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Abstract. The geometric theory of Lin constraints and variational principles in
terms of Clebsch variables proposed recently by Cendra and Marsden {1987) will
be generalized to include those systems defined not only on configuration spaces
which are products of Lie groups and vector spaces but on configuration spaces
which are principal bundles with structural group G. This generalization includes,
Jor example, fluids with free boundaries, Yang-Mills fields, and it will be very
useful, as it will be shown later, to illustrate some aspects of the theory of particles
moving ina Yang-Mills field in both its variational and Hamiltonian aspects.

1. INTRODUCTION

The origin and necessity of Lin constraints can be easily understood by consi-
dering a Lagrangian L defined on the tangent bundle of a trivial principal bundle
B x G, and assuming that L is invariant under the action of the group G lifted to
the tangent bundle 7(B x G). Thus L defines a Lagrangian L' : T8 x g—*R. One
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discovers that it is impossible to get the equations of motion by using a naive
variational principle associated to L', for example, varying curves (x(¢), v(¢)) on
B x g with the usual fixed endpoint condition. For instance, for the rigid body
with G = SO(3) and B a single point, L' is the usual kinetic energy in body
representation and the naive variational principle for L' does nor give Euler’s
equations, The first method proposed to overcome this difficulty was the «Clebsch
representation» technique, which adds more variables, extending the space of
variables (x, v) and introduces a new Lagrangian defined on the extended space,
which will give the correct equations of motion. One such extension is to 7(8 x G)
itself, but there are others as well. It is plausible that if we use the same idea in
the context of configuration spaces which are nontrivial principal bundles we
should describe separately the variations along the vertical («group») directions
and the horizontal («base») directions, or equivalently we would have to choose
a connection to separate degrees of freedom along the fiber directions from the
degrees of freedom along the base directions. Obviously such a choice may have
global consequences in the description of the reduced dynamics in the same way
that the equations of motion for a particle moving in a Yang-Mills field depends
on the connection we choose in the gauge fiber bundle of the system (see Mont-
gomery [1984] and references therein). This example using these ideas will be
discussed in §5. In §2 we describe some notations and ideas about principal
and associated fiber bundles. In §3 we introduce the horizontal Lin constraints
and a related variational principle. In §4 we use this variational principle to find
equations of motion for invariant Lagrangians.

2. ASSOCIATED BUNDLES AND CLEBSCH SPACES

Let # : P - B be a principal bundle with structure group G acting on the right.
Suppose p : G x M - M is a (left) action of G on a manifold M. Recall that the
associated bundle with fiber M is P x ; M = (P x M)/~, where the equivalence
relation ~ is defined by (p,, m,) ~ (p,, m,) if and only if p,= p,g and m;=
=p(g !, m,), for some g € G. The equivalence class [(p, )] will be often written
pm. We have the following commutative diagram, where the meaning of the
arrows is the obvious one:

PxM—D_.p
proj l T
Px .M B

For each p € P, the map r'p :M = P x ; M defined by ip (m) = pm is an embed-
ding. For simplicity, we will write: (pm, pm) : = pri:=T,, ip(m. m). Likewise

™
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for each m € M, we have the map i, : P> P x M, i, (p)=pm. Also Ti_(p. p):=
= (pm, pm) : = pm is a convenient notation. Thus, if (p(¢), m(1)) is a curve in
P x M, the tangent vector to the curve p(¢) m(r) is given by: Tp im(i)) +T, ip (m) =
= pm + pmi. Given a connection A on P, a parallel transport operation is induced
on P x,M. The horizontal subspace of Tpm(P xgM) is defined to be the sub-
space HM om spanned by tangent vectors to curves of the form p(f)m with p(r)
horizontal in P (i.e., A(Pp) = 0) and m € M fixed. The horizontal distribution
HM is the kernel of the T(P xgM)-valued 1-form AM defined as follows:

where Xpm € Tpm(P xGM), X"pm is the horizontal projection of Xpm , and
X "pm is the vertical projection of X pm;(i.e. the projection of the tangent space
to the fiber ﬂM—l(‘n’, (P)) C P x;M or, in other words, X"pm € VMpm =
= Tpm wM"(fr(p)). It is easy to see that for fixed p, the curve pm(¢) is vertical

and also that the horizontal component of

dp(Hm

pm
dt =10

is ﬁh(to)m where p"(t) is the horizontal lift of p(¢#) such that ot (to) = p(to).
More generally, for a given curve (p(f), m(¢)) € p x M, the horizontal component
of the tangent vector X om is p* (te) m(to). Thus the vertical component of

dp(£)m(t)
—_—X
dt
is
pm + priv — phm = (p — p"ym + prir = p*m+ pim
= (pA(p))m + pm = p(A(p)m) + pm

where pA(p) is the infinitesimal generator of A(p) € g calculated at p € P, and
the last equality comes from the formula: (pu)m = p(um) for u € g, which in
turn is the infinitesimal version of the equality (pg)m = p(gm). Thus we
can write

gy
A - = pm + (pA(p))m = pm + p(A(p)m)

There is a canonical inclusion P x ; TM C T(P x ; M). Notice also that AY is
actually P x ; TM - valued; in fact both pm and p(A(p)m) belong to P x ; TM.
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3. HORIZONTAL LIN CONSTRAINTS AND VARIATIONAL PRINCIPLES

As in the previous section, let # ; P - B be a principal bundle with structure
group G, and assume that p : G x M — M is a given Jeft action. In addition, assume
that the following condition is satisfied from now on:

G There is a G-invariant open set U C M such that G is embedded into its orbit
Gm for eachm € U.

The assumption that U is open should be properly interpreted in each example,
especially in infinite dimensional cases. This involves issues of functional analysis
that we will not detail here. The point to keep in mind is that U should allow
enough variations of curves to apply the usual variational techniques. Similarly,
the assertion that G is embedded onto its orbit should be properly interpreted in
examples. In a number of examples,we can choose U to be G itself. To handle
the notations about variational principles on nontrivial principal bundles that
appear in the statement of the main result of this section, we introduce some
notation,

We will be dealing with several spaces of curves. A curve in P will be generally
denoted p: [10 »¢;]1 = P, while fixed points on P will be denoted PysPysPys - - - BC
Thus, the condition p(75) = p,, means that the left endpoint of the curve p is
Py, and the condition p(z,) = p, means that the right endpoint of the curve p is
p,. The condition for curves of having fixed endpoints are of common use in
variational techniques; for instance, in Hamilton’s Variational Principle, variations
&p are allowed such that 5p(t0) =0, 5p(tl) = 0. More precisely, if p(t) is a given
curve in P satisfying p(¢,) = p;, i = 1, 2 a variation of the curve pisa C* family
of curves p(s, A) such that p(z, 0) = p(¢), and the condition ép(t)=0,i=0,1,
corresponds to p(1;, \) = p,, for i = 0, 2 and all A. The following notation will be
useful in the rest of this paper. For Py, Py € P, define

SUP; pyy={p (15, 11> P| p(tg) = py}

SUFP: Py, p) =1t M1g, 11> P pty) = py, p(t)) = Py}
Likewise, for fixed mg,, m, € M, define

QU my)={m: (2, 1) > M| m(ty) = mg}.
and

SM;my, my={m: [rg. 10> M| m() = m, i=0, 1}.

Forp, € P and X| € B, define

ﬁbﬁ
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In other words, §2(P; Py, X,) is the manifold of all curves p having fixed left
endpoint py and also having the right endpoint «vertically free», which means
that only the projection of the right endpoint is fixed to be x, € B. For instance
if P= B x G is a trivial bundle and Py = (xy,8,) € Pand x| € B are fixed, curves
p(1) belonging to SU(P; Pg>» .t,) are of the type p(t) = (x(1), g(1)), where glty) = &
and x(t)=x,i=0,1.

Fix a connection A on the principal bundle P. Then we have the notion of ho-
rizontality for curves p, with respect to the connection 4. Given any curve x(¢)
on B, such that x(ty) = X, there is a unique «horizontal lift» of x(¢), say p(s),
such that p(ro) = pg,and m(p(¢t)) = x(t) for all t € [#5,12,]- Observe that if x(tl) =
= x,, then the curve p(t) belongs to Q(P; Py, x;). Thus, given any curve p € 2(P;
Py) there is a unique decomposition p(¢) = p"(t) - gP (1), where p" (1) is a hori-
zontal curve on P satisfying p"(:o) = p, and g?(t) is a curve on G satisfying
gp(to) = e. In fact, p*(¢) is the horizontal lifting of w(p(¢)) = x(t), having left
endpoint p,. Another uscful notation is the following. Let p € Q(2, Py»Xp) and
my € M be given. Then there is a unique curve m P (¢) belonging to S2(M; mo) such
that p(t)n P () is horizontal and p(to)m"(to) = pgn,. This curve is defined by

mP ()= [gP()] .
In fact, we have
PP (1) = pROP (O 'my = p(eym,,

which proves that p(¢) mP(¢) is horizontal, as a curve on P X M, and on the
other hand it is also easy to see that p(’o) mP(to) = pyn,. Assumption G implies
that if my € U and m? is defined as before, then mP(t) € U for all t € l15. 4]

With Py, P, € P, w(p)) = x; € B, and my € M fixed, define the functions

myUPpy,x) > U by my(p) =iz Nphe)my)
and

g, SUP;py, x)>G by phu))=p,e,(p).
These definitions make sense since both p" ('1) and P, lie over the same base
point x, . Notice especially that while these two maps are defined on the space of
curves with right hand endpoint over the base point x,, the maps themselves
depend on the choice of p,- To get an intuitive picture of the previous notions,
let us explicitly describe them for the case of a trivial bundle P = B x G with 4
the trivial connection; i.e. horizontal curves on P have the form p(t) = (x(z), &)

where g € G is independent of ¢. Given Py = (xo, go), P, = (x, R gl), m, € M
and a curve p € (P, Pg» Xy) say plt) = (x(¢), g(t)), we can give formulas for
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p", gP, mP, m Q(P; Py, *)) = Uand g, : SUP; py, X,) = G as follows. First
observe that we have P x, M = B x M via [(x, g), m]+~ (x, gm). This implies
that horizontal curves on P x; M are of the form (x(2), my), where my € M is
independent of f. Then we have

pM(1) = (x(t), g0). 8P (1) = [gy ]2 (0),
mP(t) = [g()"'ggm, and m(p)=[g,] "g,m,

where g, € G is the second component of p, = (x, » &) which was given. (There is
a slight abuse of notation, since g, is also used to denote a function §2(P; Py
x,)-> G). This can be checked asfollows.- From the definition we have: pymp) =
= p"(tl)mo. Since plml(p) = (x,, glml(p)) and p"(tl)mo = (x,, gogM,) we
conclude that m (p) = [gl)“gomo. For the particular case of a trivial connection
m(p) only depends on the given values of p; and p, and it is really independent
of the curve p. The meaning of this will become clearer later on. This is not the
case for a nontrivial connection. Finally we have

g(p)= [gll—lgo

which shows that for a trivial connection, £,(p) is a constant i.e. does not depend
on p and only depends on the fixed values of py, p, .

In the case of a general bundle P and a general connection 4, we can check as
an easy consequence of the definitions that

m,(p) =g (pym,.

The purpose of the previous definitions is the following lemma.

LEMMA 3.1. Let p,,p, € Pand my € U be given:

(@) If p € SUP; Py» x,), m € QU, my, m(p)) and p(t)m(r) is horizontal, then
p(t)) = p,.(Recall that m, depends on the choice of the point p ).

(b) Conversely, given p € (P, Py, pl), there is a unigue m € SU(U, my, my(p))
such that pm is horizontal; in fact m = mP satisfies this requirement.

Before giving the proof, we comment on the meaning of this lemma in the
particular case of a trivial bundle with a trivial connection. Given p(t) = (x(¢),
g(#)), and m(¢), the condition of horizontality for p(t)m(t) = (x(¢), g(t)m(t))
means simply that g(r)m(r) = g(7,) is independent of ¢. Thus if plty) = (x4, 85,
m(to) =m, and p(¢)m(r) is horizontal then g(tl)m(tl) =gyMm,. Since we are also
assuming that m(l]) = ml(p) = [gl]‘l 8,M, according to the previous discussion,
we get g(tl) le l]’l 8oy = 8oMy, and since my € U, condition G together with

the previous equality implies g(t,) = g,, and since, by assumption, x(t,)) = x,,



VARIATIONAL PRINCIPLES ON PRINCIPAL FIBER BUNDLES, ETC. 189

we get p(t)) = (x(1,), g(t))) = (x,, 8,) = p,, which proves part (a) of the lemma
in the particular case of a trivial connection. Part (b) can be proved in a
similar way.

The essential content of the lemma, in the case of a trivial connection, consists
of the assertion that g(rf)m(¢) = constant (horizontality) and m(tl) = const € U
(i.e. m@t)) = ml(p)) together imply that &(1,) is also a constant. In the nontrivial
case however, difficulties arise precisely because m () is not constant (indepen-
dent of p), and could not possibility be chosen to be a constant, and it is interest-
ing that nevertheless, the lemma, as stated is still valid.

Proof of Lemma 3.1. Let us prove the following equivalences, which are valid for
curves m € (U, my), p € QUP; Pg» X,) as before and Py, Py, M, are fixed.

P =pt) = g =gP(t)) = mP(t ) = m (p).
In fact, we have
Py =plt) = pP( )lg (P11 = ph(e )P (1)) = g () ' =gP(t))

where the last equivalence comes from the fact that the action of G on Pis free.
On the other hand, using formulas before the lemma and Assumption G we
conclude that

mP(t)) = m(p) = g(P)]" ! = g(1)).
Using these facts we can prove the lemma as follows
pm horizontal and m(¢,) = m,(p) =>m = mP and m(t,) = my(p)
=>mP(t)) = m(p)=p,=p(,).

Conversely, let p € (P p, » Py) be given. Then p(t,) = p, and therefore mP(1)) =
= m(p). Thus if we choose m = m? then p™ is horizontal and m € QUU; my,
m(p)). .

We can write the previous lemma in a more compact form as follows. Recalling
that m, depends implicitly on the choice of Py, and we let x, = w(p,), define
the sets

SUP x M; o, Py, mg) = {(p. m) {1y, 1] > Px M| p(1g) = p,,
n(p(t))) = x,, m(ty) = mg, m(t)) = m(p)

and Q7 (P x M; Y mo) the subset of horizontal curves, i.e. curves satisfying
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AM|— ) =

dpm
=0
dr

Then we have the following rewording of lemma 3.1.

COROLLARY 32. The map
QH(PXM;PO,PI, mo)"a(P;PO,Pl)

defined by (p, m) = p, is an isomorphism onto. The inverse is given by
p = (p, mP).

The main purpose of this section is to introduce the horizontal constraint
given by

dpm
[)
dt

via a Lagrange multiplier to get a variational principle involving Clebsch potentials
and the variable v = A(p) as quantities to be varied independently. We represent
by (m, o) or, sometimes, simply o« = o, an element of 77 M. Thus elements of
P xgo T*M will be denoted simply pa, = po (the action of G on T*M is the
cotangent lifting of p). We have a natural pairing:

():Pxg TMePx, T*M—>R

where @ stands for the Whitney sum over the basis P x ¢ M. We define {,) by the
formula: {pm, pa) = {m, «), and we can check that this is well defined. It is
sometimes useful to work with a canonical trivialization of T*M say M! x F*,
where M! C M is open and F is isomorphic to the tangent space to M at some point
belonging to M!. Thus for given (m, a) belonging to this trivialization, we can
interpret m as being an element of M! and « as being an element of F*. We still
need some more notation to be used in the following theorem. As before, assume
Py, Py € Parefixed, x; = w(p,)and m; € M is fixed. Define

Q(P x T*U; po, Py mo) = {(P. m,a): [tostl]_)Px PUI p(to) =Pq
7(p(1) = x,, m@ty) = my, m(t,) = m(p)}.

Notice that for each given curve p on P satisfying pty) = po and m(p(t))=x,,
the point m l(p) remains fixed. Now choose any curve m on M satisfying m(to) =
= m, and m(t‘) = m(p). Finally, choose the curve (1, &) on T*M arbitrarily,
except that the component m satisfies the previous endpoint conditions. Then
(p; m, «) is a typical element of Q(P x T*U; Py, Py, my). Notice that the point

/'m_\,
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p, is implicit in the definition of m, . The horizontal constraint on curves (p. m),
i.e., the condition that pm be horizontal, is equivalent to

d d
o @22 o)

for all variations a, of the curve a. Arbitrarily variations (p, m, a’\) of the curve
(p. m, @) are allowed in the manifold of curves S2(P x T*U: Py, Py, my) as we
saw before.

Since AM is P x; TM-valued, we can write

=0

A=0

dpm

<AM(T)’1’«>= {pm + p(A(pIm), pay = {m + vm, &)

= 8(a) (&) +{(J(a), v).

Here vm = vm(m) stands for the infinitesimal generator of v = A(p) calculated at
m, 6 is the canonical 1-form on 7*M and J is the momentum mapping of the
action of G on T*M. ]

Let L : TP - R be a given Lagrangian. Define LM : TP x TT*M - R by

d(pm)
L”(p,ﬁ;m,a,n‘r,&)=L(p,i7)+<AM( p” ),pa>-

Using previous formulas we have
LM(p, p;m, a,m, &)= L(p, p) + (P + p v, pa)
=L(p.p)+ (M +vm,a)
= L(p. p) + 08(m, a)(h, &) +(I(m, o), v).

THEOREM 33. Let p,,p, € Pand my € U be given. Then the following assertions

are equivalent,

(YThe curve p € SUP; py, p,) is a critical point of the functional S : Q(P: Py
p,) —+ Rdefined by

f
S(p)=f L(p. p)dt
fo
(ii) There is a curve (in, o) € QUT*U; mgy, m(p)) such that the curve (p; m. a)

is a critical point of the functional S¥ : QP x 7’*U,-po, Py, mo) = Rdefined
by
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n
SM(p, m, a) =f LM(p, p, m, o, }1, &) dt.

to

Proof. This will be a typical Lagrange multiplier argument, based on the fol-
lowing version of the

Lagrange Multiplier Theorem: Let E be a manifold, h : E - R a function and
E’ C E a constraint submanifold defined by an equation ¢ = 0, where p :E -+ F, F
a vector space and 0 is a regular value of ¢. Then, for ey EE ', the following
assertions are equivalent:

() e is a critical point of h restricted to E'.

(ii) There exists oy € F* such that (e,, o) is a critical point of the function
He, a) = h(e) + (ple), @).

In our case, we take
f
E:=Q(PxMpgy,p,,my) and h(p, m): =[ L(p. p) dt = :S(p)
% N

which, accidentally, is independent of m, and

E' :=0HPx M, Po» Py M).
According to Corollary 3.2 we can write E' = Q(P: Py, P,). By working in a local
chart of U we can assume TU = U x H where H is a vector space isomorphic to
the tangent space at a point of U, and therefore T*U = U x H*. Define F =
= QUH) ={a : [ty, t,] > H}and F* = QH?*) ={a : [t,, t,] + H}. Define the
pairing

n
(a, o) = [ (a(r), (r)) dt

fo
where {a(r), o(t)) is the canonical pairing between H and H*. Define the constraint
function ¢ : E = F by ¢{p, m) = m + vm. Recall that s being the derivative of
m € SUH) can also be interpreted as a curve belonging to SYH), since h is a
vector space. Also recall that v(¢)m(¢) is, for each ¢, the infinitesimal generator of
v(t) at m(¢), which can be identified with an element of the vector space H. Thus
it makes sense to form the pairing

n
it + vm, a)) =[ {m +vm, o) dt

fo
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as before.

From the previous remarks we conclude that we can take H(p:m, a) = SM(p:
m, «) and therefore, the assertion of our theorem follows from the Lagrange
Multipler Theorem. [However, it should be mentioned that the usual versions of
Lagrange Multipler theorem that appear in the literature are not strong enough
to be applied directly in the way we described before, to many cases of physical
interest. We claim, however, that the result remains valid in all those examples,
and the proof can be performed by first localizing and then applying the same
method as we did in an earlier paper (see Cendra and Marsden [1987]). We omit
the details here]. ]

4. EQUATIONS OF MOTION

We will call L : TP — R an invariant Lagrangian if the following condition is
satisfied: L(pg, pg) = L(p. p)for all (p, p)E T Pandge G, where the notation
«(pg, pg)» stands for the tangent lifting of the actlon of G on P. We assume, from
now on, that L is an invariant Lagrangian.

First of all, recall that any given connection A on P gives rise to a decompo-
sition of TP into a «horizontal» part and a «vertical» part. This is related to
Montomery [1986], where the cotangent version of these ideas have been studied
in connection with the Hamiltonian (rather than Lagrangian) description of a
system on a principal bundle. Examples such as free boundary fluids and particles
in Yang-Mills field which were studied in Montgomery’s work, can also be studied
from the Lagrangian point of view, using the methods of the present article.

The decomposition of TP is given by an isomorphism

¢:TP-'THng

defined by é(p, p) = (p, p¥, v) = : (H(p, p), A(p, p)). The notation H(p, p) =

= (p, p¥) stands for the horizontal component of (p, p) € 7‘ P.Thus H : TP~
- THP is, by definition, an onto map. Observe that H can be expressed in terms
of A as follows: H(p, p) = (p. p) — pA(p. p). The inverse of ¢ is given by ¢~ 1(p.
pH,v)=(p. pH + pv), where, as we usually do in this paper, pv = vp(p)is the
infinitesimal generator of v calculated at p € P. The action of G on TP, which is
the tangent lifting of the action of G on P, becomes

(p. B¥, v)g = (pg. b3, Ad - 1v).

With some abuse of notation we can write L = L o ¢, in other words, we shal}
write L(p, p)= L(H(p. p), A(p. p)). Thus invariance of L is expressed by

L(p. p¥,v) = L(pg. P"g, Ad,_, v).



194 H. CENDRA, J. MARSDEN, A. IBORT

Since L is invariant, it defines a function on T#p X; @, where the action of G on
g is the adjoint action. The main purpose of this section is to get equations of
motion on THP x; g x T*M from the variational principle described in the
previous section. The curvature of the connection 4 will appear in a natural
way as a term representing a field strength, which seems natural in view of the
case of a particle in Yang-Mills field. This will be done using a description of
THP x; g as a vector bundle over TB with fiber isomorphic to g, which resembles
a similar description for the cotangent case given in Montgomery [1986]). A local
trivialization X x G of P gives rise to a local trivialization TX x g of THP Xz gand
therefore our lagrangian I | locally, is a function L am - TX x gxT*M > Rand
the functional S¥ becomes, locally, a tunction

SM QUX; x4, X)) x Ug) x UT*M; my,m (p)) > R.

The curve p that appears in m,(p) is determined by the curve (x, v) in Q(X; xg,
xy) x £2(g), as follows: Solve v = A(x, X, g, 8), g(ty) = e, which gives a solution
g(#). Find the horizontal lift x* (¢) of x(¢) such that x* (to) = pg, Which is a curve
in SUP; p, x,). Then set p(r) = x* (£)g(t). The function m, was defined before.
In other words, a typical element of

UX; x4, %,) x Ug) x QUT*M; my, m,(p))
can be described as follows. Choose
(x. v) € (X, x4, x,) x 2(g)

arbitrarily. Then find p and m,(p) as we did before. Finally choose a curve
(m(t), a(t)) on QUT*M; mgy, m(p)), i.e. a curve such that m(ty) = my, m(t,)) =
= m,(p) with a(r) arbitrary. Then (x, v, m, a) is a typical element of that space of
curves. The idea is now to apply the usual variational techniques and notice that
arbitrary variations of the curve x with fixed endpoints, arbitrary variations of v
and arbitrary variations of (m, a) with conditions m(¢;) = mg, m(t,) = m(p)
are allowed. We will postpone giving a detailed description of the equations that
we get by this procedure until the end of this section.

The next step consists of finding critical points of the functional $¥ , which
according to Theorem 3.3 is equivalent to finding critical points of the functional
S (which in turn, is the typical functional of the Hamilton Variational principle).
First of all let us introduce some notation. Recall the decomposition (see §3)
p() = p"()gf (1), where p" (¢) is horizontal and p" (tg) = p(ty) = py. Then we
have A(p, p) = A(p"gP. pg? + p"§P) = A(p"gP, p"gP (gP ) 1§P)=v, where
v=(P)1gP €Qg).

It is useful to keep in mind that, since for given Py € P and p € QP p,), the
above decomposition is unique,so we have an isomorphism S.(P; Py~ QAP Py X
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x SX(g) given by p = (p", A(p, p)) where QH(P; Py) = {p € Q(P; py)| p is hori-
zontal}. The inverse is constructed as follows: given v € §2(g), find g € (G, e)
such that ¢ = gv. (This amounts to solving a time dependent ordinary differential
equation on G). Thus p = p"g is the inverse image of the curve (p”, v). Also
observe that Q¥#(p; pg) = SUB; x,), since the map pt > Q@)p"):=nop”isan
isomorphism.

Now we apply variations to curves in QP x T*U, p,, p, ,m,) to get equations
of motion, according to Theorem 3.3. From now on « * » will be used to denote
derivatives with respect to the variable ¢ only, and we will sometimes use a nota-
tion of type &p, du, etc. to denote derivatives with respect to the parameter A

An arbitrary vertical variation of the curve p, compatible with the endpoint
conditions p(ty) = p, and n(p(t,)) = x,, can be represented by p, = pg, , where
g, ER(G; e)is arbitary. Thus v}, = (g, I~ lg'A is an arbitrary variation of v: =g~ 1g
in $2(g). We have

e}

Because of the invariance of L, the last expression becomes L(p, p¥, v + u,)
where v = A(p, p) and u, = g',‘ s, )1, Observe that u, also represents an arbitra-
ry variation of v. Thus we have

dpe, . . . .
- )= L(H(pg, +pg,)+ A(pg, + pg,))

= L((pg, + P, ), (Ad_14(p, B) + V).

aL(p,, p,v,) 3L(p,,B,)
oA A=0 oA A=0
9 b}
= —L- (. pHv = —L (». pY, v)(ov)
_ ov

ou,
where dv = —a-)r

Variations (pA, m o:) where p, = pg, are compatible with the imposition of
the constraint (P x T*U; Pg» Py, My). This is because, according to the defini-
tionof m,,

my(B) =i, PP (1)Img) = i, " p"(tg)my)

which does not depend on A and therefore we can assume that (mh, ozA) is inde-
pendent of A, Then we have

7}
’a_)" ('h + vkm,oz)lh = J(m, o) (§v)
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where

v
fu= —~ .
N =0
Since L¥(p, p, m, m, a, @) = L(p,, 15)‘”, v) + {m + v, m, ). We can conclude
that vertical variations of the curve p, lead to the equation

aL
— @ p,v)=—J(m, o). @p)y
dv

Let p, be a horizontal variation of the curve p, with fixed endpoints, i.e., for each
t, p, (1) = p(A, 1) is a horizontal curve and p, (#,) = p(t,)), i = 0, 1. Choose, for
each A, the curve m, so that p,m, is horizontal. According to §3 this can
be always achieved in a unique way, by taking m, = mPr. This implies that
LM(pA » B, m,m, &, &)= L(p, , p, ) and therefore we should only study

a ("
a_x' f L(px»i’x) dt
tg

By the usual integration by parts argument, we get the equation

A=0

aL 4 oL
(— (p.P)— — — . p)|Ep) =0 (6p)?
ap d: dp

for all horizontal vectors
op

=@p) at peP.
~ P r

A=0

While the equations (8p)" appear formally like Euler-Lagrange equations, they
are not unless the distribution of horizontal planes in P is integrable, i.e., the
connection A4 is a trivial connection.

One of our purposes is to give another expression for equation (6p)”, which
involves the curvature of the connection A. This will be done at the end of this
section.

Next we consider variations (m, , a, ) of the curve (m, a) satisfying the fixed
endpoint condition m(to) =m,, m(¢;) = ml(p), so variations (p, m,, aA) are
compatible with the constraint 2(P x T*U; Py> my, my). To simplify notation,
we will write ¥y = (m, «) and we will assume that the variation 7, =0m,,q,)
satisfies the fixed endpoint condition dy(t;) = 0,i = 0, 1, which is compatible
with the previous constraint. Since 8 is the canonical 1-form on T*M and
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w = — df is the canonical symplectic form on T*M we can check (see for instan-
ce Cendra and Marsden [1987]) that
n n
5f 6(y)dr =/ w(y,8y)dr. &)
to fo

As we explained before, 8 stands for the derivative of ¢ with respect to A, and
¥ is the derivative of v with respect to £. From the definition of the momentum
mapping, we know that J()(v) = (J(v), v} is the Hamiltonian of the infinitesimal
generator of the action of G on T*M corresponding to v € g. Thus we have

n 91
) ] I(y)(v) dr = f [dIWXrYXEv)] dt

fo to

L]
= f w(vy, 87) dt.
fo
Since w is nondegenerate, equation (8+) is equivalent to
Yy+uy=0, 6yy

which represents the «Lin Constraint». Let us summarize the equations of motion
that we have obtained so far for convenience:

L
— (p.p¥,v) =—J(v) Gp)y
av

(3L d BL) - 5 )”
— —— —}wpH=0

w @ % ((5p) @p

for all horizontal vectors (6p)* at p € P and
¥+vy=0. &)

Now we give an interesting expression for equation (8p)” which involves the
curvature of the connection A. This will be done by first choosing a local trivia-
lization of P, say X x G where X is an open set contained in B. Thus we have an
isomorphism: T(X x G) = TX x G x g given by (x, X, g &)~ (x, X, g, A(x, X,
8 8)) : = (x, x, g, v). [Warning: vectors of the form (x, %, g, 0) are not necessarily
horizontal, while vectors (x, 0, g, g) are always vertical, with respect to the
connection A). The action of G on TX x G x g induced by this trivialization
now becomes (x, x, g, Vh = (x, x, gh, Ad,_ 1 v). Therefore we can write
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TX x G x g/G = TX x g, and the canonical projection TX x G x g~ TX x gis
given by (x, X, g, v) ~ (x, X, Adgv). Since L is invariant, it induces a function L'
on TX x g given by

L'(x, x, v)=L{(x, X, e, v) = L(x, X, 8 Ad,_,v) where v=A(p, P

Now we are ready to study equations (8p)”. As before, choose variations
p, (t) of the curve p(r) = p,(r) such that, for each 1, p, (r) is a horizontal curve
with p, (¢;) is fixed for i = 0, 1. Choose m, = mPx, so that

) M(d(p,\m,\)

)= 0, forall ¢, A.
dr

Denoting v, (t) = A(p, (1), p, (1)), we have

d d ("
:li S (p}‘, Ao 7\) = -(K[ L (x}\,x)‘,AdhA(PA,PA)) dr
A=0 fo A=0
d L L' 9 .
[— ~ 7 G R AR

A=0

Since A(p, p) is linear in p, write A(p, p) = A(p)p. Then we have

“ar 9 " oar 3A(p, )P,
f(— E\Ad&A(pk)pA> dt—f — (ad, _) dr

ou
to A=0 A=0
“8L' aad
+ | (— —& AP dt=:C+D. (CD)
f R o)
to A=0

Set g, = g py, = p for simplicity. Then the integral C defined by the equation
(CD) is given by

noaL 34(p, )P,
C=| — o4d, ——) dr

, ou oA
o A=0
" aL (aA (ap op 2p
= —oAd——,—+A()—) dt
ou Blap \aa :) PN var

1o A=
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hoaL (aA (ap ap) Y] (ap ))
=] —odd|—|(—,
du B\gp \on o ap\or

to

ds,

oL’ op
— —\|\— o 4d JA(p,) —
N =0

dfr \ ou

where the last equality comes from integrating by parts. Since the derivative of p
with respect to A is horizontal we have

ap
A(p,) — =0.
p,) Py

This and the Cartan Structure equation gives

04 fop op 94 fop 9p op Odp 1

) e - M4

ap \aN ¥ op \dt oA an o

3=l -3
Q
o 9t

where £ is the curvature form of the connection A. Thus if we set

oL' ap Op
c= —{Ad n(— , —))
du £ \an ot

n
C=f cde.

fo

A=0

We have

On the other hand, if we set

9g, (1)

w'(t) = [g)]™!

A=0

we can readily check that

oL' < ) > oL' ,9 ]>
=— (— 4d. A(p)p =—<3—Ad w', v
u ‘an “iaPP du A sl

A=0

and therefore
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5]
D=f d dr.

o

We can give ¢ and d a more symmetric expression as follows. Since p(A, 1) =
=(x(\, 1), g\, 1)), we can write p = gh where h(\, 1) = [g(1)]"1gQ\, 1), giving
h(0,1) = e and g(\, 1) = (x(A, ), g(#)). Thus

dq aph?
)
oA

A a
because — w' = ok~ /3N I = o and using the fact that dp/dX is horizontal Since
p(0, £} = g(0, 1), we have

oL’ g dq
d=— Ad A—,A(—)
ou  fL \ar 7Y

We can also check that

aL' aq aq)

aq
=A —)\ +A(p(—w))=—w'

a=0 A=0

o % \ar A

Finally, we can show that ¢ and d are invariant under the action of G and there-
fore they define functions c'(x, x, §x, u) and d’(x, x, 8x, u), where as usual 8x
stands for the derivative of x(\, t) with respect to A. The usual variational techni-
ques, starting with equation (CD), equation 6p)¥ becomes

oL’ d oL

—_— —— —=—(c'(x, X, e, )+ d"(x, X, o, u)).

ox dr ox

To find an explicit expression for the equations of notion, we first calculate ¢’,
d'. Introduce the notion s : = gg~! for convenience. We can check that for a
given element s € g we have s = A(x, 0, ¢, s) with A'(x, ¥) : = A(x, %, e, 0). Thus,

v=Ax, X, £.8)=A(xx,8 0+ A(x,0,g, 8) = A(x, %, g 0) + A(x, 0, g, 58)
=Ad,_A(x. % e, 0)+ Ad,_ég"'=Ad, AYx.X)+ Ad_s.

Also, since u = Ad,v, we have u = A '(x, £) + 5. Then we have

A A2 )
N R
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i ax ag ox
= A(x, —,e, — g"l),A(x, — ,e, 0
| ot at oA
3 ox dax
= A(x. —, 8 0)+A(x. 0,e 5), Alx, — ,e,O)
ot oA

™ ox
=|u, A'(x. —)]
1 oA

oL’
d'(x, x, x, u)= a— [u, A'(x, 8x)).
u

Therefore,

Now define Q'(x, x, 6x) : = Q({x, %, e, 0), (x, 6x, e, 0)). Hence

(aq aq) Q(aq . oq 1)
Ad S0 — s T = — & ,.— g
& \an o ) & o &

A=0 A=0

ax o ax g
= Qllx, — .—),(x,—-,g,—)
a A ar all|,

ox og ax ag
=n'(( , — &, — g’l),(x, —,e — g"'))

]
o

A A ot at

ox 9g
ok

FYSR )

because & is a tensorial form and (x, 0, e, (3g/dA)g™!) and (x, O, e, (3g/31)g™ ")
are vertical vectors. Then we have

c'(x, %, 6x, u) = — Q'(x, 8s, X).
ou

So far we have proved that equation (8p)¥ becomes
aL’ d aL' oL’
_-— = (Q'(xv x.n .) + [A(xv .)’ u])'
ax dt 9x ou

Equation (86-) can be written as follows
T+vy=0eg7+gy—4g gy +gvg gy =0.

Setting § = g+, and using the preceding equivalence, we have
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F+vy=0e=f+uB—sp=0esf+A'(x, ¥)f=0.

In other words, equation (6v) is equivalent to__ﬁ + A'(x, )8 = 0. Finally equa-

tion (6p)* was
oL

— ==y
- 162

Since u = Adgv, we have
oL oL’

— = — 0 Ad,
ov ou

Consequently (§p)? is equivalent to
oL’
— =—1J@).

ou

Collecting these results, our main equations of motion become

6p) ’“‘w\
(ép)*

@)

oL’
; =—J@®)
aL' a4 AL AL o
Pl (R2'(x, %, o) + [A'(x, %), u))
B+A'(x, $)=0
where
A'(x, %) = A(x, %, e, 0),
Q'(x, x, 6x)= (x, x, e, 0), (x, 5x, e, 0)),
and

L'(x, x,u)= L(x, X, e, u).

If we find a solution curve say (x(¢), u(r), f(¢)) to the main equations, then we

can also find g(¢) by solving the equation

AdgA(x. X 8 8)=u

In this way we can reconstruct the motion on P using p(t) = (x(t), g(t)) and
7(t) = B[] . Once the local trivialization X x G of P and the connection
A have been chosen, then we can write A’, ', L' and the equations of motion,

without any further calculation, by using the above expressions.
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Remarks 1. If the Lagrangian L' has the stronger invariance property given by
the condition L'(x, X, u) = L'(x, %, Adgu) for all g € G, (this happens in the
example of particles in a Yang-Mills field as a consequence of the bi-invariance

of the metric defined on the group), then we have

e Ad, A( d L'(x, %, Ad, A(p)p) 0

= — (T Ad, A(p¥ =—Lix% p)p =0.
u ax A azo GA & A=0

In this case the equations of motion become

dL’

— =—¥B)

ou

oL’ d oL oL

—_——— — = — Q(x, X, )

B+ A'(x, x)B=0.

2. Let L : TP - R be an invariant Lagrangian (not necessarily bi-invariant as
it was in remark 1). Choose a local trivialization X x G of P as before. We have
an isomorphism T(X x G)/G = TX x g given by [(x, x, g, £)]~ (x, X, v) where
v = gg~1. We can check that this is well defined, showing that we do not really
need a connection to establish an isomorphism as before, once we have chosen a
trivialization. Since L is an invariant Lagrangian, it induces a «reduced» Lagran-
gian on TX x g. This is exactly the situation considered in Cendra and Marsden
[1987). Then we can introduce Clebsch variables as we did in that paper. Thus
we get an alternative approach to the question of dividing by the symmetry of the
system, which does not involve a connection. The possibility of this double
approach to a given system with symmetry has a cotangent counterpart (see
Montgomery [1986]).

5. YANGMILLS SPACES

We now describe the motion of a particle in a Yang-Mills field as an illustration
of the ideas previously discussed about variational principles in principal fiber
bundles. The configuration space for a particle moving in a Yang-Mills field F
is a manifold B, the base space of a principal fiber bundie 7 : P - B, called the
gauge configuration space and F is the curvature of a connection A on P. The
Lagrangian is the kinetic energy Lagrangian corresponding to a metric X on the
total space P. This metric is constructed by glueing together a Riemannian metric
g on the base space B and a bi-invariant metric A on the group manifold G using
the connection A. The metric X is defined by the formula
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K, (D, §)= 8,p)(T,m(P), T,(q)) + MA(P), A@Y.

for every pair of tangent vectors p, ¢ € TPP_. The projection of the geodesic
motion on P onto B with respect to the metric K, gives the solution to Wong’s
equations (see Montgomery [1984)). This Kaluza-Klein approach was first devised
in Kerner [1968] but its canonical counterpart was not fully understood until
very recently (Sternberg [1977], Weinstein [1978], Montgomery [1984}). The
following paragraph provides a brief account of the Hamiltonian description of
the theory.
The kinetic energy Lagrangian

1
L. B)= = Ky (. 5)

can be used to identify TP with T*P. The Hamilotnian induced on T*P in this
way will be denoted by H, and is given by

1
Hmm=;$mw

for every a € T;‘P. Hence «b» stands for the operation of lowering indices. This
Hamiltonian is obviously G-invariant with respect to the cotangent lifting of the
action of the Gauge group G. Using the symplectic reduction theorem we get a
family of reduced Hamiltonian systems ((T"P)“, Q“ , H,) where (T‘P)" denotes
the reduced space obtained by taking the quotient of the level set of the momen-
tum mapping J : T*P = g* by G”, the isotropy group of the coadjoint action
corresponding to pu € g*. These spaces are the universal representation of the
phase space of the system (Weinstein {1978]). The connection A allows us to
identify (T "‘P)p with the space P¥ XG Op, where P* denotes the pull back of P
along the canonical projection 73 : T*B > B and 0 is the coadjoint orbit of G
through p € g*. The symplecticstructure on P* x G 0 was described in Sternberg
[1977] and it is just the projection of P¥ X 0 of the closed 2-form S’&
=wtw, + d{J, A) defined on P¥ x ¢ O wis the presymplectic form onP"
obtained by pulling-back the standard orbit symplectic structure on 0" and
0, = (J, A) is the couping }-form on P* x 0,. This form is projectable and
induces the symplectic structure Qu. The difference between H, and the Hamil-
tonian is a Casimir on g* that does not affect the equations of motion.

If instead of doing the reduction by the group G in the Hamiltonian forma-
lism we tried naively to reduce the Lagrangian system given by the metric X we
would get the Lagrangian

1 1
L'(x, %, v) = — g (%, %)+ — A(v, V)
2 2
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where (x, X, v) denotes local coordinates in the bundle T7PG = TX x g, where
X x G is a trivialization of P as we saw in §4. The naive variational principle,
which allows arbitrary variations of curves x and v, does not provide the correct
equations of motion. We could say that reduction and variational equations do
not commute in a trivial way. However, we can write equations of motion as we
have explained before, according to Remark 1 at the end of §4. Identifying
vectors and covectors via the index lowering operation «b» with respect to the
metrics g on B and A on G, we get

oL’ »

— =-JB®=u

ou

Vx-i‘ = Au, '(x, X, »))

B+ A'(x, %)B=0.

For the space of Clebsch potentials we have several choices, for example M = G,
or M a vector space, as we have explained before. (See Balachandran et. al. [1985]
for a description of this system along these lines).
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