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Abstract? .

We consider a system consisting of a rigid body to which a linear extensible
shear beam is attached. For such a system the Energy-Casimir method can be
used to investigate the stability of the equilibria. In the case we consider, it
can be shown that a test for (formal) stability reduces to checking the positive
definiteness of two matrices which depend on the parameters of the system and
the particular equilibrium about which the stability is to be ascertained.

1 Introduction

We consider a rigid body to which a long, fiexible appendage is attached. A
coordinate reference frame is fixed in the rigid body with the origin at the center
of mass of the rigid body. The flexible attachment is assumed to lie along the
second coordinate axis when the configuration is at rest. (see Figure 1.) The
equations of motion for such a configuration, under suitable assumptions and
with the appendage modeled as a linear extensible shear beam, are derived by
Krishnaprasad and Marsden in {2]. In deriving the equations of motion they use
Hamiltonian methods in the context of Poisson manifolds and reduction. (see (2]
for the explicit formula for the Poisson brackets involved.) If we assume that
the momentum of the system which arises from the appendage rotating with the
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Flezible Appendage

é;
Rigid Body \

Figure 1: The Geometry of the Configuration

rigid body is negligible, then our Hamiltonian is of the form

- € lzn(s)||? ¢ or or
H=%J p.-p +%/° “—‘(’:)“—ds +%‘/;K5;'E;ds. (1)
We assume that J is the inertia matrix of the rigid body and that po is the
uniform mass per unit length of the attached appendage of length £. The reduced
phase space is coordinated at any time by w, the convected angular velocity
vector of the rigid body; r(s), the convected displacement of the shear beam at
a point 8, 0 < s < & and m(s) the momentum density of shear beam at the
point s. The vector p is the body angular momentum vector of the rigid body,
thus p = Jw. Finally, K is the diagonal matrix of elastic coefficients.
In our investigation we are interested in the stability of the system about
equilibria points. These equilibria will satisfy,

or - ¢ ar or
0—JUXU+8XK‘5§ .=o—r(t)XKez+ A aXKada (2)
1
0=—m+rxw (3)
Po
2
0=KoLimxuw. (4)
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Two boundary values are associated with these equations,

0 0
? e=¢=| 1| =e3 and =|a|=a (5)
g 0 o LO

In {2}, a stability algorithm based on the Energy-Casimir method was applied
to a specific family of equilibria (see subsection 4.2 below). The essence of the
stability algorithm is to recognize that the relevant Poisson structure {-, -} admits
nontrivial Casimirs i.e. functions F' that Poisson-commute with any function
of the phase space. It follows that these are also conserved quantities for the
dynamics of (1). Specific Casimirs Cy may be found such that the relative
equilibria defined by (2)—-(4) are critical pointa of (H + C;) on the reduced phase
space. Formal stability follows from establishing definiteness conditions for the
second variation D?(H + C;) at the relative equilibria. To establish rigorous
nonlinear stability, one has to carry out certain convexity estimates as in [2).

The purpose of this paper is to establish a systematic procedure for carrying
out the formal stability step for arbitrary equilibria satisfying the equations (2)-
(4). This has useful applications in the engineering context where the model at
hand represents the mechanics of a spinning spacecraft with a flexible attachment
(such as a boom for carrying instruments or an antenna). See (2] for related
remarks and references. The procedure derived here recovers the results of [2]
when applied to the specific example considered there. (see subsection 4.2 below.)

2 'Computation of the First and Second Variations

In this section we compute the first and second variations of the Hamiltonian
plus the Casimir function, H + Cy. From the previous definitions of these we
know

1. 1 [¢[lm(s)|? 1 ¢ ar or
=_Jx.-/_ _/ gr or
H 33 Pt3 A ds +3 onaa asd” (8)

and the Casimir function may be taken to be

13
Co = gollp+ [ rx mal?). ™

We will denote the first and second variations by D(H + Cy), and D3(H +C,).
Note that because of the distributed nature of the system we are dealing with
we will need to compute variational derivatives instead of ordinary gradients.
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2.1 Computation of the First Variation

For the integrals in the Hamiltonian we consider variational differentials by

¢
Df(z) lim M—“—z)— fg—:f:-°6248. (8)
0
Thus, letting ) 2
1% |m(a)i®
5/; o ©
then ¢
Dh(m):fo im-&md;. (10)
Similarly, let
ar @
L) = _j' Kas.a:ds, (11)
Dis(r) = f K3 G .

If we integrate this equation by parts with the boundary conditions ér(€) =
5r(0) = 0, we get
e 3%r
Dfsfr) = - /o K3 -brds. (13)

For the integral term in the Casimir function we are taking variational derivatives
of a cross product term. If we define

4
lel? = Ip + f r x mds?, (14)

then . . :
Dja|? =2« - (6p +/ r x émds + [ ér x m ds). (15)
0 o

If we combine all of the above we get the expression for the first variation

¢
D(H+C¢)—J"p 5p+[ -plm -émds —/ K—- ér ds

¢ ¢
+¢'(lall?)e - (5p+/ rxémds + / ér x m ds). (16)
0 0
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2.2 Computation of the Second Variation

For the second variation, the starting point is the expression for the first vari-
ation. The terms arising from the original Hamiltonian are straight forward to
compute, they are

D(I~'p-6p) = JI-p-sp, (17)
] e
D / lmobmds) = / Lsm. sm ds, (18)
o Po o Po
¢ 3 ¢ 3%y
D(/o Kﬁ'&l’ ds = A Ka—s,‘,--b'rda. (19)
Note that we can use the boundary conditions on §r to get
¢ 3% ¢ 3r asr
/(;KF'O'I’JS——‘/; Kza—ads. (20)

Next we consider the component which arises from the Casimir function which
we added to the Hamiltonian. From the first factor of this term we compute,

[4 4
D¢'(a) = 24"(Jla?)a - (6p + / r x ém ds + / Srxmds)  (21)
0 0
From the second factor of the Casimir term we compute

e ¢
D(a-(6p+/rx6mda+/ Srxm ds)) =
) 0

[ 4 [4
||5p+/ rx5mda+/ 5r x m ds?
0 0

e ¢
+2(p+/ rxmda)-(/ 5t x 6m ds). (22)
0 0
We use the above to get the expression for the second variation
. ] ¢
D’(H+C¢) = J‘16p~6p+/ —I'Jm-des+/ Kﬁ-%ds
o Po 0 ds ds

+ 28l e p+ | e x 6m ds + Ji “fr x m o))’

e ¢
+ ¢'(||0||2){|I5p+/ rx5mds+/ 8r x m ds|?
0 0

+ 2(p+/°¢rxmds)-(/:erb'mds)}. (23)
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3 Computation of a Stability Criterion

The conditions which assure that the first variation D(H +Cy) at an equilibrium
is gero are

#(la®P)e* = -, (24)
1
#'(la‘l?)a® xr* = - om, (25)
8%re
#llacIP)a* xm* = -KS, (26)
where w® = J~!p*, and
[ 4
a® =p° +/o r® x m* ds. (27)

We use the superscript e to denote evaluation at an equilibrium. If we dot (24)

with a® we have e e
W a
#llal?) = -2 (28)
)= T
If we evaluate the first variation at an equilibrium, incorporating the above, then
we can derive conditions which assure the stability of the equilibrium. In the
following sequence of steps we demonstrate how this is done.

Step 1: Evaluate the Second Variation at an Equilibrium
Recall the second variation. If we use the above to substitute for ¢'(llef]I?)
in this expression and rearrange slightly we find that

[4
D*(H + Cy)(pe.ye.mey = I~ 46p - 6p + / Lém- 5m ds
0

Po
(4
dér QJbr
+./; Kﬁ . E ds

w‘-a""é. ¢ d ¢ ¢ 2
- p+/ r° x fm 3+/ §r x m°® ds
Tae? 1P+ J, o ”

wt - a [4
—2—ac. / dr x §m ds
T ™ (), )

¢ ¢
+2¢"(la|?)(e” - (6p +/ r® x ém ds +/ §r x m* ds))?,
0 o
(29)
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which corresponds to expression (5.5) in Krishnaprasad and Marsden [2]. In that
paper, ¢ is required to satisfy the condition:

#le?) = = (30)

which is consistent with (28). In the following development we impose no con-
ditions on ¢”(||a¢||?) at this time.

Step 2: Ezpand Terms Containing §p
We first note that the fourth and sixth terms in (29) can be expanded. For
the fourth term we have

we - at 14 . (4 . 2
-Wllé'p + A r* X émds + A ér x m*® dsf|

we - a
~ Ter P %

- ¥ -(/er°x6 d +/ts X m* ds)
lac)? P [} mae o | :

%"/:r‘ x bm ds +./:5r x m°® dsl'lz (31)

(WM while for the sixth term

2¢" (la®||?) (ex® - (6p+/:r‘ xmds+ /zé'r x m*® ds))?
= 2¢"(la*]|*)(a* - 5p)*

14
+44"(ll*[?)(e* - 6p)(a® - ( /' r* x ém ds + /o “sr xm¢ ds))

Z [4
+26"((|a*|1?) (a® - f r* x 6m ds + / 5r x m® ds))? (32)
[1] 0

Step 3: Collect Terms Containing ép
Now, collect together terms in which the quantity §p appears. Our expression
for the second variation at an equilibrium can then be written

D*(H +C,) =

-1 o at ¢ ¢
J 8p-6p—W(6p-6p+26p-(/; r’x&mda+/o ér x m*® ds))

TR UTTINITA L GRVRY - 5 Al -
P 51 GPTIIRCHK RN AT B, e Al
P R e U S WP PP B3 I L SRR SN - Seta TR SRS
N 3 ks o
" PR e v
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+2¢"(la*l*){(e° - 6p)? + 2(e° - 6p)
[4 [4
(a®- (/ r°x ém ds+/ 5r x m*® da))}]
||a;|P II/ r° x §m ds+/ ér x m* ds||?
+26"(la*[?) (" - ( /; 1 x m ds + /o 6r x m* ds))?

wé-a® , ¢ /“ 1 /" dér dér
. —5m -fm d —_— — ds.
2_||a'}|3a (/(; ér x fm ds) + 7 m - §m ds + A Kas e

(33)

Step 4: Complete the Square
The term in square brackets which contains the §p terms can be rewritten

=@ - " =T T2+ 26"(lof )’ @ a)ép - p
+2(- " ,", Y1+ 24(lla*?)a* @ a)ép
¢ ¢
-(/ r° x ém ds+/ ér x m° ds). (34)
) 0

In this expression we use ® to denote the tensor product and I the identity.
Note that a® ® a® is a tensor of rank 2. We can complete the square for this
expression provided the quantity
¢
J-'- I 2"2 I+ 2¢"(lla}|?)a* ® a* (35)
has an inverse.

We next assume this inverse exists and define the two symmetric matrices M
and N by,

M™ = J7'- ']],,eliﬁ“%"(lla‘ll Ja® ® a*
S (36)
N'™M = I+2¢"(Ila‘||2)a ®af

II ‘ll2
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]2

Q. (37)

Completing the square for the term in brackets we now get
¢ ¢
= [[Mép +N(/ *° x 6m ds +/ 5r x m*® ds)[?
0 0

14 14
-NTN(f r‘x&mda+/ 6r x m*® ds)
[\] 0
14 [4
{ f *° x 6m ds + / 6 x ¢ ds). (38)
[¢] 0

The term in braces is bounded below by a perfect square when NTN 2 0.
For this to be the case we need to assume that the inverted matrix, J;! is
Positive definite, in general it need not be. Note that this assumption will impaose
conditions on ¢"(]|a®||?). The requirements on the parameters in this matrix to
assure it is strictly positive definite will be expressed in the form of inequalities.
These inequalities will be the first conditions that we need to assure stability.

Step 5: The Reformulated Second Variation
The second variation at an equilibrium is thus of the form

D*(H + Cy) = (square)
—NTN(ftr‘ x §m ds +/e5r X m* ds)
¢ 0 . 2 °
~(/ r’x fm ds+/ ér x m* ds)
:e . af (4 0 e
—W“/o r® x m ds +/; 6r x m*® ds)||?
+2¢"(lla*]?) " @ o / “¢ x 6m ds + / e x me ds)
¢ ¢ o 0
-(/o r‘xé'mds-f-/o ér x m* ds)’
we . ae

['4
—2——n°. / érx ém d
e = )

¢ ¢
+/ i&m -6m ds +f K-a—{iI gr ds. (39)
o Po o ds ds
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Where we note that

NTN=(-“"%54 2¢"(le[*)a® ® a*)

u =||=
J—l
( || =

(= " ,"2 T+ 26"(la"|?) et @ o)
=Q.J.Q.. (40)

AL 2¢"(la*[°) a° ® a*)~?

Step 6: Collect Integrals of Cross Products
Collecting terms containing the integrals of cross products the second varia-

tion can be written
D?(H + C4) = (square)
(3.9, - Qu)([ ** x5 d+[‘6 “d
T\ RedeWe T Ye X
or m ds r X m° ds)

[}

¢ ¢
-(/ r‘x&md:+/ §r x m® ds)

" ‘||2a (/ 5r x §m ds) +

[4
[ Lbmxom s [l Br, -
0

Step 7: A Vector Identity
Observe that a simple vector identity enables us to write

27;;"33 (/ brxémds) = /(" ‘llza x ér)-6m ds

rg{a ® a®)w’
2/0 dm* S el Yér ds  (42)

where we have used the skew-symmetric matrix S(z) associated with the cross-
product

0 -—ZI3 T2
S(z)=| za 0 -z ]|. (43)
-z ) 0
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Step 8: A Quadratic Form
Now define the symmetric matrix
A
R= QeJch - Qe- (44)

We will see below, that an eigenvalue estimate (46) relies on having R nonnega-
tive definite. We thus require that conditions on the parameters of the problem
and ¢"(||@*||?) hold such that J? defined in (36) is positive definite and R de-
fined in (44) is nonnegative definite. The latter will assure that R has a square
root R!/2. We will examine these assumptions again in remark 2 below.
Expanding the second term in (41), we can re—express it as a quadratic form,

¢ ¢ ¢ ¢
R(/ r‘xb‘mda+/ 6rxm‘ds)~(/ r"x&mda-f-/ 5r x m° ds)
[+] )] o 0

[4 e
- fo [ R(S(r"(s))6m(s) — S(m*(s))5x(s))
-(S(r¢(c))ém(o) — S(m°(0))ér(c)) dsdo

_ e pt ST(re(s))
= /; /; [ () 527 (s)] [ -8T(m*(s))

™ RIS(e*(0)) - Stan(o)] | 2 | dodo

e pt
ém(o
- /; /0 [6mT (s) SrT(s)]AT(s)A(o)[ &((a)) dsde  (45)

We now can find a lower bound on the above. The bound we want is obtained
from an eigenvalue inequality which we introduce by way of the following lemma.

Step 9: An Eigenvalue Inequality
Lemma 3.1 : Let A(s) € L3*™(0,£), and x(s) € L2(0,8) then
Y ¢ ¢
f / X (3)AT (s) A(0)x(c)do ds < / T (s){ f D*(0)do}x(s) ds, (46)
o Jo . 0 o
where A%(s) is the mazimum eigenvalue of AT(s)A(s).

Proof: Let | - || denote the standard norm in Euclidean space and also the
induced matrix norm associated with it. Then

./: _/:xr(s)AT (s)A(o)x(c)do ds

- e . - T

B R R PO L P R s e e T T {Q‘.': R O RS
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< /e f¢ [xT (s) AT (s)A(0)x(c)|do ds
0 J0
] 4
< | fo 1A (e)x(s)]l 1A (o)x(o)]] do ds
] 14
< /., A (el de [ NAG (ol do

where we have used [|A(s)x(s)|| < [lA(s)]] [Ix(s)||. We can now use the Schwarz
inequality

[ 4 4 14
2 2 2
( /; A(s)] lI(s)ll ds)* < /; A (s)II® ds /; llx(s)* ds.

Finally noting that the value of || A(s)]| is simply the square root of the maximum
eigenvalue of AT (s)A(s) establishes the result.

If we let A?(s) be the maximum eigenvalue of

[ STE(s))RS(r(s)) - ST (r"(s))RS(me(s))
AT(s)A(s) = [ —ST(m*(s))RS(r*(s)) ST(me(s)RS(m°(s)) | 7

and let A% = f A%(s) ds then we have by way of lemma 3.1 a lower bound on
the second variation

D*(H + C¢)(pere.me) 2 (square)
- X2 f émTém ds - A2 / 6xT6r ds
e
- / smTs({e @2 IIG:IrP)w )ér ds
o [ Lomtom e [522.2 4
1] 0

Step 10: A Poincaré Type Inequality
If we assume that K is diagonal and use a Poincaré-type inequality

¢ 36
/Kﬂ-a—i’d >c/ Kér - br ds, (49)
1]

L
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with ¢ = (), then the second variation can be bounded below as

DZ(H+C¢){,.,r.,m.) 2 (square)

¢ ¢
- X / fmT6m ds ~ 32 / 5rT6r ds
0 0

[4 a® @ at)wt
. 2/0 erS((—W)Jr ds

¢ ¢
+ f l611:1"6m ds+c¢ / ST Kér ds.
o Po 0

Step 11: Rewrite The Lower Bound
We can reformulate the lower bound in a clearer form as follows

D*(H + Cs)(ps.re.me) > (square)
‘I HI-I¥ _s(%8ue) 1T bm fm
L Fagr (2] 2]
If we define the matrix

AI-132 -8 ﬂ-ﬂlﬁ—'. ~we
™ D(p‘,r‘,m*) = [ _s%"(%gqcrr’:we) c(KZ Ij:’ ) J

then we can state the following theorem;

265

(50)

(51)

(52)

Theorem 3.1 : If the matriz R = Q.J.Q. — Q. defined in (44) ezists and is

nonnegative definite, J, defined in (36) is posits

ve definite, and the matriz D de-

fined in equation (52) is positive definite, then the system described by equations
(2)-(4) 1s nonlinearly (formally) stable at the equilibrium point (pe, re, m°).

Remark 1 : This result establishes only formal stability, since st i3 based on the
definiteness of second variational To establish rigorous stability of the nonlinear
system one generally needs to ezamine convezsty estimates as is done in 8.

Remark 2 : Note that if Q- ! ezists and we use the matriz inversion lemma

{4/, p.656, we obtain the Jollowing

(Q7'+3)! = Q.-Q.1.q,

\
£
X oy
e L5505
R F%
S
ks -
S AT AR PGS
S T "I""‘"a'v'r?*"-—:,&Hiizﬁiwzﬁi&%‘.&mr i AP A Y
B R PR O K s (e 5 Y . ;
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Recall that we already have an assumption of nonnegative definiteness on R.
Thus we need to specify conditions on the parameters and ¢"(||a||?) such that
J7'+Q. > o (54)

@+Q)t < 0 (55)

which are the same conditions as R > 0 and J. > 0. In the ezamples of the nezt
section Q. s ssngular.

Remark 8 : A better result can be had by observing that AT (s)A(s) is frequently

in the form of a block diagonal matriz

AT (s)A,(s) 0

AT(s)A(s) = ' (56)
0 AT (s)Ax(s)

where 0 < k < 6 and because of the semidefiniteness of AT A(s) some of the

diagonal blocks may be zero. If we let A¥(s) be the mazimum eigenvalue of
AT (s)Ai(s), 0 <1 <k then we can define

SU S [M o
D' = - . (57)
—ST(-‘[%%I%:U‘) ¢K 0 I:\z

Thus, if the conditions of theorem 8.2 are satisfied and also the matriz D' de-
fined in equation (57) is positive definite, then the system described by equations
(2)-(4) is (formally) nonlinearly stable at the equilibrium point (p°,r¢,m¢). In
theorem 9.2 this will mean the special choice A2(s) = max{A3(s),...,AZ(s)}.

4 Some Examples

In this section we apply theorem 3.1 to specific equilibria of (2)-(4). We will
assume that the linear extensible shear beam lies along the same direction as the
second principal axis of inertia of the rigid body. From geometric considerations
the position of the shear beam will cause the principal axes of the rigid-body-
shear-beam configuration to lie in the same directions as those of the rigid body.
In this case the addition of the shear beam will have the effect of increasing
the moments of inertia about the first and the third principal axes. Because
the linear extensible shear beam cannot deflect laterally the principal axes of
the configuration rémain fixed for any longitudinal extension of the shear beam.
Thus, for this configuration there are three axes about which the equilibria can
exist. These axes will correspond to the three principal axes of the rigid body.
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4.1 A Trivial Equilibrium

The simplest case to be considered is when the rotation takes place about the axis
along which the linear extensible shear beam lies. In this case the equilibrium
will be

w¢ = U;éz (58)
r’ = (ag+3)8,, 0<s<t (59)
m*¢ = 0. (60)

This describes the linear-extensible-shear-beam being unstretched.

What follows is a special case of the second variation computed in Step 1 of
the previous section. In this and the following example we will assume ¢ (llec]I?)
is the same as in (2], thus recall from (30) that if this is the case then

” ey we-at
¢ ("a " ) - 2"&‘"4.
And the two quantities, J7'!, and Q,, which we define in Step 4 are

w® - at at®at

b = P e e
W o a® @ a
=T e - @
For our example, if we first compute
) Ge = ]'2202&2 (63)
then
07w = jpa(w5)? and aTa® = i (u3)? (64)

from which we immediately compute

e eT 1 00
—aTm=|0 00 (65)
e a 0 01
and finally,
1 J3a—211 0 Y
7t o= 0 #2 0 (66)
L 0 Y Jaa—Js3
i # 0 o0
Q. = 0 0 o |. (67)
0 0o X
- 233
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For J. to be positive definite we require 323 > 713, and 532 > J33. This will
assure positive elements along the diagonal in the inverse above.

Thus, the quantity Q.J.Q. which appears in the reformulated second varia-
tion of Step 5 will be,

T ¢ €T \ 1 eT,,c)2 ¢ peT
_ .1 aTw a‘a (a*T w®) a‘a
QcJeQe = ( - aeTa=(I_a°Ta°)) ((aeTw)?(I_aeTa‘))
1 1 -1
= 0 L o |-]0 o0 o
322 1 0 0 RY
0 0 Jas : Ja3
4+ 0 0
Jia
0 0 0
1
0 o0 7%
.. .
Jaa=sju 0 0 33 00
= 0 J22 0 0 0 0
1
L 0 0 J::—Ju 0 0 i
[ —u . ¢
J33{s22—a11)
= 0 (68)
L 0 0 Ju(J::-Ja:l

where we have used equation (40) and the fact that J, and Q, are diagonal.
We also need the skew symmetric matrix which appears in Step 7. Thus, we

compute
¢ eT 0 0 wj
s(&ue) =l o o o |. (69)
a‘T o .
-w; 0 O
Now we compute R, which is defined in Step 8
a’Twe a‘aT
R = Q.J. Qe pies ot Uil )
!
( mlha-nn O 0 m 00
3 = 0 0 0 + 0 0 O
133 L1
L 0 0 J2a(333—7ss) 0 o Jaa
1
"J'::-J'n 0 0
= 0 0 o (70)
1
L 0 0 J33—38s

21T
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which, along with the definition of S(-) in (43), we can now use to compute

J'n:iurg2 0 0
ST(r)RS(r*) = 0 0 (71)
0 0 i5-rf?
ST(r)RS(m°®) = 0 (72)
ST(m*)RS(m°) = o. (73)

These matrices are used to form the matrix AT (s)A(s) in (57), note that it has
only the two nonzero elements (computed in (72)). These correspond to the first
and second diagonal elements. Hence, AT (s)A(s) is a diagonal matrix and the
nonsero eigenvalues are these two elements. As a consequence we will use the
modified bound described in Remark 3. Thus, the eigenvalue inequality is easily
obtained.

After using the Poincaré inequality of Step 10 we proceed to the final step
and construct the D’ matrix in (57)

L f¢
on- = Jaa=aas -c) '52 s 0 0 0 0 —w3
0 r 0 0 0 0
e
D' 0 0 L-—d—['rffds w§ ] 0
0 0 w§ (£)%ks o . 0
0 0 0 0 (&K, O
—w$ 0 0 0 0 (&),
(74)
To assure that the D’ matrix is positive definite we require
¢
2-ju > po /; ry ds (75)
¢
J2—J3 > po / 15’ ds (76)
[
and also,
oLt / EPATLI NN (w5)? (17)
Po Jaz—jazto ° 2¢" ™* 2
1 1 f‘ 2 LIRY
— = [ r5*ds) (=)%k: > (wl)3. 78
(po Ra-guu e 2 25) * (w3) (78)
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Physically the first two conditions are classical stability conditions on the stable
axes of rotation for a rigid body. The term on the right is the additional inertia
due to the flexible appendage which adds inertia about both the first and third
axes. The second two inequalities are conditions on the admissible rotation rates
of the configuration. They have an interesting physical interpretation.

4.2 A Non-Trivial Equilibrium

For the second example we will consider rotations of the rigid~body-shear-beam
configuration about the first or third principal axes of inertia. We will examine
the case when the rotation is about the first principal axis of inertia, rotations
about the third axis are similar. This corresponds to the example in Krish-
naprasad and Marsden [2].

w® = wié (79)
sin(y /2w s) cos(y/ B wi(s — ¢)) ‘
ré(s) - +a > | & (80)
f:-uj cos(y / fwit)
sin( frwis) cos(, / fwi(s - 9) A
m‘(s) = powy +a e3 (81)
frwf cos, /Eg-wil)

In these equations we have 0 < 8 £ & For simplicity we will denote the nonzero
element of r as r§, and that of m as m§.
We first compute

¢
o« = fj wi +/ r3m3 ds &, (82)
0
thus
¢
aTwt = (j“w§+/ rzm3 ds)w$ (83)
0
¢
aTat = (j“wf+/ rsm§ ds)?. (84)
0

Subsequently we will denote the first element of & by ;. We now compute

0o
acacT
TaTe =)0 (83)

- O QO
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and finally, J7! and Q, defined in Step 4 are

[ - 0 0
- 03~ jaa Wi
J; ' o= 0 ;’:a:n 0 " (86)
0 0 &1 —jys Wy
L F22Y:
0 0 o0
U'
Q. = |0 & :. (87)
[0 0 &
For J! to be positive definite we require
o > jggh); and a; > Jsaw}. (88)

These conditions will hold if 5i; > a2, and 7i; > jas and will assure positive
elements along the diagonal in the inverse above. These conditions are the same
as (5.10) in (2.

Then from equation (40) we have

T, e e eT -1 eT, )2 e T
_ -1 aTw aa (af we) a‘a
QJ.Q. = (J - aT q¢ (I— aT at )) ((aeTQe)Z I- ael"ac)
o~ & 0 o o 0 o]\
UC
L = 0 (1) -0 & uc’).
0 0 Fre 0 0 a
0 0 0
€13
o - o
o o lf
13
B o ]7[° 8o, ¢
= [0 e o o & o
[« SRR LY LAY «\2
L 0 0 Jaay 0 0 Q&%—
" 0 4} 0
we 3,
= 0 Qx(at-j:;w{) 0 (89)
0 0 (:‘ ’J'aa )
L a (@, —5sws
The skew symmetric matrix of Step 7 is
e eT 0 0 0
S(Z7—w')=|0 0 —wt]. (90)
aT ot 1
0 wf 0
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R =

where we have

two nonzero elements.

in Remark 3.

7 = 13 [y ri? ds

00 oo

Y2 =

Note that these are not the same as
We can now compute

From this we can compute the matrix AT(s)A(s) in (57),

©C oo

_u:
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Now we compute R as defined in Step 8,

a:Twe aeaeT
Q‘J‘Q‘ + aT qcT (I - aT ac
[0 0 o0 ] 0 “9‘ 0
0 b2 0 |+]|0 % o
ul
[ 0 0 by, J o 0o F
[0 0 o ]
0 722 0 (91)
L0 0 43 _l
w§ : w$
— and = — 92
ay = jpuws a3 a) — jasw$ (%2)

the 7y, and v, terms which appear in [2].

"]33]';2 00

ST(r)RS(r*) = 0 00 (93)
0 o0 o0

ST(r')RS(m*) = o (94)
Y22m§2 0 0

ST(m°)RS(m®) = 0 o0 0. (95)
0 o0 o0

note that it has only

These correspond to second and fourth diagonal elements.
Hence, AT (s)A(s) isa diagonal matrix and the nonzero eigenvalues are these two
elements. As in the Previous example we will use the modified bound described

We can construct the D’ matrix in (44)

0 0 o 0

0 0 o -

1 ‘ 0 W 0
Ok —va2 f[fm?ds 0 o

wi 0 (F)Pk, o

0 0 0 (g)%,
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To assure that the D’ matrix is positive definite we require

[
1 > po / r$? ds (97)
Yas o

[4
= > [ s (o8

0

and
=(3;)° > W3)? (99)
%(—)’ > (w)? (100)

These conditions are exactly those of (5.14) in Krishnaprasad and Marsden and
they assure stability about the equilibrium which satisfies (75)-(78).

Finally a remark about the difference between (2] and our development. If
we integrate the matrix we call AT(s)A(s) then the elements of the integrated
matrix would correspond to 4z, and 7, in the paper of Krishnaprasad and Mars-
den. This suggests modifying the procedure in the previous section to look at
the eigenvalues of the integral matrix rather than integrating the eigenvalues.
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