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The stability and symmetry breaking bifurcation of a planar liquid drop is studied using the
energy-Casimir method and singularity theory. It is shown that a rigidly rotating circular drop
of radius r with surface tension coefficient 7 and angular velocity 2/2 is stable if (£2/2)2
<37/P. A new branch of stable rigidly rotating relative equilibria invariant under rotation
through 7 and reflection across two axes bifurcates from the branch of circular solutions when

(0/2)* =37/

I. INTRODUCTION

Bifurcation of systems with symmetry has been a subject
of much interest in recent years. Symmetric systems are
common in nature and even more common in the literature,
as multidimensional bifurcation problems possessing sym-
metry are typically more tractable than asymmetric prob-
lems of comparable dimensions. The requirement that the
bifurcation equation be equivariant under the action of a
given group G, i.e., that f(g'x,4) = g+f(x,4) for all geG, can
force the bifurcation equation to take on a relatively simple
form. For example, if one considers a function fon R which
is equivariant with respect to the Z, action x » — x itis clear
that f can be written as f(x?)x for some function /. [See
Golubitsky and Schaeffer! for a thorough presentation of the
singularity theory approach to bifurcations with (and with-
out) symmetry. ]

The class of bifurcation equations with which we are
particularly concerned here arise in Hamiltonian systems
with symmetry. Using the energy-Casimir method (cf.
Holm et al.?), one can typically find a combination C of
conserved quantities such that a given (relative) equilibrium
of a Hamiltonian system is a critical point of H + C, where H
is the usual Hamiltonian of the system. The bifurcation pa-
rameter may appear in either the Hamiltonian itself or in the
added conserved quantities; if we denote the parameter-de-
pendent modified Hamiltonian by (H + C),, then the ap-
propriate bifurcation equation is D, (H + C); (x) = 0.

Invariance of the Hamiltonian under a given group ac-
tion usually induces constraints on the form of its differen-
tial. In the analysis of a symmetric bifurcation problem it is
important to exploit these constraints as fully as possible;
behavior exceptional in an asymmetric context may be typi-
cal or even necessary if all existing symmetry is taken into
account. Several important generic properties of bifurca-
tions of Hamiltonian systems are presented in Golubitsky
and Stewart.’ The present paper is largely the result of dis-
cussions with Golubitsky and Stewart; the lemma presented
here is a variation on results due to Cicogna* and Golubitsky
etal’

There are a number of well known, but as yet incom-
pletely understood, examples of bifurcation with symmetry
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breaking in hydrodynamics, including Taylor—Couette flow
and the vortex breakdown. The energy-Casimir method has
been applied to a wide variety of hydrodynamic problems
with a great deal of success in recent years (see Holm et al.?
for a generous selection of applications of the energy-Casi-
mir method). In earlier works we have determined the Ham-
iltonian structure for free boundary fluid problems (see
Lewis et al.°) and formal stability for the two-dimensional
circular liquid drop (see Lewis et al.”); in Lewis,® condition-
al nonlinear stability under the same hypotheses is estab-
lished. The method is readily applicable to analytic solutions
(e.g., the Kelvin—Stuart cat’s eye, cf. Holm et al.°) and
should be implementable for approximate numerical solu-
tions.

Our basic approach is to determine the stability of a
relatively simple equilibrium flow by applying the energy-
Casimir method and then, at the point at which this flow
loses formal stability, apply the techniques of symmetric bi-
furcation theory to gain information about the new, typically
more complicated, solution branch. The techniques and gen-
eral results discussed here are not, however, restricted to
problems in fluid dynamics; another class of examples cur-
rently being studied is the stability of coupled rigid bodies
and spacecraft with flexible attachments; see Krishnaprasad
and Marsden. "

The paper consists of three sections. Section II gives a
brief (and incomplete) summary of existing results in this
area. Section III contains a lemma outlining conditions un-
der which bifurcation of the critical manifold of an SO(2)
invariant function on R? can be shown to occur. Section IV
discusses, as an application of the lemma, the bifurcation of a
two-dimensional rotating liquid drop with surface tension
from a rigidly rotating circular configuration. In future pub-
lications we hope to present some numerical studies of the
drop configurations and possibly search for boundary bifur-
cations from the “flip”” symmetric two-lobed branch.

Il. BACKGROUND

Rotating liquid drops have been the object of intense
study, both in the nineteenth century and in the last twenty
years. While the original research was necessarily restricted
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to the study of approximate theoretical and experimental
models, recent work has benefitted greatly from the avail-
ability of computer simulation and elaborate and accurate
experimental configurations. Swiatecki'' provides a thor-
ough review of research in this area up to the early seventies.

The principal analytic approach to the study of the equi-
librium configurations and their stability has been to analyze
linearized models and low-order approximations of the actu-
al drop shapes. Analytic linear stability results for axisym-
metric drops held together by surface tension have been
found by Chandrasekhar'? using the method of virials. Sec-
ond-order expansions for the evolution of a perturbed
spherical drop have been developed by Tsamopoulos and
Brown."

Several thorough numerical studies of rotating liquid
drops have been made. Brown and Scriven'* use a finite ele-
ment code to trace the bifurcations of an initially spherical

rotating drop held together by surface tension; they analyze -

the linear stability of the solution branches and show general
agreement with Chandrasekhar’s analytic results. Benner'’
has performed numerical studies of cylindrical (i.e., planar)
drops under the effect of surface tension and traced the evo-
lution of small potential flow perturbations of the stationary
circular solution. The results of his simulations indicate that
these perturbations remain bounded for at least a short peri-
od of time. Both the calculations of Brown and Scriven and
Benner assume that the drop possesses reflectional symme-
try across some axis; equilibria lacking this symmetry could
conceivably appear through subsequent secondary bifurca-
tions.

Experimental research regarding rotating liquid drops
with surface tension dates back to Plateau’s study of fat glob-
ules suspended in a liquid of nearly equal density. The most
dramatic recent research is that of Wang et al.’5; these ex-
periments, which involved free floating, acoustically acceler-
ated droplets, were conducted in near zero gravity in Space-
lab. The observed bifurcation of a family of two-lobed drops
from a family of oblate, axisymmetric drops agrees qualita-
tively with both the analytic and numerical predictions, al-
though there are some unresolved quantitative discrepan-
cies. (In particular, the bifurcation from the axisymmetric to
the two-lobed branch appears to have occurred somewhat
earlier than predicted.)

lll. BIFURCATION LEMMA

The initial step in the analysis of a given bifurcation is to
establish that a bifurcation has, in fact, taken place. It is
typically the case that if a known solution loses stability as a
given parameter is varied, then a “transfer of stability” oc-
curs and another stable solution exists for nearby parameter
values. This supposition must, however, be checked in each
case. In complicated examples, e.g., those obtained from
large or even infinite-dimensional systems by Liapunov-
Schmidt reduction, the task of determining points of bifurca-
tion need not be trivial.

At a point of bifurcation one typically expects to see a
new one-dimensional solution branch emerge; a typical non-
degeneracy condition for bifurcation results is that only one
eigenvalue of the system pass through zero at the point of
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bifurcation. In problems without symmetry, or with discrete
symmetry, this is an entirely reasonable assumption, but if
the symmetry group is continuous, it may be impossible to
satisfy. If a map fis equivariant under the linear action of a
group G, then the following situation occurs. If x is a zero of
then, for any geG, g*x must be a zero as well, since

S(gx) =gf(x) =0

if f(x) = 0. Thus the solution branches are made up of orbits
of the group action. If & acts freely on a given solution
branch, then the dimension of that branch cannot be less
than the dimension of G. Even if the action is not free, it may
still force the solution branch to be multidimensional, imply-
ing that at the point of bifurcation multiple eigenvalues pass
through zero simultaneously. In this case many standard
bifurcation theorems may not be applicable.

If analyzed strictly with regard to dimension, the study
of bifurcation problems with continuous symmetry groups
may appear to be extremely difficult. In fact, the multidi-
mensional solution branches are usually redundant; all es-
sential information about the bifurcation may be obtained by
studying a representative point in the orbit swept out by the
group action. In some cases it is feasible to explicitly reduce
the original manifold by the group action, but there are cir-
cumstances under which this reduction can be somewhat
complicated. For example, if one considers a linear group
action on a vector space, the action at the origin is not free
and the reduced space may fail to be a manifold at that point.
Thus, if one is considering a bifurcation from the “trivial”
solution (0,4), analytic difficulties arise exactly at the point
of interest. In such cases it seems preferable to leave the state
space unaltered and instead generalize the usual criteria for
bifurcation to account for the redundancy induced by the
group action. The central result of this section is a simple
generalization to the case of the group SO(2) acting on R2.
(In this case both eigenvalues pass through zero simulta-
neously at a point of bifurcation never leaving the imaginary
axis.)

The following lemma is a modification of results of Ci-
cogna* and Golubitsky et al.’ The idea behind the lemma is
to split the bifurcation map into a scalar function that de-
pends on the bifurcation parameter and a multidimensional
map that is independent of the parameter and equal to zero
at the bifurcation point; one then applies the implicit func-
tion theorem to the scalar equation to establish the existence
of a new solution branch. The second result in this section is
an application of the lemma to the differential of an SO(2)
invariant function on R?, where the restrictions imposed on
the function by SO(2) invariance guarantee that the decom-
position of the differential into scalar and vector-valued
components is possible.

Lemma I: Let V be a vector bundle over a manifold M
and A€R. Let F be a A-dependent section of V. Assume
F(x,A) = g(x,A)*h(x) for some (smooth) maps g: M XR
—Randh: M- V. Let S, = {x: h(x) = 0}. If for some point
(x0,4,) with x,S, we have

(i) D, F(xoAo) = 0;

(ii) D, h(x,) #0;

(iii) D,y F(Xodo) #0,
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then a branch (or possibly family) of solutions (i.e., points
mapped into 0) bifurcates from the trivial solution manifold

S, at (x5,40).
Proof

0 =D, F(x440)
= D, g(XpAo)(Xo) + g(Xodo) D h(X5)

implies g(xg,40) = 0, since xS, implies h(x,) = 0 and, by
(ii), D, h(x,) #0. Similarly,

0#£D,; F(xp,4,)

= D, g(XoA0) Dy h(%0)

implies D, g(x,.4,) #0. Thus we can apply the implicit func-
tion theorem to g and find a function A: M- R such that
g(x,A(x)) =0 for all x in a neighborhood of x,. It follows
that there must be a set of solutions of F = 0 passing through

S at (Xp4)- L

We now specialize the above result to the study of criti-
cal points of an SO(2) invariant function on R?.

Corollary 1: If

(i) £ RZXR—R is (smooth and) invariant under the
standard SO(2) action on R%;

(ii) D,, f(0,0,4,) = 0 for some A;

(iii) Dyen S10,0,44) #0,
then a branch of critical points of femanates from the trivial
critical point branch (0,0,4) at A,.

Proof: The invariance of /: R* X R R under the SO(2)
action implies the existence of a function £ RXR—R such
that f(x, y,A) =](Jc2 + 32,4). (For smoothness off, see Go-
lubitsky and Shaeffer.!) Identifying 7*R> with R>XR?, it
follows that

D, fix,y.A) =g’;(x2 +y2A)(2x,2p).

Thus, letting g(x, y,A) = (8f/3r) (x* + ¥*A) and h(x,p)
= (2x,2y), we have

F(x,yA) =D, f(x,yA)
=g(x, yA)h(x,p).
Conditions (ii) and (iii) imply that
D, F(0,04,) = D,, f(0,0,4,)

=0
and

-ij(F(OyO/tO) = Dxx/l f(O,O,/{O)
#0.

Differentiating the linear map h gives

D_h(0,0) = ((2) 0).

Thus the conditions of the lemma are satisfied and a branch
of nonzero solutions of F = 0, i.e., critical points of f, must
branch from (0,0,4,). n

Remark: The above result for SO(2) acting on R* can be
generalized to the case of an n dimensional Lie group G act-
ing on an n + 1 dimensional manifold .#. If a function f:
# XR-R is G invariant, then Df typically lies in a one-
dimensional subspace of the cotangent bundle of .#; thus, if
the appropriate nondegeneracy conditions are satisfied, the
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lemma can be applied. More precisely, let f; # -+Rbea G
invariant function, xe.# and ®(s) beacurvein G tangent to
a vector £€¥, the Lie algebra of G, at s = 0. Differentiating
the equality f{®(s)x)=f(x), one sees that D, f(x)
£ o+ (x) = 0. Here £ , (x) denotes the infinitesimal gener-
ator of £, defined by & , (x) = (d /ds)|, . o, ®(s)x. [Forex-
ample, in the case of R? with the usual SO(2) action,
1, (x)=2Xx.]Leté’,..., £ "beabasisof 4. Atany pointx
in .# at which G acts freely, £ !, (x),..., £, (X) span an n-
dimensional subspace =, of T, .#. Then Df(x) must lie in
the one-dimensional subspace E; of 7'* .# consisting of one
forms annihilating =, . Any nondegenerate local section of
= will serve as h, so that the lemma may be applied.

IV. ROTATING PLANAR LIQUID DROP

As an application of the preceding results, we consider a
planar liquid drop consisting of an incompressible, inviscid
fluid with a free boundary and forces of surface tension on
the boundary. The dynamic variables are the free boundary
= and the spatial velocity field v, a divergence-free vector
field on the region Dy bounded by 2. The surface 2 is an
element of the set % of closed curves in R? diffeomorphic to
the boundary of a reference region D and enclosing the same
areaas D. Welet. /" denote the space of all such pairs (Z,v).
The Hamiltonian approach to hydrodynamic problems was
introduced in the fixed boundary case by Arnold'” and de-
veloped by Marsden and Weinstein.'® The free boundary
case has also been studied by Sedenko and Iudovich.'

The equations of motion for an ideal fluid with a free
boundary £ with surface tension 7 are

v JZ

-_ 'v = -V, y = sV/y

P (vV)v §7 E (v,v) o
divv=0 and p|Z =7«

where v is the unit normal to the surface, Z, x is the mean
curvature of Z, and 7 is the surface tension coefficient, a
numerical constant.

The Poisson bracket will be defined for functions F,G:
A =R, which possess functional derivatives defined as fol-
lows.

(i) 6F /v is a divergence-free vector field on Dy such
that

D F(Zv)dv= J.

Dy

(-‘SE ,&r) d4,
ov
where the partial (Fréchet) derivative D,F is computed
with X fixed.

(ii) 8F /5¢ is the function on 2 with integral zero given
by

5_F=<§£ V)
sp \ov' |’

(The symbol @ represents the potential for the gradient part
of v in the Helmholtz, or Hodge, decomposition. )}

(iii) 6F /6% is afunction on X determined up to an addi-
tive constant as follows. A variation 62 of X is identified
with a function on Z representing the infinitesimal variation
of 2 in its normal direction. It follows from the incompress-
ibility assumption that 8% has integral zero. Let 6F /8% be
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the function determined up to an additive constant by

OF 53 ds= D, F(3,v)63.
>3

p3

We now define a Poisson bracket on .#" as follows. For

functions F and G mapping .#" to R and possessing func-
tional derivatives as defined above, set

{F,G} = (w,‘s—Fxé-G—> dA
Ds Sv  Ov

L[ (Eoe s omy, @
s\6% 8p 63 bp

where @ = curl v. This Poisson bracket on .4 is derived
from the canonical cotangent bracket on T *%, where, in the
two-dimensional case, ¥ = Emb,, (D,R?) is the manifold
of volume-preserving embeddings of a two-dimensional ref-
erence manifold D into R? by reduction by the group
G = Diff,, (D), the group of volume-preserving diffeomor-
phisms of D (i.e., the group of particle relabeling transfor-
mations). (See Lewis et al.® for details.)
We take our Hamiltonian to be

H(Z,v)=J i|v|2dA+¢J ds. (3)
p; 2 z
The functional derivatives of H are computed to be

6H 6H < 6H >

—_— =V, —={— =<V,V>,

v bp ov

where §H /6% is taken modulo constants. For this H and the
Poisson bracket (2), the equations of motion (1) for the free
boundary fluid with surface tension are equivalent to the
relation dF /3t = {F,H} for all functions Fon.#" possessing
functional derivatives.

We consider the stability of the planar incompressible
fluid flow such that the boundary £, is a circle of radius » and
the fluid is rigidly rotating with angular velocity 2. We shall
apply the energy-Casimir method as follows. For the circu-
lar equilibrium solution of the equations of motion, we shall
find a conserved quantity C such that H. =H + C has a
critical point at the equilibrium. We shall then test for defi-
niteness of the second variation of H. at the equilibrium
point. If it is definite, then the equilibrium is said to be for-
mally stable. (See Holm et al.? for a thorough description
and applications of the energy-Casimir method. For details
of the following stability analysis, see Lewis e al.”)

One class of conserved quantities consists of the Casi-
mirs of the Poisson manifold .7, i.e., functions C on A4~
satisfying {C,F} = Ofor all functions F for which the bracket
is defined. We will make use of Casimirs of the form

Ci(Zv) = D(w)dA,

Ds
where ® is a C 2 function on R? and @ = {curl v,2). We will
also include the angular momentum

J(Zw) =

Dy

(xXv,2)dA.
Here J is the momentum map associated to the left action of
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the group O(2) on .#". The conservation of J is a conse-
quence of the invariance of the Hamiltonian H under the
O(2) action, which implies 3J /8t = {J,H} = 0. The inclu-
sion of J in the modified Hamiltonian H allows us, roughly
speaking, to view the fluid from a rotating frame with arbi-
trary angular velocity.

We take our total conserved quantity to be

H.(Zw) =f (—;— [v|* —p(xXv,2) + <I>(a)))dA
D

X
+'rf ds,
3

where u is a constant, as yet undetermined. Using elemen-
tary vector identities, we can rewrite H as

H.(Z,v) =f (—1— |€'|2—i,u2[x|2+<l>(w)) dA
o \2 2

+TJdS,
3

where ¥ = v — uZ X x. This rephrasing corresponds to view-
ing the fluid from a flame rotating with constant angular
velocity y; ¥ is the fluid velocity in the rotating flame.

The first variation of H is computed to be

DH(3,v)+(62,6v) 4)

= ((#,6v) + ®'(w)-{(curl 6v,2))dA (5)

Dy

+f (— |¥)? — %,uzlx|2 + 7K + q)(w)) 63 ds.
2z

(6)

We now consider the case where X, is a circle of radius r

and v, = (2/2)ZX x for some constant (2, i.e., the equilibri-
um flow is rigid rotation with angular velocity . The circle
2, has constant mean curvature x = 1/r. Werequire DH . to
vanish at this equilibrium. Since @, = (curlv,,z) = Q,
DH . depends on ¢ only through the constants ®(2) and
D'(Q). If we set u = /2, corresponding to choosing a
frame moving with the rigidly rotating fluid, then ¥, = 0, so

DH_(Z,,v,)*(8%,6v)

=] &'(Q){(curl bv,2)dA

Dy

+(_i(9)zrz+f+¢(m”52ds
2\2 r by

= | ®'(Q){curl bv,2)dA,

Dy
since 62 satisfies fy 62 ds =0. Thus DH-(Z,,v.) =0 iff
@’'(Q)) = 0. For convenience we choose ® =0. (Other
choices of ¢ will give better stability estimates.)

The second variation of H at a general point (2,v) is
calculated to be

Lewis, Marsden, and Ratiu 2511

Downloaded 04 Sep 2005 to 131.215.241.78. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



D?H_(3,v)+(62,6v)

=f (|6v]> + @” (w)¢|curl &v|*)dA
Ds .

+f [2(“’,5") + @' (w)+(curl 6v,2))53
)
+ (¥ — L p?[x]? + 78 + P(@))(8°3 + k63?)

d (1l .. 1 , ) 2

A TR @ >
+ Ew (2 |¥| 5 po|x|? + P(w) ) S
— 1(A8Z)83 — TK2522] ds,

where A is the Laplacian on 2 and §°% is the variation of §
with respect to 2. (The presence of the terms involving §°2
is due to the constraints on the variations of X arising from
the fact that the manifold . of boundary curves is not a
linear space; for fixed 2 the space of v’s on X is linear, so no
such 8%v term arises.)

For the circular flow described above the second vari-
ation reduces to

D?H (Z,,v,)*(82,6v)?

= f |6v|* dA
DE

Q 2 2 7 2
_f [(_) #8632 + 7(ASS)83 + = 63 ]ds.
xL\2 r

It follows that D2H . (Z,,v,) is positive definite iff

TJ (——(SE —(ASZ)(SE)ds>(—) r| 63°ds
= r 2 b3

(7N

for all area preserving variations 6.

We simplify the expression of this condition by estimat-
ing — (A8X)582 using eigenvalues of the negative of the La-
placian on the circle of radius r. The eigenfunctions are
82,4 (0) = cos k(0 — ¢) with eigenvalues 4,4 = (k /r)?
for all positive integers k. The eigenfunction 62, ,

= cos(8 — ¢) corresponds to an infinitesimal translation in

the ¢ direction. If we wish to consider our system modulo
position, regarding two configurations as equivalent if one
can be obtained from the other by a Euclidean motion, then
we can simply ignore the perturbations generated by the low-
est eigenfunctions 8%, ; and test for the definiteness of
D?H_ only with respect to perturbations which actually dis-
tort the drop shape. In this case, taking A, , = 4/r” as the
lowest admissible eigenvalue, D ?H . is positive definite iff

3r/r > (Q/2)% (8)

It follows from the stability analysis above that the ri-
gidly rotating circular drop (Z,,v, ) is formally stable iff (8)
holds. If we fix values for 7 and r and consider the rotation
rate ) as a variable parameter, then the above statement may
be interpreted as saying that the circular solution loses (for-
mal) stability as the parameter () increases through the criti-

cal value Q, =127/7°. Typically, one expects that at a
point where a known curve of solutions loses stability (in
this case, when the second variation of the Hamiltonian loses
definiteness) a ““new” branch of solutions bifurcates from
the known curve. Thus we look for a bifurcation of critical
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points of H — (Q2/2)J at (Z,,v,) when = (1,.

We now consider the O(2) action on the manifold .4,
This action is induced by the O(2) action on R? as follows:
Let R,: R>>R? denote the action of €O(2) on R*. Then
72 ={R,(x):x€X} and y* (5,v) = (y'Z, R, v). We are
concerned here primarily with relative equilibria; in particu-
lar, we are seeking equilibria whose motion is given by the
action of some curve in the group O(2). Since the motion of
our configurations must be continuous, we do not allow a
sudden flip; hence the motion must be given by a smooth
rotation. We choose to work with the group O(2) so as to be
able to capture any reflectional symmetries of the equilibri-
um configurations, although this is not the appropriate
group for a study of the dynamics of the problem. While the
Hamiltonian is invariant under the O(2) action, the dynam-
ics are not invariant under reflection; hence, if one wishes to
consider the time-dependent behavior of solutions near the
bifurcating equilibria, it is necessary to take SO(2), rather
than O(2), as the appropriate symmetry group. The SO(2)
action preserves both the bracket and the Hamiltonian; thus
the theory of bifurcations of Hamiltonian systems with sym-
metry may be applied in this case.

When discussing the symmetries of a given configura-
tion it is convenient to do so within a given rotating frame.
This is motivated as follows: consider a drop moving in rigid
rotation with angular velocity €; if the drop shape is fixed at
some time £, by a reflection across an axis X, then at time ¢ it
must be fixed by reflection across Ry _,,,,X, where
Rg( _ ., denotes rotation through the angle Q(z — #,)/2,
while in general it will not continue to be fixed by reflection
across X. Thus, while the conjugacy class of the isotropy
subgroup of the drop is fixed, the actual axes of symmetry of
the drop vary in time. Shifting the problem to a rotating
frame eliminates this complication; a rigidly rotating drop is
stationary in the appropriately chosen frame and hence has a
constant isotropy subgroup.

Another advantage of viewing drop symmetries from
within a rotating frame is that in this context one can have
nontrivial velocity fields which are fixed by orientation re-
versing actions. More specifically, if one considers rigidly
rotating equilibrium configurations, then such drops are
fixed points of some subgroup of the O(2) action in the sense
that the drop shape is preserved by the subgroup, although
the velocity field is reversed. [If one incorporates a time re-
versal as part of the flip action, then rigid rotation is fixed by
the O(2) action.] Within an appropriately chosen rotating
frame the velocity field of a rigidly rotating drop is equal to
zero; thus, if we consider the action of O(2) within this
frame, the drops described above are actual fixed points un-
der the action. For these reasons we shall now shift the prob-
lem to a rotating frame and work with triples (Z,¥,0),
where = denotes as usual the drop boundary, € is the rota-
tion rate of the rotating frame, and ¥ is the velocity field in
the rotating frame. For an arbitrary pair (2,v), we take Q to
be the average angular velocity of the velocity field, i.e.,

1

Q0=—— {curl v,2)dA4;
volume D5 Jp,

for a rigidly rotating drop, this sets the frame rotation rate

Lewis, Marsden, and Ratiu 2512

Downloaded 04 Sep 2005 to 131.215.241.78. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



equal to the rotation rate of the drop. For example, the con-
figuration (Z,(£2/2)ZXx) is identified with the triple
(2,0,2). The dynamics in the rotating frame are determined
by the bracket

{F.G} = <+9A 5—FX5G>dA
o 5 57
L[(eros se sy,

53 65 5% 67

where @ (respectively, 6F /6v and 8F /6@) is the vorticity
(respectively, functional derivatives of F with respect to ¥
and @), and the Hamiltonian H: "X R R is given by

- 1 0 Q. .,
H(Eiv’Q)__ IVI —(—) IXI )dA +TJ dS
2 Jp, 2 b3
Q . O
=|H-=-J —z
( 2 )(E,v+2z)<x).

The trivial solution (Z,,v,) = (Z,,0,Q) is a fixed point
of the O(2) action in the rotating frame; we expect that the
new solution branch bifurcating from (Z,,v,) should be
fixed by some subgroup of O(2). We find, in fact, that the
new solutions have isotropy subgroup conjugate to the sub-
group Z, X Z, of O(2) generated by rotation through 7 and
reflection across the x axis. (For a discussion of the theory of
bifurcation with symmetry relevant here, see Ihrig and Go-
lubitsky?® or Golubitsky ez al.”)

As we are concerned only with the immediate neighbor-
hood of the point (Z,,v, ), it is convenient to work in normal
coordinates centered at (Z,,v,). We endow .#~ with the
O(2) invariant metric

({(82,6v),(83,6%))) = J 8385 ds+ | (6v,6v)dA
=

Dy
and use the exponential map exp associated to the metric
given above to map a neighborhood Vof (0,0)in T'5 , , A~
diffeomorphically onto a neighborhood U of (Z,,v,) in 4"
We define the function H on ¥ X R to be the pullback of the
Hamiltonian plus conserved quantity;

H((62,6v),Q) = H (exp(55,6v)).

It follows from the invariance of H and the equivariance of
exp that His O(2) invariant.

We construct the bifurcation equation using the Lia-
punov-Schmidt procedure. First we construct the splitting
V=V, V, where ¥, = Ker D2H(0,0, Q,) and ¥, is the
({ , ) orthogonal complement to ¥,. We have

D2H(0,0,0,) = DY(H — (Q,/2)J)(Z.,v.).

Thus
Vi=Ker D*H — (Q,/2)J)(Z,,v,)
= {(cos 26,0),(sin 26,0)}.
The pure rotation elements of O(2) act on the §% compo-
nent of (§2,5v) by a negative phase shift, i.e.,

R -83(0) =83(60 — ¢);
areflection across the axis at an angle ¢ to the x axis is given
by

R/ -62(6) =622 — 6).
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Let
F.VXR-V,

(52,8v,Q) *(T (55,6v Q), oH (52 8v Q))
denote the map determined by

f (5—H (52,6v,ﬂ),5v> dd + [ B2 (53.6v.0)65 ds
. \ By 5 63

= DH(63,6v,Q) - (53,6v),

where £ denotes the first component of exp(82,8v), for all
(62,6v)eV. Let P denote the orthogonal projection P:
V- V,. The mapping

PoF. V,xXV,XR-V,

is nonsingular at (0,0,0),); hence, by the implicit function
theorem, there exists an O(2) equivariant mapping u:
ViXR-V, such that

(P o F)((6%,0) 4+ u((62,0),2),2) =0
for all (8%,0)€V,. The bifurcation equation is then given by
(Id — P) o F((6%,0) + u((6%,0),2),2) =0

We introduce the coordinate chart ¥ on a neighborhood
W X Y in R* X R, given by

V: W XY=V, XY,
(x, ,2) = ((x cos 20 + y sin 26,0)
=+ u{(x cos 26 + y sin 26,0),0),Q).

We pull back " by ¥ to obtain the bifurcation Hamiltonian
H: W XY-R given by H = H o V. In summary, we have
reduced the original problem to that of finding critical points
of an O(2) invariant function on a two-dimensional space
with an O(2) invariant metric.

The bifurcation space W possesses nontrivial symmetry.
This symmetry is not artifically imposed on the system; it is a
natural property of Ker D2H(Z,,0) which is inherited by
the bifurcation space. The O(2) action on Winduced by that
on ¥V is simply twice the standard O(2) action on R?; i.e., for
x = (x, ),0'x = R,,(x). In this action, rotation through 7
is equivalent to the identity action, thus the entire space Wis
fixed by the subgroup Z, generated by rotation through 7.
We also note that any element (x, y) of W is fixed by reflec-
tion across the line through the angles arctan(x/y) and
arctan(x/y) + 7/2. Thus any element of W has isotropy
subgroup O(2), conjugate to Z, X Z,. Since the mappings u
and exp are equivariant, it follows that any solution xe W X Y
of the bifurcation equation must be mapped to an O(2),
invariant solution in .#"X R (the “rotating frame space”)
under exp © V.

There are two possible methods for demonstrating that
a bifurcation does, in fact, occur. If we consider the group
O(2) acting on the space W, then each isotropy subgroup
0O(2),, for some nonzero element x of W, has a one-dimen-
sional fixed point space consisting of the line spanned by x.
Thus, we can apply the equivariant branching lemma to
show that there is a branch of relative equilibria with iso-
tropy subgroup O(2), branching from the trivial solution
branch at {} = Q,. The equivariant branching lemma states
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that, given a Lie group G acting on a vector space ¥ such that

(i) Fix(G) ={0};

(i) T C G is an isotropy subgroup satisfying
dim(Fix(I))=1;

(iii) g: V X R - Vis a G-equivariant bifurcation problem
satisfying D, Dg(0,4,)+v,70 for some A, and some nonzero
v, € Fix(T'),
then there exists a branch of solutions (#vy,A (1)) to the equa-
tion g(v,A) = 0. (See Cicogna®* or Golubitsky et al.’ for a
proof of the equivariant branching lemma.) The first two
conditions are clearly satisfied for the O(2) action on W; we
take, for example, the subgroup Z,XZ, corresponding to
reflection across the x axis and rotation through 7 as our
isotropy subgroup and let v, = (1,0). The equivariance of
themap F = DH follows from the O( 2) invariance of H the
fact that DF(0,0,),) = D2H(0,0,Q,) = 0 implies that the
map Fand the point (0,0,{),) form a “bifurcation problem.”
Finally, we compute that

Do DF(0,0,9,)(1,0) = Dy D2H(0,0,0,)-(1,0)
= — Q,77°/2

#0,
thus the conditions of the equivariant branching lemma are
fulfilled and a branch of solutions of F(x,0,¥) = 0 must ex-
ist. It follows from the equivariance of the equations that the
existence of one solution branch implies the existence of an
entire circle of solution branches swept out by the group
action.

If we wish to consider only symplectic group actions,
then we must restrict our attention to the group SO(2),
which preserves the symplectic two-form on the space W. In
this case, there are no one-dimensional fixed point spaces, so
the equivariant branching lemma is not applicable. We can,
however, apply the corollary given above to show that a bi-
furcation occurs. [ The fact that the SO(2) action on W is
twice the usual SO(2) action does not effect the applicability
of the corollary.] The space W and function H clearly satisfy
condition (i) of the corollary; we shall show that the point
(0,0,Q2,) satisfies conditions (ii) and (iii):

(i) D2H(0,0,2,)
_ ((37-/r2 — (Q,/2)* ) 0 )
- 0 37/ — (Q,/2)%r)r.
=0

(iii) Do D*H(0,0,0,)
3 ( — Q72 0 )
o 0 — Q,7*/2
#0;

provided that Q, = \127/7° #0 (e.g., that the surface ten-
sion coefficient 7 is nonzero).

Thus the corollary applies to W and H and so there is a
branch of critical points of H bifurcating from (0,0,Q}) at
Q1 = Q,. Note: The matrices computed above are simply sca-
lar multiples of the identity matrix; these scalars are the rel-
evant quantities which must be computed when checking the
conditions of the equivariant branching lemma in the O(2)
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case. Taking the image of the solution branch under the map
exp © ¥, we obtain a curve in . of critical points of the
original function H + uJ. The elements in.#" thus obtained
have the same isotropy subgroups as their preimages in #; in
particular, the isotropy subgroups of elements along the new
branch near the bifurcation point contain a subgroup conju-
gate to Z, X Z,.

By computing higher-order derivatives of the bifurca-
tion equation, it may be seen that the bifurcation equation
has normal form 0= — V((x*> + y*) (x> + y* + 2 — Q,))
(see Lewis® for details). Thus, the bifurcation at £, is sub-
critical with respect to the bifurcation parameter Q (i.e.,
locally the nontrivial solutions exist only for values of 2 less
than Q0,).

Remark 1: The bifurcation is supercritical with respect
to angular momentum. Angular momentum is the “physi-
cally appropriate” bifurcation parameter in the sense that
angular momentum is a physically meaningful conserved
quantity for all isolated flows (whereas the bifurcation pa-
rameter (), which functions mathematically as a Lagrange
multiplier, is related to angular velocity, a physical param-
eter which is only defined for rigidly rotating flows). In this
case, the bifurcation equation has normal form
0 = V((x* +y*) (x* + y* + p* — u)), where u is the bifurca-
tion parameter and i, is the angular momentum at the bifur-
cation point; the energy-Casimir method shows the new
branch is formally stable near the bifurcation point, which
agrees with the general notion of transfer of stability if one
views the bifurcation as supercritical. Despite the greater
physical relevance of angular momentum, we have chosen
the Lagrange multiplier ) as the bifurcation parameter,
since the necessary computations are straightforward in this
context and it is easy to interpret the results with respect to
angular momentum once the bifurcation branches have been
determined.

Remark 2: The symplectic form induced on the reduced
space W is a multiple of the standard symplectic two-form
on R?, given by o((x, y), (%, §)) = yX — x, which changes
sign under the action of reflections; hence, as remarked
above, the symplectic structure on the reduce space W'is not
preserved by the action of the orientation reversing elements
of O(2). The symplectic form is, however, preserved under
the action of S''; hence the analysis of Golubitsky and
Stewart® may be applied, viewing the drop as an S ! invariant
Hamiltonian system. We see that in this context the behavior
of the drops near the point of bifurcation is generic.

Remark 3: It can be seen from the second variation of
H + uJ (or H + C) that the variation will be indefinite in
the direction of (83,,0) = (cos k(6 — #),0) when p*

= (k? — 1)7/P. It may be shown as above that a subcritical
bifurcation occurs at 2, =4(k? — 1)7/7. The solution
branches intersecting the trivial solution branch are invar-
iant under rotation through 27/k and flips across lines con-
jugate to nw/k; thus their isotropy subgroups are conjugate
to D, the dihedral group of symmetries of a k-gon. Note: D,
is the semidirect product Z,8Z,, where Z, acts on Z, by
negation, i.e., by reversing the rotation associated with the
elements of Z, .
Remark 4: The remark in Lewis et al.” regarding three-
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dimensional equilibria is incorrect; it will be corrected else-
where.
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