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1. INTRODUCTION.

The geometrical description of Lin constraints and variational principles in terms of
Clebsch variables proposed recently by Cendra & Marsden [1] can be generalized in a
way including among its wide range of applications those systems defined not only on
configuration spaces which are products of Lie groups and vector spaces, but with
configuration spaces being non-trivial principal fiber bundles with structural group G..
This generalization aims to cope with problems such as for example, fluids with free
boundaries or Yang-Mills fields.

Let L be a Lagrangian defined on the tangent bundle of a Lie group G and assume
that L is invariant under the natural action of the group G on 7G lifted from the left (or
right) ranslations of G on itself. This permits the definition of a Lagrangian Lg in body
(or space) coordinates, that is, in the Lie algebra of G, which will be denoted in what fol-
lows by g. One discovers that it is impossible to get the equations of motion in g induced
from those defined in TG by L using the naive variational principle associated to L. The
reason for this phenomena is that variational principles do not behave naturally with
respect to the geometrical process involved in reduction. The first method proposed his-
torically to overcome this difficulty consisted in introducing a "Clebsch representation”
for the system L, in g, thereby extending the reduced space and introducing a new
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Lagrangian providing the correct cquations of motion. It is plausible that if we use the
same idea in the context of configuration spaces which are non-trivial principal fiber bun-
dles, we would have to describe separately the variations along the vertical (‘group’)
directions and the ‘horizontal’ (base) directions. That means that we have to choose a
connection A in order to separate group degrees of freedom from the base dynamics.
Obviously such a choice will have non-trivial global consequences in the description of
the reduced dynamics in the same way as the equations of motion for a particle moving
in a Yang-Mills field depend on the connection we choose. in the gauge fiber bundle of
the system (see (2] and rei'erenqes therein).

So far, the main point is how we should incorporate this idea to the extended
Lagrangian picture. This is done by changing the Lin constraint used in the trivial bundle
case [1] by using a horizontal version of it, in such a way that it decouples the vertical
and the horizontal degrees of freedom. This will be thouroughly described in § 3. § 2
will be devoted to the description of some notation and ideas about principal and associ-
ated fiber bundles, and finally in § 4 we will show the explicit form of the equations of
motion for invariant Lagrangians.

2. CLEBSCH VARIABLES AND ASSOCIATED BUNDLES.

Let P be a principal fiber bundle with base space B, structural group G (acting on
the right) and projection =. Let p be a linear action of G on a vector space V, i.e.
p:G—GL(V) is a group homomorphism. We define the bundle PxsV with fiber v and
base B associated with P and the action of G on V by (PxV)G where (p.a)g =(pg .g-'a) for
every (p.a)ePxV and geG. We will denote the equivalence class of (p,a) as {p.a] or even
pa for short, and define nv:PxcV =8 by nv(p.a)=rn(p). Denotng by pr, the projecton of
PxV into the first factor and by I the canonical projection from PxV into PxgV, we get
the following conmutative diagram, showing us that pr, is a principal bundle isomor-
phism along the map ny:

Pry
PxV - P
nl In
PxgV E) B8

Moreover, for each peP the map i, sending V into the fiber of PxsV over the point
n(p) by a—pa is a linear isbrnorphism of vector spaces and satisfies i, =i, 0p(g~!). The
tangent map Ti,(a):T,V(=V)—=Tpan7'(n(p))}(=V) is a linear map denoted simply by p, i.e.
Ti,(a)(a)=pa. Likewise, we can define a map i,:P -PxsV for each aeV by i.(p)=pa.
Notice that if the image of a fiber of P in PxsV is an embedding, the tangent map
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. Tia ()T, P »TPxsV is an injeciive linear mapping denoted in what follows by a, i.e.

Ti, (p)@)=a(p) for every peT,P. Finally if we are given two curves (p(¢),a (1)) in PxV, the
tangent vector to the curve p(t)a(¢) at the point pa is given by T.i, (d) + Tpi.(p) =ap + pd.

Given a connection A on P, a parallel transport operation is induced in any of its
associated bundles by the projection under IT of the equivariant distribution of parallel
planes 4 defined by A in TP, H, =KerA,. For every peP we have the decomposition
T,P =H,8V,, where V, is the vertical subspace of TP at p, so a horizontal subspace Hy at
the point pa in PxgV is spanned by tangent vectors to curves of the form p(:)a(r) with
p(¢) horizontal, i.e. A(p)=0. The vertical subbundle of the bundle T(PxgV) is KerTny,
that means that the vertical subspace at the point pa is just T,.nv(pa)=V. Using that
identification we can realize the horizontal distribution Hy as the Kernel of the V-valued
1-form Av, which is defined as follows:

Av(pa)X)=X -Xh=X"

where X* is the horizontal projection of X, using the decomposition
T,,,(Px};V): VOHvy (pa). It is easy to see that for a fixed p, the curve pa () is vertical, and
that the horizontal component of p(:)a for fixed a is p*(1)a, (p#(t) denotes the horizontal
lifing of =p (1)). For a given pair of curves (p(¢),a(t)) on PxV the horizontal component of
the tangent vector;ﬁ at pa is ap*, and then Av(pa)}(pa) = a(p —p*)+pd =ah,(p) +pa

3. HORIZONTAL LIN CONSTRAINTS AND VARIATIONAL PRINCIPLES.

As in the previous section let 2 be a principal fiber bundle, and p:G —GL (V) a linear
representation of G on the vector space V. We assume that the following technical con-
ditions are satisfied:

i. There is a G-invariant open set UcV.

ii. G is embedded into its orbit Ga for each aeU.

Notice that the last condition means that G can be thought as a subset of v, because
for each choice of a point a,e U, we can identify G with the orbit of G through q,.

To properly handle the notions about variational principles in nontrivial principal
fiber bundles we shall introduce some notation about the different spaces of curves

which appear in the statement of the main result. We denote the space of curves in P
with fixed origin p,eP by Q, (P) and the space of curves with fixed endpoints p, 21, by

Q, ,(P). Likewise the space of curves in V with origin a, will be denoted by Q. (V) and
the space of curves with fixed endpoints a,,a, will be denoted by Qg o(V). Curves in

Q, (P) with the endpoint p, lying over a fixed base point x,e8 will be denoted by Q, . (P).
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It is clear that given a curve p(r) there is a unique decomposition p (1) = p* (:).éP (¢), where
gP(0)=e and p*(¢) is horizontal with respect to a fixed connection A. Given a curve
p(t)eQp . (P) and a,eU, there exists a unique curve denoted a2 (t) in Q. (V) such that
p(t)a(t) is horizontal and pa(0) = p, a,, (this curve is defined by a(¢) = (g#)-'(*)a, and notice
that if a,e U, then the whole curve a(1) is contained in U). Horizontal Lin constraints
arise from the splitting of ‘vertical’ and ‘horizontal’ variations of curves via a connection
. to get a correct variational principle using a Clebsch representaton. Fix a point p, and a
point p, in the fiber x!(x)), which represent the endpoints for the variational problem on
P, Define the set of curves (p(t).a(t)) With p(t)eQ; - (P) and a(:) having a fixed starting
point a,, but a variable endpoint a,(¢) varying in such a way that if p(¢)a(¢) is horizontal,
it must necessarily happen that p(11)=p;. The curves p(¢)a(¢) belonging to this set are in
one-to-one correspondence with the curves in Q, , (P), which is just what we need to
stablish a good variational principle for the reduced system.

The previous remarks and comentaries can be summarized in the following techni-
cal lemma.

Lemma. Let P be a principal fiber bundle as before and PxgV the associated vector
bundle with respect to the linear action p of G on V. Let p, p\ be a pair of points of P -
with basepoints x,x, respectively and a,e(). Then there exists a unique map a, from
Q, (P) into UcV satisfying the following property: If p(t)eSp +(P), a(t)eQq o p)U) and
p(t)a(t) l:S horizonral, then necessarily p (t;)=p,.

In particular, denoting by Q,, . .0 (PxV) the set of curves (p(1).a(t)) such that
p(to) =po, n(p(t1))=x1, alto) =ao and a(t)) =ai(p), and denoting by Q¥ ; , . )P xV) the sub-
set of curves that are horizontal in Px;V, we see that the map ®:Q¥ ; o ..,y (P XV)=K, 5 (P)
defined by ®(p a)=p is onto.

The proof is straightforward noticing that a,(p) defined by the formula
a\(p) =i (p*(t1)a,) satisfies the required property. Notice that a,(p)=gi'(p)a, Where
g1(p) is defined by the equation p(t,) = p1g:(p). That implies, because of the G-invariance
of U, thata\(p)eU.

Since Av(-gl-(p ()a(@))) =0 is equivalent to p(t)a(¢) being horizontal, it follows that

QH 2,46 PxV) is the subset of Q, s s a¢)(PxV) defined by the constraint Av(gd‘—(pa n=0.

Now we will introduce the constraint defined in this way in the varational principle
using a Lagrange multiplier. Using the ‘Clebsch representation space’ vxv* we will
allow arbitrary variations of the curves in v* and so the new term in the Lagrangian will
look like
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<Av G Oal)p ©)b(1)>

with (p(t)a (¢ Wb (1€, 15,4, (P XV IXQV").

Finally we include some comentaries and definitions involving G -invariant Lagran-
gianson P. L is G-invariant if L (p p)=L(pg pg) with (p 5)eTP and geG. The action of G
on V induces an action p** on V*. This action permits us to define the associated bundle
Pxg(VxV*) over B with fiber VxV* with respect to the action (p,p*"). This bundle has a
natural pairing <,> given by <pagpa>=<a,a>, for every (a,0)eVxV*. We define the
Lagrangian LY on T(PxVxV"*) by the formula:

LV(p.$:a.6.00) =L(p §) + <Av(Z(padpo >
or using the formulas previously obtained for Ay we get: 4
LVCU \6;“’& .(2.&) =L(PP) + <Pa + aAP(p)\Da> =L({p »P) + <Ap(p.)J(a Wa)> + e(n.a)(d ,&)

where J:VxV* g is the momemtum map associated to the action (p.p*) and 8 is the
canonical 1-form on Vxv*.

From the Lagrange multiplier theorem we have the following

- Theorem. Fixing p,.p\eP and a,eU, the following assertions are equivalen::

i. p(t)eQy, ,(P) is a critical point of the funcrional S :Q, , (P)—R defined by
Stpl=[ L s
. P0)a)o)eQy, 1 .06 PXVIXQUV") is a critical point of the functional
8Y:Qp 4,0, P XVIXQV" )R defined by
5Y(p.a.al =L’L"Cp F1a.4 0,0)dt
Jor some (a(1).a(t))e Qo o) (VIXQUV®)
iii. If L is invariant these are also equivalent to the curve

(e (@)v(t)a (1).0(1))E Q2 1, (B QUGIXQ 4 (VIXQUV*), where a, = it (x*(t1)a, is a critical point
of the functional §V induced from SV defined by

$Vip.aal =L'[L(pp')+ <A(p p)J (@,0)> + O(q od ,&)] dt

All the terms in the definition of §¥ are obviously G-invariant, and the curve o)
has a unique expression as (x.%,v) fixing p,p1. This is easily proved recalling that from
the decomposition p(¢) = p*(¢)g? (), we have

A §)=A(p 5P 5 g2 +p*§P)=A(p* gP pHgr(gP)'47) = v
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where v=(gr)'¢?. Since for given p,eP and p(1)eQ, (P), the decomposition above is
unique, we have the one-to-one map Q, (P)—QH(P)xQ(g) defined by p —(p* A (p.5)), whose
inverse is obtained as follows: Given ve Q(g) find geQ.(G) such that g = gv (this amounts
to solve a time dependent ordinary differential equation on G), then, set p =p*¢. Finally,
the map Q, , (P)—Q: (B )*Q(g) given by p—(x,v) with x ==(p) is a one-to-one correspon-
dence proving that each curve (p 5) has a unique reprsentation as (x .%,v).

4. EQUATIONS OF MOTION.

The next step in our discussion will be to derive the equations of motion for an
invariant Lagrangian L using the variational principle provided by the previous theorem.

Consider first vertical variations of the curve p, i.e. let pa(t) be p(t)ga(t) with
£:€Q.(G). Notice that this variaton is compatible with the set Q, ; o ) (PXV). After
some computations we get the following equation:

%L p 5" v)=1(a.0) M

where J(a,0) is, as above, the momentum map.

If we consider horizontal variations of p, we will get as usual Euler-Lagrange’s
equations of motion:

[[%%'%-3%] (Pﬁ)} @p*) =0 @

where 8p* is an arbitrary horizontal vector at p. Writing equation 2 in local coordinates
(x.x,v) we got

F-aE-Fred @

where F is the curvature of the connection A. In other words, coordinates (x.x,v)

correspond to the description of (TPxTV)/G as a fiber bundle over the adjoint bundle of P
(with base TB and fiber g) with fiber TV.

Arbitrary variations on the curves a(t) in V* lead to

d—vy(a)=0 3)

Finally, variations of the curves a(s) compatible with the set of curves we are deal-
ing with, gives us

a= vy (0)=0
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