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Abstract

This paper studies the dynamics of coupled planar rigid bodies, concentrating on the case
of two or three bodies coupled with a hinge joint. The Hamiltonian structure is
non-canonical and is obtained using the methods of reduction, starting from canonical
brackets on the cotangent bundle of the configuration space in material representation.
The dynamics on the reduced space for two bodies occurs on cylinders in R?; stability of
the equilibria is studied using the energy-Casimir method and is confirmed numerically.
The phase space of the two bodies contains a homoclinic orbit which produces chaotic
solutions when the system is perturbed by a third body. This and a study of periodic orbits
are discussed in part II. The number and stability of equilibria and their bifurcations for
three bodies as system parameters are varied are studied here; in particular, it is found
that there are always four or six equilibria.

1. Introduction

The techniques of reduction of Hamiltonian systems with symmetry and the
attendant energy-Casimir method have proved to be useful in a wide variety of
problems, including fluid and plasma stability (Holm, Marsden, Ratiu and
Weinstein, 1985), rigid-body dynamics with attachments and internal rotors
(Holmes and Marsden, 1983; Koiller, 1985; Krishnaprasad, 1985; Krishnaprasad
and Marsden, 1987), and bifurcations of liquid drops (Lewis, Marsden and Ratiu,
1986a,b). In this paper we shall apply these techniques to the case of planar rigid
bodies coupled by a hinge joint. Many of the results for the two and three bodies
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generalize to multibody structures and other modifications, such as the inclusion
of hinge torques. In subsequent papers we shall be studying this as well as the
problem of coupled three-dimensional rigid bodies (for example, with a ball-in-
socket or hinge joint). We also expect that the non-canonical Hamiltonian
methods that are useful here will be useful in related problems of control (see
(Van der Schaft, 1984; Sanchez de Alvarez, 1986).

The reduction technique used here goes back to Arnold (1966), Meyer (1973),
and Marsden and Weinstein (1974), amongst others. It involves starting with a
Poisson manifold P and a Lie group G acting on P by canonical transformations.
The reduced phase space P/G (assume it has no singularities) has a natural
Poisson structure whose symplectic leaves are the Marsden—Weinstein-Meyer
spaces J~'(u)/G, =J~'(0)/G, where u € g*, the dual of the Lie algebra of G,
J:P—g* is an equivariant momentum map for the action of G on P, G, is the
isotropy group of u (relative to the coadjoint action) and O is the coadjoint orbit
through u. If P=T*G and G acts by left translations, then P/G is identifiable
with g* equipped with the ( —) Lie—Poisson bracket:

6F6>

{F, H}(u) = —<u, [5’ m (1.1)

The symplectic leaves in this case are just the coadjoint orbits. For G = SO(3) we
get the (Pauli-Martin) bracket for rigid body dynamics:

{F, H}(l)= -1 - (VF X VH). (1.2)

Here 1€SO(3)* is identified with a vector in R® and represents the angular
momentum of the rigid body in a body-fixed frame. If I is the moment-of-inertia
tensor so that /=1lw; where @ is the body angular velocity, then Euler’s
equations

E=1Xw (1.3)

are equivalent to Hamilton’s equations
F={F, H}, (1.4)

where H)=1(l, o) =317, I).

Notice that (1.2) is a non-canonical bracket; that is, the usual (g, p)
Poisson-bracket formalism has disappeared through the reduction process. One of
our first goals in the paper will be to develop a similar bracket for the dynamics of
two coupled planar rigid bodies. We start with the canonical bracket on the
cotangent bundle of configuration space just as one starts with T*SO(3)
(parametrized by Euler angles (6, @, ¥) and their conjugate momenta
(Pe; Po>» Py)) in rigid-body dynamics.

When these procedures are carried out for coupled rigid-body dynamics (§§2 to
4) we find that concepts akin to the ‘augmented body’ (cf. (Wittenburg, 1977))
come out in a natural way. The reduced Poisson structure obtained is a Poisson
structure in R (not of Lie-Poisson type, however) whose symplectic leaves are
cylinders. The reduced dynamics on one of these cylinders for specific rigid-body
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Fig. 1. Phase portrait of a planar two-body system

parameters} is shown in Fig. 1. Here, u;, u, are closely related to the angular
momenta of the two bodies and € is the joint angle.

Being two-dimensional and Hamiltonian, the flow on the cylinder is completely
integrable. Notice that there are two equilibria, one a saddle and one a stable
point. This is confirmed by a linearized analysis for the saddle point and an
energy-Casimir analysis for the stable point (see (Holm et al., 1985)). The stable
point corresponds to the two bodies uniformly rotating in an extended position,
while the saddle point corresponds to uniform rotation in a folded position (Fig.
2). There are, of course, corresponding equilibria for oppositely oriented
rotational motions.

Notice from Fig. 1 that there are two homoclinic orbits from the unstable
equilibrium back to itself. Thus one can expect that when, for example, an
additional third body is attached nearly at the centre of mass of body 2 or the
system is forced (for instance by joint torques), there will be a splitting of these
homoclinic orbits resulting in chaotic dynamics. One way to proceed with an
analysis of this sort is via the Melnikov method (see (Holmes and Marsden, 1982,
1983; Guckenheimer and Holmes, 1983)). This analysis, together with more
information on instability and periodic orbits will be given in part 1I of this paper.

Another benefit of doing the analysis systematically using the reduction
procedure is that the generalization to multibody problems and three-dimensional
motion can be made using similar ideas. We discuss the planar multibody case in
§6 and the three-dimensional case in another publication.

We now summarize one of the results of the present work; namely we display
the Hamiltonian form for the dynamic equations. The details of the derivation of
this structure are given in §§2 to 4. Refer to Fig. 3 and define the following
quantities.

d; distance from the hinge to the centre of mass of body i =1, 2
w; angular velocity of body i =1, 2
] joint angle from body 1 to body 2

M0) diyd,cos@
m; mass of bodyi=1,2
€ mym,/(m, + m,) = reduced mass

+The parameters chosen, in the notation of §§2 to 4 are i1=105.55, I;=70, € =155.55 and
1+ =50
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Fig. 2. Equilibria of a planar two-body system

moment of inertia of body i about its centre of mass

I+ &d?; i = 1, 2 (augmented moments of inertia)

e (LT, — €2A%)

The dynamics of the system is described by the following Euler—Lagrange
equations for 6, @;, w;:

2 Il

6=0w,—w,
@, = —y(Lw: + eAw?), (1.5)
@, = y(l,o? + eAw?).

For the Hamiltonian structure it is convenient to introduce the momenta

pi=ho+edw,,  py=hw,+ o, (1.6a)

“)=1(2) a=(G %) 1
(#2 J 0,) J e L (1.6b)
(this is done via the Legendre transform in §4). The evolution equations for y; are

obtained by solving (1.6) for w,, w, and substituting into (1.5). The Hamiltonian
is

that is,

H = (w1, wﬁJ(ZZ), (1.7a)

body 2

Fig. 3. Planar two-body system
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which is the total kinetic energy for the two bodies. The Poisson structure on the
(6, 1, u)-space (called P in §3) is

{F, H} = {F, H}, - {F, H}, (1.8)
where
. OF3H 8H 3F
{F H)i=7g ou; 90 3y,

The evolution equations (1.5) are then equivalent to Hamilton’s equations
F = {F, H}. Casimirs for the bracket (1.8) are readily checked to be

C=0(u, + uy) (1.9)

for @ any function of one variable; that is, {F, C} =0 for any F. One can also
verify directly from (1.5) that, correspondingly, du/dt =0, where u = u, + u, is
the system angular momentum.

The symplectic leaves of (1.8) are described by the variables v = (u, — u;)/2, 8
which parametrize the cylinder shown in Fig. 1. The bracket in terms of (6, v) is
the canonical one on T*S™:

oF 3
{F, H}——a—H—‘—g—g—F (1.10)

As we shall see, this canonical structure on T*S! is consistent with the
Satzer-Marsden-Kummer cotangent bundle reduction theorem (Abraham and
Marsden, 1978; Kummer, 1981).

2. Kinematical preliminaries (for two coupled planar rigid bodies)

In this section we set up the phase space for the dynamics of our problem. Refer
to Fig. 4 and define the following quantities.

d, the vector from the centre of mass of body 1 to the hinge point in a
reference configuration (fixed)
a4y the vector from the centre of mass of body 2 to the hinge point in a
reference configuration (fixed)
cos §; —sin G,
R(6) sin 6, cos 6, the rotation through angle 6; giving the current

orientation of body i (written as a matrix relative to the fixed standard
inertial frame)

L current position of the centre of mass of body i

r current position of the system centre of mass

0 the vector from the system centre of mass to the centre of mass of
body i

] 6, — 6, joint angle

R(6) joint rotation, R(6,) - R(—8,)
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body 1 body 2

R(6,)4:;

Reference
point

Centre of mass
of the system

Fig. 4. Planar two-body system in the reference frame

The basic configuration space we start with is Q, the subset of SE(2) X SE(2)
(two copies of the special Euclidean group of the plane) consisting of pairs
((R(61), r1), (R(8,), 1)) satisfying the hinge constraint

r;=r,+ R(6,)d;, — R(0,)d,;. 2.1

Notice that Q is of dimension 4 and is parametrized by 68,, 6, and, say ry; that is,
Q~S'x S'x R% We form the velocity phase space TQ and momentum phase
space T*Q.

The Lagrangian on TQ is just the kinetic energy (relative to the inertial frame)
given by summing the kinetic energies of each body. For convenience, we recall

how this proceeds: let X, denote a position vector in body 1 relative to the centre 4
of mass of body 1, and let p,(X,) denote the mass density of body 1. Then the !

current position of the point with material label X, is

X\ = R(Ol)xl-i- r. (2.2)
Thus
X, = R(6:)X; +1y,
and so the kinetic energy of body 1 is
1 .
Ki=3 [ %0 Il 2%,
1 S o 3 - 2-
=5J-91(X1)<RX1+1'1,RX1+1'1>d X4 ,
1 . . .. .
=3 J’ Pi(XD[{RX,, RX,) + 2(RX,, i) + ||},]|*] d°X,. (2.3)
But
(RX,, RX,) = tr (RX,(RX,)") = tr (RXTX,R") (2.4
and

J’ Pl(xl)(Rxl, i) d’X, = <R J’ p1(X)X; @’X;, i'1> =0 (2.9)

|
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0

and, subtracting r from both sides

n=r+
From (2.10) and (2.11) we find th:
m

n= ;1 (

and
=22

m
Now we substitute

r=r+

and
p=r+

into (2.8) to give
L=1tr (R(8,)I'R(8,)" + R(6,)’R

But m,{k, i?) + m,(i, ) =0 sinc
simplifies to

L=4tr(R(8,)
+(p*/2m)

where p = m ||i|| is the magnitude «
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since X, is the vector relative to the center of mass of body 1. Substituting (2.4)
and (2.5) into (2.3) and defining the matrix

r = [ p(X)XXT dX, (26)
we get
K; =3 tr (R(6)T'R(6:)T) + 3my ||| @7
with a similar expression for K, we let
L:TQ_)R be L=K1+K2. (2.8)

Reference
point

The equations of motion then are the Euler-Lagrange equations for this L on
TQ. Equivalently, they are Hamilton’s equations for the corresponding
Hamiltonian.

For later convenience, we shall rewrite the energy (2.8) in terms of w, = 6,,
0,= 6, r? and 3. To do this note that, by definition,

 in the reference frame

th is Q, the subset of SE(2) x SE(2)
ip of the plane) consisting of pairs
constraint

mr = myr, + myr,, 2.9)

where m =m, +m,, and so, asr; =r+13,

- R(6,)d,;. 2.1) 0=mr? + m,r3 (2.10)
netrized by 6;, 0, and, say ry; that is, and, subtracting r from both sides of (2.1),
ase space TQ and momentum phase

p Q p rg = l'(l) + R(Bl)dlz - R(ez)d21. (2. 11)

energy (relative to the inertial frame)
ach body. For convenience, we recall

From (2.10) and (2.11) we find that

vector in body 1 relative to the centre =" p6.)d., — R(6,)d 2 12a
he mass density of body 1. Then the *m (R(6:)dsz ~ R(6:)de1) ( )
abel X, is and
1t n. 2.2 o My
n=- ; (R(61)dz — R(6,)dy,). (2.12b)
1+, .
Now we substitute
rn=r+rl so i=F+i (2.13a)
and
L=r+r; so bL=rt+i) (2.13b)
: 2
+h) &, into (2.8) to give
. =1 ’ 17 T 5 215 T 1 . L e0)2 ., .02
2<RX1, i’l) + “illlzl dle. (2.3) L 2 tr (R(GI)I R(Bl) + R(BZ)I R(BZ) )+ 2[m1(”l' + I-.1” ) + m; “l'+ l‘2“ ] (214)
But m,(k, 1) + my(k, i) =0 since m,il+ m,i3=0 from (2.10). Thus (2.14)
. . simplifies to
)T = tr (RXTX, RY) 2.4)

L=}tr (R(6)T'R(61)" + R(0)FR(62)")
+(p?/2m) + dmy 1R + 3mo (183117, (2.15)

[ (X)X, d°X;, i‘1> =0 (2.5) where p = m ||| is the magnitude of the system momentum.
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Now write

; d fcos 0, —sin8,
T iy
R(6,) dt\sinf, cos0,

(—sin 6, —cosb,

cos @, —sin8,

)w1:=R(01)<£1 _(;ul)=R(61)cb1, @16 |

so that (2.12) gives

A . m A A
g (R(B )wldlz R(Gz)ﬂ)zdzl), l'? = - —nf (R(el)wldlz - R(ez)wdeI).

@17 |
Substituting (2.17) and (2.16) into (2.15) gives

mym,

2
=itr (@, 0'@)) + @, Fd7)) + % |@1dy, — R(6; — 01)0d (% (2.18)

Finally we note that
2

Ir (@0 =3tr (0T, 1Y) = ((a(;l 0?2)11) =oltrI':=w?L, (2.19.1) ‘
1

where

11=IP(X1, Yl)(X%'i‘Y%)Xm day, I

is the usual moment of inertia of body 1 about its centre of mass. One similarly |
derives (2.19.2) where 1 is replaced by 2 throughout. The final term in (2.18) is
manipulated as follows:

l| @182 — R(6)0ydy |1 = || @1da||* — 2( @:d12, R(0) oy ) + || @285 |
= w3d? + wid3 — 2{®,dy;, O,R(0)d,;)
=widi+ w d% —2mw,0,{dy», R(0)d,, ). (2.20) }
Substituting (2.19.1), (2.19.2) and (2.20) into (2.18) gives k

p?
= 2[((01 + wzlz) + 2&)10)281(0)] + _ (221)
where ;
A(0) = —(dy,, R(6)dy;) = —[dy2 - dy; cos 0 — (dy; X dyy) - Zsin 0. (2.22)

Remarks 1. If d;; and d,, are parallel (that is, the reference conﬁguration is
chosen with dy, and d,, aligned), then (2.22) gives A(8) = d.d,cos 6, as in §1.

2. The quantities [;, [, are the moments of inertia of ‘augmented’ badies as }
defined in §1; for example I, is the moment of inertia of body 1 augmented by
putting a mass ¢ at the hinge point.

3. Reduction to the centre of mass frame

In this section we reduce the dynamics by the action of the translation group R”.
This group acts on the original configuration space Q by

v+ ((R(61), 11), (R(82), r5)) = (R(8y), 11 + V), (R(62), 2 + V). 3.1
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This is well defined since the hinge constraint (2.1) is preserved by this action.
The induced momentum map on TQ is caiculated by the standard formula

% =§§—i§"g(q), (3.22)

0 —a)1>_ . *
01)((01 ) =R6)6,,  (216)1] oronTQby

Je =p&o(q), (3.2b)
where &5 is the infinitesimal generator of the action on Q (see (Abraham and
Marsden, 1978)). To implement (3.2) we parametrize Q by 6,, 6, and r with r,
and r5 determined by (2.12) and (2.13). From (2.15) we see that the momentum
conjugate to r is

m;

(R(el)(bldIZ - R(BZ) d)ZdZI)

m

(53
p= %l'é =mr 3.3)
|| ®1dy2 — R(6; — 6,)0d;|1.
and so (3.2) gives
JE = <P’ E)J E € Rz' (3'4)

ThusJ = p is conserved since H is cyclic in r and so H is translation invariant. The
corresponding reduced space is obtained by fixing p = po and letting

P, =J"'(po)/R?

(see (Abraham and Marsden, 1978, Chapter 4)). But P, is clearly isomorphic to
T*(S' x §Y), that is, to the space of 6;, 8, and their conjugate momenta. The
reduced Hamiltonian is simply the Hamiltonian corresponding to (2.21) with p
regarded as a constant.

Note that in this case the reduced symplectic manifold is a cotangent bundle, in
agreement with the cotangent-bundle reduction theorem (Abraham and Marsden,
1978; Kummer, 1981). The reduced phase space has the canonical symplectic
form; one can also check this directly here.

In (2.21) we can adjust L by a constant and thus assume that p =0; this
obviously does not affect the equations of motion.

Let us observe that the reduced system is given by geodesic flow on stx St
since (2.21) is quadratic in the velocities. Indeed the metric tensor is just the
matrix J given by (1.6), so the conjugate momenta are p;, {4, given by (1.6).

We remark, finally, that the reduction to centre-of-mass coordinates here is
somewhat simpler and more symmetric than the Jacobi-Haretu reduction to
centre-of-mass coordinates for n point masses. (Just taking the positions relative
to the centre of mass does not achieve this since this does not reduce the
dimension at all!) What is different here is that the two bodies are hinged, and so
by (2.12), r? and rJ are determined by the other data.

02>Il) =witrI':=w?, (2.19.1) '
01 T

i .

+ Y] dX, dYy

out its centre of mass. One similarly
roughout. The final term in (2.18) is

(01d;2, R(6)P28y;) + || 282
- 2(ydyz, ®,R(6)dy,)

—20,@,{dy2, R(0)dy) . (2.20)
o (2.18) gives

p2
),0,€A(0)] + o’ (2.21)

1c0s 6 — (d; X dy) - Zsin0]. (2.22)

hat is, the reference configuration is
) gives A(0) =d,d,cos 6, as in §1.
s of inertia of ‘augmented’ bodies as
nt of inertia of body 1 augmented by

4. Reduction by rotations

To complete the reduction, we reduce by the diagonal action of S* on the
configuration space S! X S* that was obtained in §3. The momentum map for this
action is obviously given by

J((81, 11), (02, 42)) = p1 + 2. 4.1)

frame

he action of the translation group R>.
n space Q by :

101)’ n + V), (R(BZ), r + V)) (31)
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For purposes of later stability calculations, we shall find it convenient to form the F

Poisson reduced space

whose symplectic leaves are the reduced symplectic manifolds
B,=1"Y(u)/S'cP.

We coordinatize P by 6 = 6,—6,, u; and p,; topologically, P =S x R% The
Poisson structure on P is computed in the standard way: take two functions

F(6, u,, u;) and H(B, uy, ;). Regard them as functions of 8, 6,, u;, U, by |
substituting @ = 8, — 8; and compute the canonical bracket. It is clear that the !
asserted bracket (1.8) is what results. The Casimirs on P are obtained by
composing J with Casimirs on the dual of the Lie algebra of S1; that is, with |
arbitrary functions of one variable; thus (1.9) results. This can of course be

checked directly.

If we parametrize P, by 6 and v = 1(u, — 1), then the Poisson bracket on F, |
becomes the canonical one. This, again, is consistent with the cotangent-bundle |

reduction theorem which asserts in this case that the reduction of T*(S* x §*) by
S! is symplectically diffeomorphic to T*((S*x §')/S')=T*S". There are no

‘magnetic’ terms since the reduced configuration space S! is one-dimensional, and !

hence has no non-zero two-forms.

The realization of P, as T*S" is not unique. For example we can parametrize F,
by (8,, 1) or by (8,, i), each of which also gives the canonical bracket. (In the |

general theory there can be more than one one-form ‘a,’ by which one embeds

P, into T*S', as well as more than one way to identify (8 x §Y)/St=S". The

three listed above correspond to three such choices of a;.)

Remark The reduced bracket on T*(S' % §')/S’ can also be obtained from the
general formula for the bracket on (P X T*G)/G=P xg* found in (Krish-
naprasad and Marsden, 1987); it produces one of the variants above, depending
on whether we take G to be parametrized by 6, or 8,, or 6, — 6.

The reduced Hamiltonian on P is just (1.7b) regarded as a function of u,, u,
and 6. We therefore know that the Euler-Lagrange equations (1.5) are
equivalent to F = {F, H} for the reduced bracket (1.8).

We can also obtain a Hamiltonian system on the leaves, parametrized by say
(6, v). We simply take (1.7b), namely

el B )

1 25)
where A =I,I, — €242, and substitute u, = iu — v, p, = v + 3u producing *

1 . - 1 . . 1 -
H= TN (L + L +2eM)v? + TN (= L)ulv + T Gui(,+ L —2¢e1r)). (4.4)

The presence of the linear term in v can be eliminated by completion of squares:
it is not there in the general theory (Abraham and Marsden, 1978; Smale, 1970)
because reduced coordinates adapted to the metric of the kinetic energy are used;

these are produced by the completion of squares. Notice that the Hamiltonian

now is the form of kinetic plus potential energy but that the metric now on h

P:=T*(S'x §Y/S? 4.2)
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is 8-dependent and, unless d, or d,
potential piece is usually referred to
We summarize as follows.

Theorem 1 The reduced phase spa
three-dimensional Poisson manifold
plectic leaves are the cylinders with «

by (1.9).
The reduced dynamics are given
_3H_oH
du, Ay’
where H is given by (1.7b). The equ
30_oH
at v

where H is given by (4.4).

5. Equilibria and stability by -

We now use Arnold’s energy-Casi
1985; Krishnaprasad and Marsden,
their stability. An equivalent alte:
points of H given by (4.4) in (6, v
equilibria.

To search for equilibria we look
the bracket (1.8) and F = {F, H},
(1.7b). The conditions ft; =i, =0

that is,
- %(Ml; U

Clearly
dJ
db

from (1.6), so (5.2) becomes
- %(wlx w;

that is,

The equilibrium condition 6 =0
alently, w, = w;.
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is §-dependent and, unless d, or d, vanishes, it is a non-trivial dependence. The
potential piece is usually referred to as the amended potential.

ve shall find it convenient to form the

sH/st 4.2) We summarize as follows.
nplectic manifolds Theorem 1 The reduced phase space for two coupled planar rigid bodies is the
1 < P, three-dimensional Poisson manifold P =S'x R with the bracket (1.8); its sym-

plectic leaves are the cylinders with canonical variables (0, v). Casimirs are given
by (1.9).
The reduced dynamics are given by F = {F, H} or, equivalently,

8H 6H . OH . oH

"o ouy M aer T 7300
where H is given by (1.7b). The equivalent dynamics on the leaves is given by

068 0J°H v oH
5 ase’ (4.6)

| u; topologically, P =S'x R2 The
e standard way: take two functions
n as functions of 8, 6,, u,, u, by
anonical bracket. It is clear that the
e Casimirs on P are obtained by
the Lie algebra of S'; that is, with
1.9) results. This can of course be

(4.5)

1;), then the Poisson bracket on P,
consistent with the cotangent-bundle
‘that the reduction of T*(S* x S') by
($'x $Y)/SY)=T*S'. There are no
tion space S’ is one-dimensional, and

where H is given by (4.4).

5, Equilibria and stability by the energy-Casimir method

We now use Arnold’s energy-Casimir method, as summarized in (Holm et al.,
1985; Krishnaprasad and Marsden, 1987) to determine the equilibrium points and
their stability. An equivalent alternative to this method is to look for critical
points of H given by (4.4) in (8, v)-space and test d’H for definiteness at these
equilibria.

To search for equilibria we look directly at Hamilton’s equations on P. Using
the bracket (1.8) and F = {F, H}, we obtain equations (4.5), where H is given by
(1.7b). The conditions i, = fi, =0 become

. For example we can parametrize P,
o gives the canonical bracket. (In the
one-form ‘a,’ by which one embeds
ay to identify (5*x §')/S'=S". The
choices of a,.)

51)/S? can also be obtained from the
T*G)/G=P xg* found in (Krish-
e of the variants above, depending

y 8, or 6,, or 6, — 6. SH /360 =0; (5.1a)
.7b) regarded as a function of u,, u, that is,
uler—Lagrange equations (1.5) are oy p—y
eker (135 cauations (19 ~ 3, 17 5537 (2) =0 (5.1b)
n on the leaves, parametrized by say
Clearly
—€eA\ (U, £=<0 s}") 52
I )(uz)’ “3) dgé \ed’ 0 (5.2)
4~ v, U= v + 4u producing from (1.6), so (5.2) becomes
1 _ 0 &\\(w
v+ (i + B =2eh). (4.4) ~don 0,5 G )(on) =0 ¢
eliminated by completion of squares: that is,
am and Marsden, 1978; Smale, 1970) A @y, =0, (5.4)

metric of the kinetic energy are used;
quares. Notice that the Hamiltonian
nergy but that the metric now on S!

The equilibrium condition § =0 becomes Ly, — eAp, = by, — €Ay, or, equiv-
alently, w, = @,.
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Thus, the equilibria are given by

(l) w1 =Wy = 0, or

(il) w;=w,#0, A’ =0.
Let us, for simplicity, choose our reference configuration so that d,, and d,, are
parallel. Then

A'(0)=dy, - dy sin 6

so the equilibria in case (ii) occur when
(i)’ either (a) d;, =0 or dy; =0, or (b) 6=0or m.

The case in which 8 = & corresponds to the case of folded bodies, while 8 =0 |

corresponds to extended bodies.

The first step in the energy-Casimir method is to realize the equilibria as critical
points of H + C, where H is given by (1.7b) and C = ®(u, + p,).

One calculates from (5.2) and (1.7) that

oH ,
"a_e= €A wq1W,,
(5.5)
eH_ . oH_
3M1 1 8“2 2
where
<w1) J-1<M1> _1 (I:zﬂl - E)‘ﬂz)
@> U2 A\, — eApy
The first variation is
oH oH oH
0= Paos (o) an+ (Pro)am 6
( ) EY) E 1231 £ @' |du, (5.6)

from which it is clear that critical points of H + C correspond to equilibria of (4.5)

with
@' () =— (%})e = - (S—Z)E, (5.7

where the subscript e means evaluation at the equilibrium. As in other examples
(the rigid body and heavy top in (Holm et al., 1985)), ®"(u.) is arbitrary.
The matrix of the second variation is

H & H H
06? 30 du, 30 du,
8*H *H H
2 = —+ " +d"], 5.8
SH+O=\ Zo5u o EPRE -8
2 2H 2
a H a + ¢" §i:+ (pll
30 du, Sy, du, ous
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where
PH 3*H
w 3w du
3H 3*H
Opy I, 8_(1%
832;141 == Ziz (izwz — eAw,)
and

PH_ 3 S 2H]
86> 36 o, O,

At equilibrium, A = td,d, (+if 0 =

1

(iliz - Ezd

&H

363y

J-—-l

and

&H

36

where m, = w; = w, # 0 at equilibriu

tei
’H+CO)=

This matrix is clearly positive def
®"(u.) = 0 and is indefinite for any

Another way to do the stability
T*S! given by equation (4.4). After
kinetic plus potential energy with ef

1 _
V(8) =55 |+

Minima of V are then the stable eq

For three or more bodies, this m
will not work because the symplectis
magnetic terms.

Theorem 2 The dynamics of the !
contains one stable relative equilib;
and one unstable relative equilibriur
dynamics contain a homoclinic orbil
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#H _oH

configuration so that d,, and d,, are Ui Gmidua | _ = l( A —EA)

‘ H FH A\-gA LV
»1 8in @ 2 o, Su, au3 .

H er . o°H g\ -
= —-— (Lw, — €Aw,), =— (- ,
| 30 o, A2 (Lw, — eAw,) 36 o, AZ (—eAw, + Lwy)
=0 or . ‘
e case of folded bodies, while =0 [J§ ad .
di i ilibri iti ?-Z—I;I—i[— A’il—{-ﬂ{—]——sl”ww — &l &H w,— AW &H
is to realize the equilibria as critical 30° 38 EPE = 102 36 o, 2 139 e

and C = ®(u, + u,). ,
. At equilibrium, A = +d,d, (+if 6 =0, —if 6 =x) so

J e 1 ( L :F“_ildz)

(5.5) (LI, - £°d1d3) \Fed,d, L r
SH
P2 FH —0= *H
& 300p,  96m,’
by, - Elﬂz) 2H
\ilﬂz - Elﬂl ) 8_0—2' = _EA"(OE = :tadldzw%,

L where w, = w, = @, #0 at equilibrium. Thus (5.8) becomes
) dut (aH o) d +eAd d,w? 0
-t . =
3 T ) U2, (5.6) 62(H+ CO)= o . q),,(i :> ) (5.9)

[+ C correspond to equilibria of (4.5)

= — (:—Z)e, (5.7)

This matrix is clearly positive definite if d,#0, d,#0 if 8 =0 (+sign) and
@"(u.) =0 and is indefinite for any choice of ®"(u,) if 6 = 7.
Another way to do the stability analysis is to use the reduced Hamiltonian on
T*S! given by equation (4.4). After completing squares, H will have the form of
kinetic plus potential energy with effective potential given by

e equilibrium. As in other examples

" - . 1 1..2(F = (I_l - iz)ZuZ
., 1985)), ®"(u,) is arbitrary. V(e)= N (h+L-2eA)+ =5 ——=| (5.10)

4L, + I, + 2€A)

Minima of V are then the stable equilibria while maxima are unstable.

FH &H For three or more bodies, this method of looking for minima of the potential
6o, 36 du, will not work because the symplectic structures on the symplectic leaves will have
H *H magnetic terms.

5+ " +9"], (5.8) . . .

Ly du,y S, Theorem 2 The dynamics of the 2-body problem is completely integrable and
H 5°H contains one stable relative equilibrium solution (0 = 0—the stretched-out case)
™ + @ ErE + @ and one unstable relative equilibrium solution (6 = n—the folded-over case). The

dynamics contain a homoclinic orbit, as in Fig. 1.
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Fig. 5. Planar multi-body system—tree case

6. Multibody problems

We have proved that the Hamiltonian formulation of the previous sections
extends in a natural way to systems of N planar rigid bodies connected to form a
tree structure (Fig. 5). Since the general statement of this result requires
significant additional notation and the explicit introduction of the notion of nested
bodies, we limit ourselves to the special case of a chain of N bodies (Fig. 6).

Theorem 3 The total kinetic energy (Hamiltonian) for an open chain of N planar
rigid bodies connected together by hinge joints takes the form

H=p"-J'-pn (6.1)

where p= (i1, Ua, .. , n)* is the momentum vector and J is the corresponding
N X N pseudo-inertia matrix which is a function of the set of relative (or joint)

Fig. 6. Planar multi-body system—chain case
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angles between adjacent bodies. The reduced dynamics takes the form

) \
”’1 802,1’
. _8H 8H
K2=%06,, 36,,’
7 8H  oH
2= _ , Y 6.
b= 860,01 86, 6.2
) |
BN = aeN,N_1,
. 8H &H
6,‘ i or i=1,...,N—1,
+1' Ouivr Oy f J

where 8,., ; is the joint angle between body i + 1 and body i.
The associated Poisson structure is given by

Nlrof  of ) ag of (8g og )
A = - - —_— - 6.3
{f g} z=§:1 <al‘i Qivy/ 30,1, 0644, ou; S ( )

This is proved in a way similar to the two-body case (see Sreenath,
Krishnaprasad and Marsden, 1987)).

The structure of equilibria and the associated stability analysis become quite
complex and interesting as the number of interconnected bodies increases. A
mixture of topological and geometric methods may be necessary to extract useful
information on the phase portraits.

In the remainder of this section, we illustrate some of the complexities of
multibody problems by giving an analysis of the equilibria and stability for a
system of three planar rigid bodies connected by hinge joints (see Fig. 7).

body 3

Fig. 7. Planar three-body system
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6.1 Three-body problem

The Hamiltonian of the planar three-body problem is given by equation (6.1) |
with the momentum vector u and the coefficient of inertia matrix J being defined |

as below:

n= (1, P2, 13)",

i £12(021) A3i(621+ 63) 3
J= A12(0,1) L A23(03,2) , 64
An(621+ 035) Ax(62) 1

where the T and 1 are defined later. Here 6,, and 85, are the relative angles

between bodies 2 and 1, and bodies 3 and 2, respectively.

The dynamics of a three-body system of planar, rigid bodies in the Hamiltonian

setting is given by:

. 6H )
”1=802,1’
, 8H 8H
#2="30,, " 36,,’
o= - j,,” , » 6.5
_OSH JH
2= o oy
932=ﬁ“211
Y Ous O, )

Remark The sum (u; + u, + us) of momentum variables is a constant.

Remark The coefficients of inertia [, and Zij are given by

L=[L+ (g2 + £3))(dy3, dy2)],
L=[L+ e1,(dy, dyy) + £53(d3, dy3)
+ €31((ds — dyy), (dys — d2))]

L=[L+ (g3 + £31)(dy, dy)],
Aia(0,,1) = [£122(— 4, a1)(02,1) + E31A(ay1—ayy, 4,)(02,1),
A3(0s2) = [£23A (—dp.00)(03,2) + €31 (—asy, drs—ar(03.2)] ‘

A31(0s,1 + 032) = €31A_ay, a)(02,1 + 632),
m;m;

=————2<L— j#j and §j=1,2,3,
m1+m2+m3

&y
A, (@) =x- y cos (a) + [x X y] sin (a),

where the m; and J; are the mass and inertia respectively of the body i, and the d;
are defined as in Fig. 7.
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6.2 Three-body problem: equilibria

Refer to Fig. 7. Let the centres of 1
be the origins of the local frames of
body 1 and body 2, and let O,; be tl
coordinate system for body 1 is chc
joining O; and O,,. Similarly, the «
chosen to be parallel to (a) the line
05 and O,;, respectively. Define th
local coordinate systems to be

d;= [Cl» 0], d; = [_bn (

The equilibria for the three-body
equations in (6.5) to be zero. This

8H _ 8H _
36,, 965,
From the above equations it can be

0’ 62, 1=

W =w,=

The system angular momentum g, a

3
s = WO[E I+ 2(112(0,,1) + .
i=1

3
H %w%[z L+ 2(£12(0,,) +
i=1

or
[

It is a consequence of Theorem 3 ar

8H 1 0 1
=z I J_l e= "=
[aez,,], 230,, WITMe=—3
2

_—— (1)0 -
B 2(m1 + m; + m3) [Al s

=0
or, for the non-degenerate case (w,
A;sin (65, + 6;,) + ]

where

Ay =mym;
B, =[my(b
Ci=mym;

Similarly, for 3H/30; , we get
SH _ w}
803_2 B 2(m1 +m,+ ms

)[Alsin ()

e S A e Py ST ot T S ——
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problem is given by equation (6.1)

ent of inertia matrix J being defined .

‘3)T5

) A31(621+ 632)
Ta0:)) )

) L

©4

f,, and 6, , are the relative angles

respectively.

anar, rigid bodies in the Hamiltonian

oH
863‘2 ’

um variables is a constant.

are given by

dlZ’ dlz)],

) + £23(das, dy3)

, (A3 — dy))]

1, d3)],

)+ €314 @p-ay, a)(02,1)5

) + E31A(dz, dn-a)(03,2)],
+ 65),

i#j and i,j=1,2,3,

X y] sin (&),

respectively of the body i, and the d;

(6.5)
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6.2 Three-body problem: equilibria

Refer to Fig. 7. Let the centres of mass of the bodies O,, O, and O; respectively
be the origins of the local frames of references also. Let Oy, be the joint between
body 1 and body 2, and let O,; be the joint between body 2 and body 3. The local
coordinate system for body 1 is chosen such that the x-axis is parallel to the line
joining O, and Oy,. Similarly, the coordinate systems for body 2 and body 3 are
chosen to be parallel to (a) the line joining O, and O,,, and (b) the line joining f
0, and Oy, respectively. Define the vectors dy;, dy;, dy3, d3,, in their respective '
local coordinate systems to be

“dp= [Cl’ 0], d, = [—bl; 0], dy= [el, 62], d;; = [—dn 0]-

The equilibria for the three-body system can be found by setting the dynamical
equations in (6.5) to be zero. This results in the following equations:

OH  OH _
36,, 865,
From the above equations it can be seen that

92,1 =w,— 0, =0, 93,2 = w;— w,=0. (6.6)

W, = W, = W3 = W, (constant). 6.7)

The system angular momentum g, and the Hamiltonian H are given by

3
o= 00| 3 1+ 20000) + T+ B2+ 02) | ©8)
3
H= %w(z)[% I+ 2(A15(02,1) + A33(63,2) + Asi(0,1 + 93,2))] =3y, (6.9)
or
wo=2H/u,. (6.10)
It is a consequence of Theorem 3 and (6.6) that,
oH ] 1 & 1 aJ 1 =l )
L) o
[aez,l 236, mITRe= o\ g ) =5\ 56, @), |
, 1
7] . .
= - 2(ml + n:)z " ms) [Al sin (62'1 + 93,2) + Bl sin (02,1) + Cl COSs (02,1)] |
= 0 :.I
or, for the non-degenerate case (w, # 0), |
Al sin (02,1 + 03’2) + Bl sin (02,1) + C1 CcOS (02,1) = O, (611)
where
Ay =mymsc,d,, (6.12)
B, = [m3(by + e1) + mybyJmycy, (6.13)
C1 =myms;C,€,. (6. 14)
Similarly, for 3H/385 , we get
oH w3 . .
863,2 = Z(ml ¥ m, T m3) [A1 sin (02,1 + 63,2) + Bz sin (03,2) + C2 COS (93’2)] = 0,
(6.15)
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where o
B, =[m(b, + ;) + mye,Jmsd,, (6.16)
C, = (my + my)msd,e,. (6.17)
We assemble the final equilibrium equations from equations (6.11) and (6.15): o
A1 Sin (82,1 + 03’2) + Bl Sin (02,1) + Cl COS (02,1) = O, } (6 18)
A;sin (8, + 052) + By sin (835) + Cyc08 (632) =0. ) a—
6.3 Three-body system: special kinematic case
We consider here a case of the three-body system with a special kinematic B
structure where the centres of mass of the bodies are aligned with the jointsina § ac——

straight line when the bodies are in a stretched-out position. In this case we shall }
prove that equations (6.18) have four or six solutions. For this situation
e=[e,, e;]T =[e,, 0], and so from (6.14) and (6.17)

e,=0 implies that C,=C,=0.

Thus (6.18) reduces to
A;sin (6, + 65,) + By sin (6,,1) =0, (6.19)
Ajsin (05, + 65,) + By sin (65,) =0, (6.20) ¥

Fig. 8. Fu

We label these equilibria as the ]
sentation (Fig. 8) helps in bringir
equilibria occur.

The remaining equilibria for this
and (6.30). Since the equilibriur
dependent, one needs to exercise
dependence of the equilibrium so
constraints—parameter-sign and pa

with
found that two extra equilibria (othe
Ay = cydymym;, (6.21) a time, subject to the existence o
B, =[(b, + e;)m; + bim;]cymy, (6.22) constraints. The maximum number
=[(b. + + ' . (special kinematic case) is thus six
B, =[(by + exmy +emsldims (623) these constraints and for the cas
Subtracting (6.19) from (6.20) we get equilibria merge with the fundamen
Sin (03,2) =K Sin (92'1), (6.24)
where 6.3.1 Parameter-sign constraints
k=B/B,. (6.25) This constraint set restricts the
Expanding (6.19) and substituting (6.24), we get depending on the signs of x and =.
A, sin (8,,1)[cos (63,) + Kk cos (0,,1) + 1] =0, (6.26) sin (02,1 +
where Taking into account the signs of x
which illustrates the feasible region
T=B,/A;. (6.27) parameter-sign constraints.
Consequently from (6.24) and (6.26) we have 6.3.2 Parameter-value constraints
sin(8,,)=0 and sin(8;,)=0 " (6.28) The existence of solutions of (6.2
or values of x and 7 (which are co

parameter-value dependence of the

sin (63.2) = K sin (8,,1), (6.29) | ‘adding (6.29) and (6.30), and simpl
cos (63,) + k cos (6,,1) + T=0. (6.30)
It is obvious from considering (6.28) that the following four roots of the cos (6;
{65,1, 63} pair can be readily identified:
cos (0

{0, 0}, {0, =}, {m, O}, {7, w}. (6.31)
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- mzel]m;;dl, (6 16)
1,e. (6.17)

s from equations (6.11) and (6.15):

1) +Crcos(0y1) = O,}

,2) + C; co8 (63,) =0. (6.18)

ase
dy system with a special kinematic
odies are aligned with the joints in a
ned-out position. In this case we shall

r six solutions. For this situation
d (6.17)

C1 = C2 =0.
3, sin (6,,,) =0, (6.19)
3, sin (852) =0, (6.20)

(6.21)

+bymyjeym;, (6.22)
+elm2]d1m3. (6.23)
n (02,1), (6. 24)
B, (6.25)
e get
cos (0,,1) + ] =0, (6.26)
" (6.27)
ve

Sin (03,2) =0 (6- 28)
in (6,,,), (6.29)
92,1) +1=0. (6.30)

at the following four roots of the

7, 0}, {m, m}. (6.31)

e LT
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Fig. 8. Fundamental equilibria

We label these equilibria as the fundamental equilibria. A stick-figure repre-
sentation (Fig. 8) helps in bringing out the symmetrical way in which these
equilibria occur.

The remaining equilibria for this system are computed as the solutions to (6.29)
and (6.30). Since the equilibrium equations are nonlinear and parameter
dependent, one needs to exercise care while solving them. The parameter
dependence of the equilibrium solutions can be summarized by two sets of
constraints—parameter-sign and parameter-value constraints respectively. It was
found that two extra equilibria (other than the fundamental equilibria) can exist at
a time, subject to the existence of suitable values of x and 7 satisfying these
constraints. The maximum number of equilibria for a general three-body system
(special kinematic case) is thus six. For some values of x and 7 not satisfying
these constraints and for the cases with x and/or 7 being zero these extra
equilibria merge with the fundamental equilibria to give a total of four equilibria.

6.3.1 Parameter-sign constraints
This constraint set restricts the existence of values of the pair {6,:, 032}
depending on the signs of x and 7. Using (6.27) in (6.19) we get

sin (02’1 + 03,2) = —71sin (62,1). (6. 32)

Taking into account the signs of x and 7, from (6.29) and (6.32) we get Fig. 9,
which illustrates the feasible regions of the solution pair {6,,, 6;5,} to form the
parameter-sign constraints.

6.3.2 Parameter-value constraints
The existence of solutions of (6.29) and (6.30) is also dependent on the actual

~ values of x and 7 (which are constants for a given three-body system). The

parameter-value dependence of the solutions can be formulated by squaring and
adding (6.29) and (6.30), and simplifying to get
1-x*—12

cos (65,) =——— (6.33)
K-1"-1
cos (055) = 2’ (6.34)




44 N. SREENATH ET AL.

0 n 27
6, —»

Fig. 9. Parameter-sign constraints
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These equations could be represented in the form of a graph as in Fig. 10. The

graph has been drawn for ¥’ >0 and t’ >0, where

Fig. 10. Parameter-value constraints
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Fig. 11. Reference configuration

6.3.3 Local frames of reference

It is necessary to choose a local frame of reference for each of the bodies in order
to parametrize the system and study the system equilibria; refer to Fig. 11. Proper
choice of the local frames of reference for bodies 1 and 3 results in the vectors
¢=[c1, 0]" and d=[d,, 0]", where both ¢, and d, are positive. In general, the
local frame of reference of body 2 could be chosen in such a way that
e=[ey, e2]" = [ey, O]F, where e, is positive. Note that if b= [y, 0]", the kinematic
parameter b, could be either negative or positive. The two signs of b, represent
the cases when the centre of mass of body 2 is (a) inside the line segment joining
the hinges O,, and O3, and (b) outside it. If any of the kinematic parameters ¢,
or d, is equal to zero then the three-body problem decomposes into a two-body
problem and a one-body problem. It is also important to observe that with this
choice of local frames of reference, A, is positive (see (6.21)).

6.3.4 Parameter-dependent equilibria

We now delve into particular cases of the signs of parameters x and 7 and
establish the solutions to the equilibrium equations. We constantly refer to (6.21)
to (6.27) while formulating the necessary conditions.

In all the cases we consider, we first ascertain that there exist physically
realizable values of the kinematic parameters ¢, b;, e; and d, before finding the
actual solutions. The equilibria are evaluated based on the signs of cos (6,,;) and
cos (03,) (see (6.33) and (6.34)), and according to the parameter-sign and
parameter-value constraints. The results are presented in the form of a table for
each case. The graphs under the column parameter-sign constraints have to be
read with 8, , as the X-axis and 6, , as the Y-axis. The shaded regions represent




46 N. SREENATH ET AL.

the valid regions of existence of the {61, 6;,} pair. In the column of the
parameter-value constraints, the regions referred to are the regions of Fig. 10.
Given values of x and 7, one can identify the corresponding table depending on

the signs of these parameters, and determine which region they belong to with ]
regard to Fig. 10. The two extra equilibria, if any, could then be read off from the

table.

Case 1, in which k>0, ©>0. For k and 7 to be greater than zero, A,, B, and B,
should be greater than zero. By choice of the local frames of reference we have
from (6.22), (6.23) that

(b1+el)m3+b1m2>0 SO e1>—<1 +;r”‘:2>b1,
3

m;
b,+e)m +em,>0 so e>—<——)b
(1 1) 1 17762 1 m1+m2 1

that is,

er> — (1 + @)bl. 371§
ms d

This is automatically satisfied if b, >0.
The equilibrium solutions are given in a compact form in Table 1.

Case 2, in which k <0, 7 <0. This case can be realized if and only if B, <0 and
B, >0 (since A, >0 always). Simplifying, from (6.22) and (6.23) we have

COUPLED PLA

Table 2. x <0, T<0

Case | cos (8,2 | cos (629 "Z‘é‘:;f,‘;’;
2.1 >0 >0 [
22 <0 <0
2.3 <0 >0
2.4 >0 <0

m m
- (1 +-—2)b1>e1>— (———1—)171. (6.38)
ns m; + my
Table 1. x>0, >0
-si P -
. N e e
1.1 >0 >0 not satisfied
A
1.2 <0 <0 m Dk region 2

N
1.3 <0 >0 % region 1

1.4 >0 <0

region 3

1L J0

Table 3. x>0, t<0

Parameter-

Case | cos(612) | cos (62) constrair
3.1 >0 >0 Eq
32 <0 <0 not satisfi
33 | <o >0 %
34| >0 | <o g
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Table 2. ¥ <0, T<0
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Parameter-sign

Parameter-value

Case | cos (812) | cos (823) constraints constraints Equilibria
21 >0 >0 region 3 -L_\
-
22 " <0 <0 region 1 "%
>
23 <0 >0 ‘Q region 2 —L\
24 >0 <0 not satisfied

Parameter-value Equilibri
constraints quilibria

S

not satisfied

region 2

region 1

region 3

L30T

Table 3. x>0, t<0

Parameter-sign

Parameter-value

Case | cos(612) | cos (623) constraints constraints Equilibria
31 >0 >0 ‘;3 region 2 L—/
<0 <0 not satisfied
33 <0 >0 region 3
34 >0 <0 region 1 : >
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Krishnaprasad, P. S. and Marsden, J. 1
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Marsden, J. E. and Weinstein, A. (
symmetry. Reports on Mathematical P
Meyer, K. (1973) Symmetries and inte
Peixoto; Academic Press, New York).
Sanchez de Alvarez, G. (1986) Geom
control theory. Ph.D. Thesis, Univers
Simo, J., Marsden, J. and Krishnapra:
elasticity: The connective representati
of Maryland.

Smale, S. (1970) Topology and mechar
11, 45-64.

Sreenath, N., Krishnaprasad, P. S. a
structure for planar multibody dynam:
Sreenath, N. (1987) Modelling and contr
of Maryland.

Van der Schaft, A. (1981) Symmetries ai
inputs and outputs: A generalization
1, 108-115.

Wittenburg, J. (1977) Dynamics of Syste

Naturally, equation (6.38) indicates that this case is possible only if b, is negative
(since e, > 0).
Table 2 gives the equilibria associated with this case if (6.38) is satisfied.

Case 3, in which x>0, 1<0. For this case since A; >0 we have to have B,

With the choice of local frames of reference, e; >0 and so this case is possible
only if b, is negative and

m,
<-{— . .
¢ <m1 + m2) by ® )

The equilibria are as given in Table 3.

Case 4, in which x <0, 1> 0. The necessary condition for this case is

—b1(1 +@) <e < -b1<~""—). (6.40)
ms m, + my
But e; >0, and so b, has to be negative. Then from (6.40) e,/|b,| is greater than !
but less than a fraction—which is impossible.
So kinematic parameters satisfying x <0 and 7> 0 can never exist.
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