q. (4) reads
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OL L] (= VS (A) A =0 (7)
dt

1.E.

9s, A

ISy, (— 2oL xll“,) (8)
a¢ N dxf',

(sum over j) where the action function S, is a func-
tion of an orthogonal matrix .4 and where we have
identified tangent and cotangent spaces using the bi-
invariant metric on the rotation group. This metric
corresponds to the standard cuclidean metric on the
Lie algebra, when identified with cuclidean three-
space. This identification maps the Lic algebra
bracket 1o the cross product. The expression
VS, (A)-A" is a skew symmetric matrix, i.c.. it lies
in the Lic algebra so(3), so it makes sense for /7, to
be cvaluated on it. As usual, onc has to be careful
how the gradient (derivative) V.S, is computed. since
there is a constraint 14" =/ involved. If it is com-
puted naively in the coordinates of the ambient space
of 33 matrices, then one interprets the expression
VS, (4)-4" using naive partial derivatives and skew
symmetrizing the result: this projects the gradient to
the constraint spacc. so produces the gradient of the
constrained function

Eq. (7) thus is the Hamilton-Jacobi equation for
the dynamics of a rigid body written directly in body
representation. The flow of the hamiltonian s gen-
erated by S, in the following way: it is the transfor-
mation of initial conditions at time /=0 1o a general
t determined by first solving the equation

= — 4" VS, (A) (9)

for the matrix .t and then setting //=.1//,. where
IT=[IT')] is the skew matrix associated to the vector
IT in the usual way: IT-v=1ITxr. (Again, the right
hand side of (9) is to be skew symmetrized if the
derivative was taken in the naive way with the con-
straint ignored.) We have written the results in terms
of the body angular momentum vector 71: one can
rewrite it in terms of the body angular velocity vec-
tor by using the relation 7=/, where I is the mo-
ment of inertia tensor. In coordinates, ¢q. (9) reads
as follows:

(I == = (10)
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Finally, we note that similar cquations also apply
for fluids and plasmas. since they are also Lie—Pois-
son systems (but with right reduction). Also. the
methods here clearly will generalize to the situation
for reduction of any cotangent bundle: this gener-
ality is needed for example. for the case of free
boundary fluids, ref. [13].

S. First order Lie-Poisson algorithms

A general way to construct first order algorithms
valid in the Lic~Poisson setting (as well as its ana-
logues in the symplectic and Poisson context) is as
follows. Let /1:9% »§2 be a given hamiltonian func-
tion and let S, be a function that gencrates a Poisson
transformation ¢,:q*-g* and let

Sy=So+ A H(LEAS,) . (11)

For small Ar, (11) gencrates a Poisson transforma-
ton, say ¢,,:9* »g*. Then we have:

Proposition 3. With the assumptions above. the
algorithm

s [T V=g Ve (1T7) (12)

is a Poisson difference scheme that is a first order
difference scheme for the hamiltonian system with
hamiltonian 1.

In particular, if one can generate the identity
transformation with a function S,,. then one can get
a specific first order scheme. On (. one can intro-
duce singularities in the time variable to do this, as
we have already remarked. Intcrestingly, for g semi-
simple, one can do this in a non-singular way on g*.
In fact, in ref. [6] it is shown that in this case, the
function

So{g) =trace(Ad}) (13)

generates the identity in a G-invariant neighborhood
of the zero of g*. One can also check this with a di-
rect calculation using (3) and (6). The neighbor-
hood condition is necessary since there may be some
conditions on /7, required for the solvability of (5).
For example, for the rigid body the condition is
checked to be ||/1,} < 1. This condition can be dealt
with using a scaling argument. We note that when
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one solves (5) for g, it need not be the identity, and
consistent with (6) we observe that g lics in the
coadjoint 1sotropy of the element 77,

Formula (13) can be generalized to regular qua-
dratic Lie algebras; i.e. Lie algebras with a nonde-
generate, symmetric Ad-invariant bilinear form, say
B. Indeed, a function « in a neighborhood of eeG
exists which generates the identity in g* iff g is reg-
ular quadratic. In fact, one takes u(g)=8B(Ing, Ing)
where In is a local inverse for exp, and conversely

d
557'1“” u(exp(sa) exp(th)).

(=0

B(a, /')):%

Combining (11) and (13) we get the following
proposition.

Proposition 4. The generating function
Sa(g)=trace(Ad; ) +Ar H(L; d trace(AdS))
(14)

defines, via (5) and (6), a Poisson map which is a
first order Poisson integrator for the hamiltonian H.

We remark that this scheme will automatically
preserve additional conserved quantities on g* that,
for example, arise from invariance of the hamilto-
nian under a subgroup of G acting on the right. This
is the situation for a rigid body with symmetry and
fluid flow in a symmetric container (with left and
right swapped) for instance.

6. Example: the free rigid body

For the case of the free rigid body, we let so(3),
the Lie algebra of SO(3), be the space of skew sym-
metric 3X3 matrices. An isomorphism between
s0(3) and R? is given by mapping the skew vector v
to the matrix £ defined previously. Using the Killing
form (A4, B) =} trace 4" B, which corresponds to the
standard inner product on R%, i.e. (5, wd =v-w, we
identify so(3) with so(3)*. We write the hamilto-
nian f1: s0(3) —»Ras H (D) = jv-Iv, where 7 is the mo-
ment of inertia tensor. Let /:50(3)—s0(3) be defined
by [(#)=(Iv)". Thus, H(d)=14<5, [()>. Eq. (13)
becomes Sy(4)=trace(4) and so TL} dSy =1 (4~
A™"). Therefore, (14) becomes

138
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Sy, =trace(A)+ At H(3(A—-A")) (15

and so using (15) in egs. (5) and (6) gives the fol-
lowing specific Lie~Poisson algorithm for rigid body
dynamics: it is the scheme /7% IT**" defined by

=L [AN(A= AT+ (A=A AT AL

+(A=ATYY, (16a)
I =5 (A=A A+ A (A~ A7) At
+(A—AT)), (16b)

where, as before, eq. (15a) is to be solved for the
rotation matrix A and the result substituted into
(15b). Letting A®=1[4—A"] denote the skew part
of the matrix A, we can rewrite (16) as

T = A5+ (ATA5)SAL | (17a)
TTFH = AS 4+ (ATTAS)YS At (1718

Of course, one can write A=exp() and solve
{(17a) for &£and express the whole algorithm in terms
of g and g* alone, which may be important for com-
putational purposes.

We known from the general theory that this scheme
will automatically be Poisson and will, in particular;
preserve the coadjoint orbits, i.e., the total angular
momentum surfaces || /7] =constant. Of course, us
ing (12) and other choices of S, it is possible to gen-
erate other algorithms for the rigid body, but the
choice S,(A)=trace(A) is particularly simple. For
the regular quadratic case, the more general algo-
rithm (12), with a particular choice of S, will still
give a Lie-Poisson algorithm. We point out the in-
teresting feature that the function (13) for the case
of ideal Euler fluid flow is the function that assigns
to a fluid placement field ¢ (an element of the
diffeomorphism group of the containing region ) the
frace of the linear operator mwesg*m, on vorticity
fields w, which measures the vortex distortion due
to the nonrigidity of the flow. (See ref. [14] for fur-
ther information.)
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