The Dynamics of Two Coupled Rigid Bodies
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Abstract

In this paper we derive a Poisson bracket on the phase space 80(3)* x 50(3)" x SO(3) such that
the dynamics of two three dimensional rigid bodies coupled by a ball and socket joint can be written
as a Hamiltonian system.

§1. Introduction
In this paper we introduce a Poisson bracket on the phase space
s0(3)" x s0(3)* x SO(3),

where 50(3)" is the dual of the Lie algebra of SO(3), so that the dynamics of two rigid bodies
coupled by a ball and socket joint can be written as the Hamilitonian system H = {F, H}. This
sets the stage so that the stability and asymptotics of the system can be studied using the energy
Casimir method as in Holm, Marsden, Ratiu and Weinstein {1985] and Krishnaprasad [1985]; so that
chaotic solutions can be found using the Melnikov method such as in Holmes and Marsden [1983];
so that bifurcations of the system can be described using the techniques in Golubitsky and Stewart
[1986] and Lewis, Marsden and Ratiu [1986); and so that control issues can be studied, as in Sanchez
de Alvarez [1986].

The dynamics of planar coupled rigid bodies has been studied using similar ideas in Sreenath,
Krishnaprasad and Marsden {1986).
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§2. Kinematics

In this section we will derive the Lagrangian describing the free motion of two rigid bodies
coupled by a ball and socket joint. At time 0 we assume that the two coupled rigid bodies are in a
reference configuration denoted B . Fix an inertial frame and let @ denote a point in the reference
configuration B . Let B; denote those points §J € B which belong to body 1 and let B; denote
those points which belong to body 2.

The configuration at time* is determined by a smooth map
n:B—R>% Q—¢(Q.)).

We can also specify the configuration at time t as follows. First we specify the position of the joint
with respect to the inertial frame. Denote this as w(t). Fix a frame centered at the joint and parallel
to the inertial frame. With respect to this frame, the configuration of body 1 is determined as usual
by three Euler angles. The Euler angles determine the orientation of a body fixed frame relative to
the spatial frame centered at the joint. Alternatively these two frames are related by an element
A; (1) € SO(3). Similarly the configuration of body 2 is determined by an element A3(t) € SO(3).
We conclude that the configuration space is

€ = SO(3) x SO(3) x R®

and that
9(Q.1) = Ai(1)Q + w(t), for Qe B,

9(Q.1) = A:(1)Q + w(t), for Q € B;.

We now proceed to compute the kinetic energy of the system. This requires that we keep track
of the centers of mass of the two bodies and the center of mass of the system relative to the fixed
inertial frame as well as the frame centered at the joint. Let m; and my denote the masses of the
two bodies and let m denote the total mass. Let S denote the center of mass of body 1 in the
reference configuration relative to the inertial frame and let SJ denote the center of mass for body
2. Let r1(t) denote the center of mass of body 1 at time ¢ relative to the inertial frame and let ro(t)
denocte the center of mass for body 2. Let 8(1) and s3(t) denote the center of mass of bodies 1 and
2, respectively, measured with respect to the frame centered at the joint. Finally let a(t) denote the
center of mass of the ensemble measured with respect to the inertial frame. Figures 1 and 2 show
the relationships of these quantites. For example the following equations can be read off from the
figures

(2.1)

si() = A (0)S) () =w(t) + s:(1)

55(t) = A2(1)S3 ro(t) = w(t) + s2(t) (2.2)

Figure 1 Figure 2
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Given two vectors v = {v!,v%,v%) and w = (w!,w?, v3), denote their inner product relative to
the standard Euclidean structure as

3
{v,0) = Z viut,

=1

and the corresponding norm by |v|. Let p(Q) denote the mass measure of the ensemble in the
- reference configuration. The kinetic energy KE of the configuration is

KE =3 [ (0] 4u(@)
. 1 c.
= 5 Jp Via0@+ (0P du@)+ 1 )

1 y Y iy
= 5 Jp, (BaQ* +1)- (40 + ) (@) + (1= 2 23)
1 - 1 .y
= {3 [, @ w@}indl+ {3 [ we}is
+{3 [ @ w@biti+{} [ @@} 4t va -2
2 /s, B 1k 2 Jg, H u .
Let I) denote the coefficient of inertia matrix of body 1, defined by
)i = ]3 Q@ @), forij=123 (2.4)

The coefficient of inertia I of body 2 is defined similarly. Using these definitions and the defintion
of the center of mass, we can rewrite the expressions above as

KE = %u (s 1 A9) + T2, ) 4 ma (4189, 0) + (1 = 2)
o . (2.5)
= Str (LAY +mi (4183, ) + (1= 2) + 2, )

The Lagrangian is simply the total kinetic energy. To summarize, the velocity phase space for
our system is TSO(3) x TSO(3) x TR? and the Lagrangian is given by (2.5).

§3. Reduction by the Euclidean Group

Consider the following action of an element g of the Euclidean group E(3)

_(B b
$=\o0 1)°
where 4 € SO(3) and & € R3, on a point (A;, A, w) in the configuration space C:

- (A, Az, w) = (BA,, BAy, Bw + b). (3.0)

It is easy to check that the Lagrangian (2.5) is invariant under this action. Since the Lagrangian
is invariant under E(3) , so is the Hamiltonian. The purpose of this section is to perform the
reduction by this group. This will be done in two steps. First we will reduce by R3; this accounts
for conservation of total linear momentum. Then we will reduce by SO(3); this accounts for
conservaticn of total angular momentum.

We begin by rewriting the Lagragian in terms of the linear momentum p. Using (2.2), we can
write the tota] linear momentum as

P = ma = myr; + mors

. . 3.2
= mtb+m1A15?+m2A2$g. ( )
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It is convenient to introduce the expression
m; ; m, ;
p=—LAS] + 2485, (3:30)
and write m
w=o-— —-I-AISf - —24,83
m m (3.3%)
w=a-p
Substituting (3.3a and b) into (2.5) and simplifying gives the following form for the Lagrangian

1 . . . . 1 m
= 5tr (AL A}) +tr (A21343) + 5=(p,P) — S (0, 0)- (34)
The Legendre transformation FL induces a symplectic structure on
TC = TSO(3) x TSO(3) x TR3

and the tangent of the action of R3 on C (see (3.1)) is symplectic. To verify this statement and the
ones that follow, see Abraham and Marsden [1978), chapters 3 and 4. The momentum map for this
action is given by

J : TSO(3) x TSO(3) x TR® — R¥’
(AI:ADA21A21w1'-b) — p.

The corresponding reduced space at p is:
(J=}(p)) /R® = TSO(3) x TSO(3).

From (3.4) we see that the Lagrangian on the reduced space is simply

1 . 1 .o 1 . . 2 2
L= Etr (AlllAtl) <+ Etr (Az];AE_;) - 2—m mlAIS? + mzAzsg + g%l- (35)

Since p is constant, we can drop the last term. This completes the first stage of the reduction.

We now perform the reduction corresponding to conservation of total angular momentum. This
time we use Poisson reduction; see Krishnaprasad and Marsden [1986) for a summary of Poisson
reduction. Consider the map

A :T* (SO(3) x SO(3)) — 50(3)" x s0(3)" x SO(3)

36
(xa,,%a,) — (1,03, A) = (T*La,7a,, T La,7a,, A7 A2) . (36)

We will define a Poisson bracket on the target space so that the map A becomes a Poisson map with
respect to this bracket and the canonical bracket on the cotangent bundle T {SO(3) x SO(3)).
Introduce the body angular velocities of each of the bodies

Ql = Arl/il

N , 3.7
1928 =A51A2, ( )

where 2 is the linear map v +— Q x v on R2. We will also need the moment of inertia J, of body 1
given by
== [ @0 @), it
! . (3.8)
= [, (lor- @) a@. =i
1

The moment of inertia J; of body 2 is defined in a similar way.
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In order to derive an explicit exprssion for the angular momenta of the system, it is helpful

- to write the total kinetic energy as a quadratic form. After a certain amount of algebra, the total
kinetic energy (3.5), can be written

Ji €A
(01, 95) (CAI: 3'2 ) (€1,02), (3.9a)
wbere

- 2
Ji=h+ 2 (SP1-Ses)

2
j2=12+%z(|3gf2'1“32®33)

, (3.9b)
A= (%) A(%)

mym

€= ——=

m

Let J denote the matrix j A
€

J= (EAlt jz) . (3.9¢)

From the Legendre transformation applied to Lagrangians quadratic in the velocities, the angular

momenta are found to be - 0
1y _ 1
(Uz> _J(Qz)' (3.9d)

The inertial orientation matrices A;, Az determine the relative orientation matrix

A= AT'A,. (3.10)
Using the definitions (3.7} - (3.10), we can rewrite the Lagragian (3.5) as
L= %n-rln (3.11)

and conclude, using the fact that the Lagragian is quadratic in the momenta, that the Hamiltonian
H(I,,II;, A) is also given by (3.11).
We next derive the Poisson bracket on s0(3)" x 50(3)" x SO(3). Given a function F on so(3)" x
50(3)" x SO(3), define a function F on T* (SO(3) x S0(3)) by
Fia=Fol (3.12)
The canonical bracket on T (SO(3) x SO(3)) is

{Fr,G\}= Do, F\ -4 - Dy Hy - 45

sH §F,
+D_42F)‘ . —3-6': -DAzH,\ . —L&'Q .

Using the chain rule, we can introduce a bracket on s0(3)" x 50(3)" x SO(3), so that A becomes a
Poisson map. This is straghtforward but tedious. To organize the computation, it is helpful to note
the following facts.

Fact 1. If x4 € T{SO(3), then
II:= T:LA-TA =A'1|’A 650(3)‘ (3.14)

Fact 2. Let Hy(A,,m, A2, 73) be a function on T (SO(3} x SO(3)) and let %;‘- denote the func-
tional derivative of H, with respect to . Then

(3.13)

$Hy, _ 4LH
o g

Fact 3. Let F)\(A;, 7, A2, 7;) be a function on T* (SO(3) x S0(3)), where we have, by abuse of
notation, written an element in the cotangent space at A as (Ay, 7). Then

Da, Fa(Ay 71, A2, m2)(8A;1) = <ﬁ%,(5A2)'7r2> + (4, AT (64,)).

It is now straightforward to combine these facts to see that the canonical bracket (3.13) may
be written in terms of the fuctions F and G using the chain rule as

(FHYO, o, 4) = (0, [4 4] - (02, [46. 4]
~ (5. ffa - AHL) + (M 4 - AME).

(3.15)

To summarize, we have
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Theorem 1. (i) With the canonical bracket on T*(SO(3) x SO(3)) and the bracket (3.15) on
s0(3)" x 50(3)" x SO(3), the map

A :T*(SO(3) x SO(3)) — 80(3)" x 50(3)" x SO(3)
given by (3.6) is a Poisson map. (ii) The dynamics on the reduced space is given by
F={FH}.

§4. Further Remarks

1. We begin with a brief discussion of the Casimirs. Consider the momentum map

J : T (SO(3) x SO(3)) — s0(3)"

4.1
(%arr7a) = (T By a, + T Ray). @D
The composition of this with the Casimir
C:80(3)" —R 49
1 ) | (42)

produces a collective Hamiltonian on T* {(SO(3) x SO(3)) whose Hamiltonian vector field is tangent
to the G—orbits (see Guillemin and Sternberg [1980] or Holmes and Marsden [1983]) and therefore
induces a Casimir C on the space so(3)" x 80(3) x SO(3} via the Poisson map (3.6).

Tracing through the diagram shows that ¢ = i, + AH2| and, hence, any function of the

form & (|H1 + AH2|2) is a Casimir for the bracket (3.15).

2. The symplectic leaves in the nine dimensional space 50(3)" x 50(3)" x SO(3) appear to be
eight dimensional (level sets of the function |H; + AI,}%) and in the case of J = 0, (given by (4. 1) )
the six dimensional space T*SO(3); and, finally, if II; = 0,I; = 0, a two dimensional space S? of
trival equilbria. We expect to explore the geometry of these Jeaves and the other topics listed in the
introduction in a future publication.
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