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THE CONSTRUCTION AND SMOOTHNESS OF INVARIANT MANIFOLDS
BY THE DEFORMATION METHOD*

JERROLD MARSDEN? anD JURGEN SCHEURLE#

Abstract. This paper proves optimal results for the invariant manifold theorems near a fixed point for
a mapping (or a differential equation) by using the deformation, or Lie transform, method from singularity
theory. The method was inspired by the difficulties encountered by the implicit function theorem technique
in the case of the center manifold. The idea here is simply to deform the given system into its linearization
and to track this deformation using the flow of a time-dependent vector field. Corresponding to the difficulties
with the center manifold encountered by other techniques, we run into a “derivative loss” in this case as
well, which is overcome by utilizing estimates on the differentiated equation. A survey of the other methods
used in the literature is also presented.
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1. Introduction. The theory of invariant manifolds is one of the fundamental
ingredients in the study of dynamical systems. In this theory one looks for submanifolds
of the phase space which are invariant under the flow, i.e., trajectories which start on
such a manifold at some time, stay on it.

This problem is not only of interest from a qualitative point of view, but can lead
to quantitative results. In fact, by restriction to an invariant manifold, an original
system is reduced to a lower-dimensional one which might be relatively simple. In
particular, this is the case when the phase space of the original system is infinite-
dimensional and one considers finite-dimensional invariant submanifolds. An impor-
tant example for applications is the center manifold which contains all bounded
solutions near a fixed point [3], [15], [16].

The well-known invariant manifold theorems refer to the flow generated by a
nonlinear vector field or diffeomorphism defined in a neighborhood of a fixed point
[8], [10], [11], [14]. They give sufficient conditions for the existence of an invariant
submanifold which contains this fixed point. For example, each component of the
spectral decomposition of the phase space corresponding to a linear operator is an
invariant subspace for the flow generated by this linear operator. In the general
nonlinear theory one begins with such an invariant subspace of the linearized system
and shows its persistence as an invariant submanifold for the full system (at least
focally) and then one determines the smoothness of the resulting nonlinear manifold
([6]; cf. also [9]).

To construct such invariant manifolds, two different approaches have been used
in the literature so far. First, the invariance property of the manifold has been used
to derive an equation for a representing map [10], [11], [14]. The manifold is sought
as a graph and an iteration scheme is used on the graphs. For diffeomorphisms, this
“graph transform method” developed in [11] yields optimal results and even holds
for “Lipeomorphisms” (also [18] and [20]). Second, asymptotic properties of the flow
on the manifold have been used to derive an equation for the corresponding trajectories
[21, [51, [7], [8], [12]. All these trajectories together span the desired manifold and
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invariance is a consequence. Alternatively, this second approach may be phrased as a
fixed point problem for a map representing the manifold by considering the initial
values of the trajectories parameterized over the invariant subspace of the linearized
system [4], [19]. In both cases in the second approach, the resulting equation may be
solved iteratively. For stable and unstable invariant manifolds the equation for the
trajectories also has been solved using the classical implicit function theorem [12].
This yields optimal smoothness for C* vector fields and diffeomorphisms, and even
in the analytic case.

Unfortunately, it is not obvious how to apply the classical implicit function theorem
for general invariant manifolds, e.g., for center manifolds. In general, the operator
underlying the equation for the trajectories is not continuously differentiable in a space
of functions which have the right asymptotic behavior (exponential growth). This
difficulty always occurs for the equation of a representing map in a space of maps
with a certain smoothness. Sacker [17] uses a smoothing technique to overcome this
difficulty, but he still loses one order of smoothness for the solution. For unsuccessful
attempts to apply the implicit function theorem in the case of center manifolds, see
[4] and [13].

In the present paper we solve the equation for a representing map using a different
approach, namely the “Lie transform” method of integrating a differential equation
which is based on a deformation principle. This method has been used for the Darboux
theorem, the Frobenius theorem and the Poincaré lemma [1] and is a common tool
in singularity theory. The idea is to consider a one-parameter family of systems
connecting the given system with its linearization. Differentiation with respect to the
parameter yields a linear equation for a vector field which eventually has to be integrated
in order to get the desired map. An initial condition is known from the invariant
manifold of the linearized system.

We consider only diffeomorphisms here, although a similar approach for vector
fields is possible. Our approach applies for general invariant manifolds; although we
shall concentrate on the harder case of center manifolds, we indicate how results about
other invariant manifolds can be obtained. Our smoothness results are optimal. We
note at the outset that the diffeomorphisms which we are going to consider have to
be of class Cji,, at least. This is the price we pay for our more sophisticated method.

The plan of the paper is as follows. In § 2 we state our main results. Theorem 2.1
is an existence and uniqueness result for a global center stable or center unstable
invariant manifold of a C iip map in a Banach space. Corollary 2.2 contains the
corresponding smoothness result for C* (k=4) and Cfip (k=3) maps. In Remark 2.3
we list certain modifications and generalizations of these results. Finally, §§ 3 and 4
contain the proofs of Theorem 2.1 and Corollary 2.2.

2. Formulation of the problem and results. Let X and Y be Banach spaces. The
product space is denoted by X x Y and equipped with the sup-norm. The Banach
space of k-linear continuous maps from X to Y equipped with the usual norm induced
by the norms of X and Y is denoted by £*(X, Y), and we let £*(X, X)=%*(X).

Also we introduce the Banach space C*(V, Y) of k-times continuously differenti-
able maps f from an open subset V< X into Y, equipped with the norm

A= sup DY ()]

where D'f denotes the ith derivative of £ Similar to the above, we set C*(X, X)=
C*(X). The linear subspace of those elements of C*(V, Y) for which the kth derivative
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is Lipschitz continuous in V is denoted by C fip( V, Y). Furthermore, we introduce the
notation C¥(V,Y) for the closed subset of elements of C*(V, Y) which satisfy a
Lipschitz condition in V with a particular Lipschitz constant L.
Open balls in Banach spaces are denoted by B,(-), where r is the radius and the
point stands for the center of the ball. The closure of a set V is written as cl (V).
Let us consider a map

T:XxY->XxXY, (x,y)=>(di(x,y), d2(x, ¥))
given by
¢1(X,}’)=Ax+f(X,Y), ¢2(X,Y):By+g(X,Y),

where Ae £(X), Be #(Y), and f and g are (nonlinear) perturbations. We consider
the following hypotheses, for § eR* and k an integer:

(L1, B |4]|<1 for0sj=k
(L2)x Bl |A7||<1 for0=j=k

(N1), feCiip(Xx U, X),and ge Cii,(X x U, Y) where U is some neighborhood of
0in Y,
If1l, <8 and ||g]J,<8.

(N2) f(0,0)=0, g(0,0)=0.
(N3) D,g(0,0)=0.

Note that (0, 0) is a fixed point of T when (N2) holds.

We shall prove the following theorem about a so-called center stable or center
unstable manifold.

THEOREM 2.1. Let the assumption (L1), or {L2),, and (N1); hold, where >0 is
sufficiently small. Then there is a map he Ci;,(X, Y) with ||h|,= O(8) as 60, such
that the manifold

M ={(x,y)e X x Y|y = h(x)}

is invariant under the iteration of the map T, i.e., (x, y) € M implies T(x, y) € M the map
h is unique in C (X, Y), where L=0(1/8) as 0.

If in addition (N2) (resp. (N2) and (N3)) hold, then h(0)=0 (resp. h(0)=0 and
D, h(0)=0).

COROLLARY 2.2. Assume that f and g are of class C ’{i'pl (resp. C¥) for some k= 4.
Furthermore, let (L1), or (L2),, and (N1); hold. Then h is of class C'ﬁ{pl (resp. C*)
provided that 8 is sufficiently small. (In general § depends on k for given A and B.)

In the following remark we state some generalizations and modifications of the
above results, which are obvious from the proofs in the next sections.

Remarks 2.3. (i) If B decomposes into two parts B, and B, such that B, satisfies
(L1), and B, satisfies (L2), for some k=4, then the above assertions remain true. In
this case M is called a center manifold.

(ii) If |B7*|| <1 and ||A|| <1 (resp. | B] <1 and ||A7']|<1), then M is called the
stable (resp. unstable) invariant manifold. In this case M is a C™ manifold if f and
g are of class C*. (Here 8 does not depend on k.) Moreover, in this case M is even
analytic for analytic maps f and g. For the stable manifold this follows by using spaces
of complex analytic functions instead of C iip functions in the existence proof. The
unstable manifold case is reduced to the stable one just by considering the map T™*
instead of T, provided that it exists.



1264 J. MARSDEN AND J. SCHEURLE

(iii) If the assumptions are only fulfilled when x is restricted to some neighborhood
of 0 in X, then one can use a cut-off function y : X - R to extend f and g to the domain
X x U. This is a C* function with the property x(x)=1 for [x||=3 and x(x)=0 for
[|x||= 1. Such a function always exists if X is finite-dimensional. The extensions are
given by F(x, ¥)=f((ux)x, y) and g(x, )= g(x(ux)x, y) with an appropriate constant
u > 0. Applying our results for f and § then yields a local invariant manifold for the
original map T by restricting h to the ball ||x|] < u~"/2.

This cut-off procedure destroys uniqueness and analyticity for the local case. On
the other hand, we do not need the cut-off procedure for the local theory when ||A[ <1
(or |A7Y|| <1). In that case we can directly work with spaces of maps which are defined
only in some ball around x = 0. This yields local results for general spaces X and, in
particular, analyticity. Hence, local stable (unstable) invariant manifolds are analytic
if f and g are analytic. Furthermore, under the additional hypothesis that f and g
together with all partial derivatives of g with respect to x up through order /-1 vanish
at (0, 0), the local results still hold when ||A[| <1 (or ||A7'| <1) and the inequalities
in (L1), ((L2);) only hold for I=j=k for some /=1. In this case one has to work
with functions h and H = D, h which have the properties |h(x)|| = C,||x||", | Dh(x)|| =
Gl x[I'™, | H(x)|| = Gsl|x||"~" and || DH(x)|| = C,||x||" 2 in some ball around x =0 with
certain constants C;. It finally follows that | D’h(x)||= C;||x||"” for 0=j=1—-1. Note
that strong, stable (or unstable) invariant manifolds, where / = 1, and also certain weak
stable (or unstable) invariant manifolds are included in this local theory.

(iv) To obtain a smoothness result for M with respect to a parameter A € A, where
A is some Banach space, we can consider A as a component of x by adding the trivial
component A+ A to the original map T (cf., [15]).

(v) Theorem 2.1 and Corollary 2.2 remain true if, in the definition of T the terms
Ax and By are replaced by any maps A(x): X - X and B(x)y: X X Y- Y which are
as smooth as f and g and satisfy the following assumptions:

(L) IB(x)| | DA(x)’|| <1 for0=j=Kk

(L2)x IB(x)| | DA (x)’||<1 for0=j=k

For example, this generalization is relevant when one deals with a suspension of a
nonautonomous system in the extended phase space which is the product of the
(discrete) time axis and the original phase space.

(vi) Finally, we remark that it suffices to require || D, f| < & instead of | Df|| <6
to prove the above results.

3. Proof of Theorem 2.1. We begin with the existence part. First we outline the
basic ideas of our proof in a more or less formal way. Afterwards we shall justify each
step by means of a series of lemmas.

We consider the following one-parameter family of maps:

T:XxXY->XXY, (xy)=>(¢i(e %), d:e, x,»))
given by
(3.1 di(e, %, y)=Ax+ef(x,y),  ¢ae, X, y)=By+eg(x,y),
for & a real number. Obviously 7, defines a homotopy between the linear map
To:(x, y)—>(Ax,By) and T,=T.

For each T, we are looking for an invariant manifold M, of the form y = h.(x),
where the map h,: X -~ Y depends smoothly on &. The invariance property leads to
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the equation

(3.2) h.(¢1(e, X, ho(x))) = ¢a(e, X, h.(x)).
Moreover, we require

(3.3) ho(x)=0 forxe X,

since y =0 is an invariant manifold of Ty. Thus, we aim to solve the system of equations
(3.2) and (3.3) for h.{(x).

The main idea now is to derive a first order differential equation for the function
e+>h, and to integrate this in the interval 0=¢ =1 with (3.3) as an initial condition.
Actually, we shall consider a differential system for the function e~ (h,, H,.), where

(3.4) H.(x)=D.h.(x)e £(X, Y).

Thus we get a linear equation for the corresponding vector field which can be solved
explicitly. Subsequently the arguments of ¢, ¢, and all their derivatives are
(g, +, h.(+)), if not indicated otherwise. A dot above a symbol for a map denotes the
partial derivative with respect to .

First we differentiate equation (3.2) with respect to &, which yields

(3.5) h.(¢,)— Bh, = F,,
where
B =B (e, h., H)=D,d,— H.(¢1)D, ¢,
is a map from X to £(Y) and
Fi=F(e, h., H.) = b~ H.($)) b,

is a map from X to Y. An equation for H, is obtained by differentiating (3.2) with
respect to x. Thus we obtain

(3-6) He((bl)&g - Dy¢2He = Dx¢2
where
&f = ‘%(83 hes He) = Dx¢1+Dy¢lH5

is amap from X to #(X, Y). Since this equation is still nonlinear, we again differentiate
it with respect to e. Setting

(3.7 G.(x)=DH.(x)e £*(X, Y),
we thus get

(3.8) H,(¢) oA~ BH, + 6h, = %,
where

%BE = <g(£, hE, HE) GE)ES
= Gs(qbl)('da Dy¢lhs)+Hs(¢l)(D)2cy¢lhs +Diy¢1(He’ he))
‘Diyd)Z( T he) ~D§y¢2(Hss ﬁs)a
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g;2= ‘0];2(6, hsa Hss Ge)

=D, ¢+ D, ¢, H, — G.(¢p)(4, ¢,) — H.(¢)( Dy + D, ¢, H.)

are maps from X to Z(X, Y). A linear equation for G, is obtained by differentiating
(3.6) with respect to x and using (3.4) again

(3.9) G.(¢:)(, )~ BG, = F,
where
F3=Fa(s, he, H.) = D3y +2D%,6(-, H,)+ D}, ¢:(H,, H,)
~H,(¢:)(D3%¢,+2D% ¢:(-, H,)+ D}, $,(H,, H,))

is a map from X to (X, Y).

Now we proceed as follows. For each fixed real ¢ and for each fixed pair of maps
h,:X->Yand H,: X - %(X, Y), we solve (3.9) for G.. The solution is written in the
form

(3.10) G.=9%(¢, h,, H,)

where 9(¢, h,, H,) is a map from X to £*(X, Y). Inserting this expression into (3.8),
we obtain

(3'11) H&(¢I)ﬂ_ %H.E + (6(8’ hE, HS, %(8, hs’ HE))hE = .0}72(85 hs’ HE, @(S, he’ HE))'
This relation together with (3.5) is linear equation for (h,, H.), which we write as
h,

H) = (e, h,, H.)

o (
where the right-hand side is a map from X to Y x%(X, Y). This is the desired
differential equation.

By the derivation of this equation, every two times continuously differentiable
function h,(x) which satisfies (3.2), together with its partial derivative H,(x) = D, h.(x),
is a solution. To show that vice versa a solution (h.(x), H.(x)) of (3.12) such that (3.3)
and

(3.13) Hy(x)=0 forxeX

are satisfied yields a solution of (3.2), we show that H, is actually the partial derivative
of h, with respect to x, i.e., (3.4) is satisfied. Inserting (3.4) into (3.5) and integrating
with respect to €, we then get relation (3.2). Here we use the fact that by (3.3), h.(x)
solves (3.2) for e =0.

To prove (3.4), we differentiate (3.5) and (3.8) with respect to x, which gives

pj(d’l)'ﬂ(‘g’ hE5 PJ) - %p] = ‘0]’74(8) pj; qj);

(3.14), . e
qj((i’l)(&i(gy hss Pj): ‘d) - %q]-*— %p] = t%5('5’ Pj, Gj, ql(j)),

for j =1, where

l(l):za P1=thsg Q1=Dst, Q2=Gs,
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Fale, pj» ) = Ducby+Dyyp;+ Dibs(h,, - )+ D3, a( py, he)
—q;(¢)(A(e, he, p;), ((151+Dy¢1he))
—Hs(¢l)(Dx(!;l+Dy¢;1pj+D)21xd)l(’ie’ )+ D§y¢1(hs, p))
is a map from X to £(X, Y) and
Fs(e, by, s Gi0y) = Dixb2t D3y, p+ Ho)+ Db+, -, h)
+D3,, (0, h., H.+p;)+ Dingz(Pja H,)+ qusij
+ D3y $(he, He, )+ Diybohe, 4;) + D3cho(He, )
+Diy¢2(He’pj)
“Ha(ﬁbl)(Dix‘bl‘*'Diyd)l(',Pj"LHs)
+Diy¢2(H€7 pj)+Dy¢1qj - D,G.(¢1)(A(e, he, p;), A, (}51
+Dy¢,h,)
=G, . ($)(A, Dx¢1+qu§1pj+D§x ¢1h£+D)2zy ¢1(ﬁs, Pj))
‘ql(j)(¢1)(<'51+Dy¢1hs, D?cx o
+Diy¢l(.apj+He)+Diy¢(pja He)+Dy¢1CIj)
— g (P1)(A(e, he, p;), Dx¢1+Diy (-, he)+qué1 H,
+D3, ¢1(h,, H.)+ D, ¢, H,)
—H,(¢) (Dt + D3 éi(+, p+ H) + Dy (-, -, he)
+Diyy¢1(', heapj+He)+Diy¢;1(pj: H€)+Dy(’51qj
+ D5, &1(pjy hey H) + Dy ¢ (Re, )+ D (H,, -)
+D)2/y ¢1(pj’ He))

is a map from X to ¥*(X, Y). Furthermore, taking relation (3.8) as it stands and
differentiating (3.9) with respect to &, we obtain the relations (3.14),, where

I(2)=1 and p,=H,.

Note, that here we need the assumption that f and g are of class C°.

We shall show that the subspace given by p, =p, and ¢, = g, is invariant under
the flow defined by the system of equations (3.14), and (3.14), in (p1, 41, P2, g2)-space.
Thus, the identities (3.4) and (3.7) follow, when they are satisfied for £ =0. But this
will be a consequence of the initial conditions (3.3) and (3.13).

To summarize, so far we have argued that the problem (3.2) is formally equivalent
to an initial-value problem for the differential equation (3.12). Now we are going to
Jjustify this argument step by step and to solve the initial-value problem.

We introduce the following notation:

I:[_E(), EO]a
D(r, L, M)={(h, H) e CL(X, Y)x Cu(X, Z(X, Y)||h],=r, [H|o=r, |H|,= L}

where g, is an arbitrary real number greater than one, and r, L, and M are positive
constants which are specified later.

LEmMMaA 3.1. Assume that the conditions of Theorem 2.1 are satisfied and let
(h., H,) = (h, H) be any element of @(r, L, M) where ¢l (B,(0)) = U. Then, for any ¢ in
I, the equation (3.5) has a unique solution h, =%, =% (e, h, H) with the following
properties:

(i) e Ck(X,Y)
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“where the constant K; can-be chosen independently of L :and M. Furthermore || ,|o= r,
and |||, = r,, where

1= Ky(llgllo+ 1 £1lo), =Kyl £+ gllh),

with some positive constants K, and K,; K, does not depend on L and M. Moreover,
#,(0) =0 (¥,(0) =0 and D.3,(0) =0), provided that (N2) and h(0)=0 ((N2), (N3),
h(0)=0, Dh(0)=0, and H(0)=0) hold.

(ii) Themap (&, h, H)—3,(e, h, H): I x 9 (r, L, M)~ C'(X, Y) is continuous and
satisfies a Lipschitz condition with respect to (h, H) with constant K.

Proof. The unique solution of (3.5) is given by

(3.15) == (1 #7h) #ish
if (L1)4 holds, and by
(3.16) - 5 (11 #9) 5607

if (L2), holds. Here we use the estimates |4 (e, h, Dh)—Al,= O(8) and |38 — Bll,=
0O(8) as 8~ 0. It follows that for sufficiently small §>0 the map

B(x):Y-»Y (where xeX) (P, -, h()):X-»X)

can be inverted and the estimate | B — B '|o=0(8) (| Dypi(e, -, h(*)) ' = A o=
O(8)) holds. Hence,

|| B~ ol Dxp:(e, -, h(: Nlh<1 (B lo]l Dxs(e, -, B(-NTHh<1)

for all 0=j=4. A straightforward computation shows that the series in (3.15) ((3.16))
converges in C'(X, Y) and represents a solution of (3.5) for h,. Uniqueness is easily
seen by an a priori C° estimate.

The remaining properties of 7, which are stated in the lemma, are easily seen by
inspection of the formulas in (3.15) and (3.16). We simply note that ||F|,=
Kz(llg[[0+ r.fllo) and || D F o= Ks(Iflli+gl,) holds with some constants K, and
K., where K, does not depend on L and M. Moreover, %;(0) =0 (resp. %,(0) =0 and
D, %,(0) = 0) provided that (N2):and h(0) =0 (resp. (N2); (N3), h{(0)=0, Dh(0)=0,
and H(0)=0) holds. We also remark that Lipschitz constants can be estimated by the
sup-norm of derivatives. Since the Lipschitz constant of D% is close to

| D2.glo+ 21 D2, glor+ |1 D3y glor + | D o +2]1 D2 o lor® + 1 D5, f flor?

where & is sufficiently small, K, can be'chosen independently of Land M.

To prove continuity of the map in (ii), one uses the fact that each member of the
series in (3.15) (resp. (3.16)) has this property and that the convergence is uniform
with respect to (g, h, HYe IX@(r, L;M). O

LeMMA 3.2. Suppose that the assumptions of Lemma 3.1 are valid. Then (3.9) has
a unique solution G, = 9= 9(¢, h, H) with the following properties:

(i) Ye Cr(X, FA(X, Y)),
| %llo=Ks, and || 9|,= K,, where Ks, K and K, are certain constants; K does not
depend on L and M. Furthermore, 4(0,0, 0) =0,

(ii)) The map (e, h, H)~>%(e, h, H): I x%(r, L, M)> C'(X, L*(X, Y)) is con-
tinuous and satisfies a Lipschitz condition with respect to (h, H) with constant Kg.
Moreover, with C*(X, $*(X, Y)) as range, it is continuously differentiable.
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Proof. As in the previous proof, the unique solution of (3.9) is given by
o w=-% (fLawh)seh( 1T . 11 o)
if (L1), holds, and by
CUNES s (1 93(¢;1)) F (b7 )(H Ao 11 ﬂ”(fbf))

if (L2), holds. Again, all properties of ¢ which are\stated'\easily follow from these
formulae. Note that: %5(0, 0,0) =0. To see.that K¢ does not depend on L and M we
note that .

|J”3”0Sl I("D g||0+2||D yg||0r+]]D g”o"
+ID2 S llor + 21 D3 f lor* + | D3 f o) a0

LEMMA 3.3. Suppose that the assumptions of the above lemmas hold. Then (3.11),
with h, = %, from Lemma 3.1 and 4 from Lemma 3.2, has a unique solution H, = 3, =
%,(&, h, H) which has the following properties:

()  HeCi(X L(XY), |#)o=r, |%]i=Ky

where r; = Ky (I f]l1+lgll,) and Ky, Ko, K, are certain positive constants; Ky can be
chosen independently of M and K,, independently of L and M. Moreover, 3,(0)=0
provided that (N2), (N3), h(0) =0, and H(0)=0 hold.
(ii) The map (&, h, H)—> %5(e, h, H): I X D(r, L, M) > C!(X, #(X, Y)) is con-
tinuous and satisfies a Lipschitz condition with respect to (h, H) with some constant K,.
Proof. Set

= 976(83 h) H)= gz(ga h’ I—I) @)»— %(8, h9 H’ g)961'

Then the equation which is considered in Lemma 3.3 has a unique solution given by

(3.19) =3 (118 69760 T a(6))
if (L1), holds, and by :
(3.20) w=3 (N 3767 1 a7(0:)

if (L2), holds. To prove its stated properties, we note that
1% sllo= a1/ 111+ g]l)
holds with some constant K,,. Furthermore,
IDFello= || D3xgllo+ 21 D38 llor + | D38 llor
+ || Dif lor + D% fllor®+ || D3y f o+ O(8),
the Lipschitz constant of D, % with respect to x is smaller than
| D%ecgllot 37l Daggllot 372 DYgllot+ 1 D5,y 8 llo
+r(3L+|e|K,)|| D3ygllo+ BL+|el K)|| Diygllot rll DS llo
+3r| Di flo+37° | Doy f o+ | D3 £
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+r2(4L+ (L+Ko)|| (e, b, H)|lo+]e|K)IID3, flo
+r(SL+2(L+Ko)|| L (e, h, H)|lo+|e[K) DS llo
+(L+(L+Ke)|| (e, b, H)||o)| D3 f o+ O(8),
| Dest o =el(ID%cf o+ 21 D3y f llor + 11 D3, f or®) + O(8)
and
IDBo=|el(| Diygllot+ | Dygllor + |1 D%, f llor + 1 D3, f llor”) + O(8)  as 8-0.

Therefore, K, can be chosen independently of L and M, and K, independently of
M. Moreover, %4(0) =0, provided that (N2), (N3), h(0)=0 and H(0) =0 holds. But
this implies #,(0) = 0. The rest of the proof is similar to the previous proofs. [

By Lemma 3.1 and Lemma 3.3, the right-hand side of the differential equation
(3.12) is given by

(e, h, H) =<%‘(E’ B H)).

Ho(e, h, H)

It is uniquely determined by the stated properties. Next we are going to solve this
equation with initial values h =0 and H =0 at £ =0. To this end we select r, L and
M such that

(Il) cl (Br(O)) < [], L= EgMax (Kl 5 KIO) and M= Sng(L).

We also assume that the conditions

(12) n=—  (i=1,2,3)

€o
are valid. This is achieved by requiring & to be sufficiently small since r, = O(8) as
8 - 0. Note that r has been chosen independently of 8. On the other hand we point
out that cl (B,,,,(0)) = U has to be true, but not necessarily cl (B,(0)) « U. Hence, under
certain circumstances one can shrink U to make § sufficiently small and work with
functions h such that h(x)e U for all xe X.

LEmmMA 3.4. Let the assumptions of Theorem 2.1 be true. Furthermore, suppose that
the constants r, L, M and 8 are chosen such that the conditions (11) and (12) are fulfilled.
Then the differential equation (3.12) has a unique solution e (h,(x), H,(x)) in the
interval I, which has the following properties:

(i) em>h, e C(I,C(X,Y)), e>H, e C'(I, C'(X, £(X, Y))), where (h., H,) €
%(r, L, M) holds for all e in I, and hy(x) =0, Hy(x) =0 for all x € X. Moreover, h.(0) =0
{(h.(0)=0, D, h.(0)=0 and H_(0) =0) for all ¢ in I, provided that (N2) ((N2) and (N3))
holds.

(i) Dh.=H,, D.H, =G, =%(¢e, h,, H,).

Proof. The proof of part (i) follows the lines of the proof of the usual Picard-
Lindelof theorem for ordinary differential equations. We look for a continuous solution
g+>(h,, H,) of the integral equation

(3.21) (I}z) =J: ¥#(o, h,, H,) do (eel).

This problem is equivalent to solving the initial-value problem (3.12), (3.3), and (3.13).
In particular, a continuous solution of (3.21) is continuously differentiable. According
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to the previous lemmas, the right-hand side of (3.21) defines a contraction map J of
the metric space

S={ew>(h,, H,)e C(I, CL(X, Y))
x CIL Cm(X, (X, Y)|(h., H,) € D(r, L, M) forall e € I}
into itself, where the metric is given by the norm defined by

sup (e || h, s, e H.|},)

with
y>max (K;, Kj»).

Obviously, with this metric S is complete. Therefore J has a unique fixed point in S,
which is the desired solution. Moreover, the set

So={e~>(h., H,)e S|h.(0)=0forallec I}

or S,={e~>(h,, H.)e S|h,(0)=0, D .h (0)=0 and H.(0)=0} for all e[ is closed
and invariant under the map 7, provided that (N2) (resp. (N2) and (N3)) holds.
Hence, the unique fixed point of J in S lies in So(S;). Thus, part (i) is proved.

To prove (ii), let (h,, H,) be given by the solution of (3.21) constructed above
and define G, to be 4(e, h., H,) for £ in L Note that p,(¢)= D,h,, q.(¢)=D,H,,
p-(e) = H, and gq,(&) = G, defines a solution of the system of equations in (3.14), and
(3.14),. These relations are fulfilled in the space (C%I, C°(X, £(X, Y))) x
C°(1, C°(X, £*(X, Y))))>. Furthermore, by (3.3), (3.13) and %(0,0,0) =0,

(3.22) P(0)=px(0)=0,  ¢,(0)=¢,(0)=0

holds for this solution. Therefore it remains to show that this implies p,(¢) = p.(¢) and
qi{eY=q,(e) for all e L

Using the formulas (3.19) (resp. (3.20)) and (3.17) (resp. (3.18)), we can rewrite
the relations in (3.14); (j =1, 2) in the form

(3~23)j Pj(8)=%3(3, pj(g)a qj(e))a 41(5)=%4(3,Pj(€)7 q}‘(g), q,(j)(g))

where the maps &— H#s(s, p;(€), q;(e)): 1~ CUX, %(X,Y)) and &~ Hy(g, pi(e),
q;(€), qi;»(¢)) are continuous, and

|:(e, pi(€), i(e)) — Hy(e, p(e), 42(8))”0§ Ky;a(e),
“%4(8, Pl(s), g:(g), g.(e))— Hy(g, pa(e), g.(g), ‘h(f?))“oé Kza(e),
holds for all ¢ in I with some positive constant K;; and

a(e)=sup (npl(s)_l’z(e)”m “41(6)"512(3)Ho)~

Integrating the equations in (3.23); from 0 to &, subtracting the integral relations
which are obtained for j=1 and j =2 and using (3.22), we get the following estimate

‘era(O') do (e ).
0

a(e)=

Gronwall’s lemma yields a(g)=0 for all ¢ in I, i.e., p;(g) = p,(e) and g,(&) = ga(¢).

Taking the map h, which has been constructed in Lemma 3.4 and setting £ =1,

the existence part of Theorem 2.1 follows according to the discussion previous to the
above lemmas.
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The proof also yields uniqueness, but only within the class of families of maps
h, (where ¢ € I') which have the properties stated in Lemma 3.4. To prove the uniqueness
assertion of Theorem 2.1 we therefore have to give a different argument. Here we can
even weaken our assumptions considerably.

LEMMA 3.5. Suppose the maps fe CHX x U, X) and ge C*(X X U, Y) satisfy a
Lipschisz condition with respect to y with constant 8>0. Furthermore, assume that
IB7!| <1 (resp. ||B||<1)) holds. Then for each ¢ in I, (3.2) has at most one solution
h.=he CU(X, Y) (resp. such that the map x — ¢,(e, x, h(x)): X - X is surjective), where

L<(|B'| " ~1~88)/(8e)  (resp. L<(1—|B|—8e)/(3¢)).
Proof. Assume that h and /i are two such solutions of equation (3.2). Then,
h—h=B""(h(¢:) = h(d)) + h(d) — h(di(e, -, h(-))) +eg(-, h(-)) —eg(-, h(+)))
(resp. h(¢y) —h(y) = B(h—h)+ h(y(e,, h(-))) = k() +eg (-, h(-))—eg(-, h(-))),

in which we use our standing convention that ¢, = ¢,(¢, -, h(-)). Thus by the assump-
tions

b= Rllo= | B7Y|(1+ 8eL+ 8e)|[h — ko< ||h— o
(resp. [|h— hllo= (|| B]|+ 8eL+ 8e)|{h — hllo< || h — hlo)

follows, which implies h = h.

Remark 3.6. The initial-value problem (3.12), (3.3) and (3.13) also has a unique
solution in a ball around the origin in the space C%(X, Y)x C%(X, (X, Y)) with
appropriate constants L and M, even under the weaker assumptions that f and g are
of class C iip and that (L1); or (L2); holds. However, it is not obvious how to show
D,.h, = H,, to make sure that the solution actually yields a solution of (3.2).

On the other hand, one can still use the deformation principle to prove existence
of a Ciip invariant manifold under the weaker assumptions mentioned above. This
requires the solution of the nonlinear equation (3.6) for H, in some space
Cu(X, #(X, Y)) as a Lipschitz continuous function of ¢ in I and h, e CL(X, Y).
Here the identity D, h, = H, follows from the fact that D, h, as well as H, are solutions
of the first equation in (3.14); for p;, if we set gq; = D, H.. In general, one does not have
an explicit representation for the solution of (3.6); one can, however, use the contraction
mapping principle to solve it. Thus, this method is a combination of the usual fixed
point method to construct invariant manifolds [15] and the pure deformation method
which we have proposed in the present paper.

4. Proof of Corollary 2.2. Corollary 2.2 is a consequence of Theorem 2.1 together
with the following lemma; a bootstrapping argument accomplishes our purpose.

LemMA 4.1, (a) Assume that fe C*(Xx U, X) and ge CX(X x U, Y) holds for
some k= 3. Furthermore, let (L1); or (L2)y, ||f]1 <8, and ||g||, <& hold. Suppose that
forfixed e, h, = he C*" (X, Y) is a solution of (3.2). Thenhe C*(X, Y) if  is sufficiently
small, generally depending on k and ||hl|, for fixed A and B.

(b) If f and g are of class C'{ip for some k=2 and (L1)1qy or (L2)44y, IFh <8,
and ||g||, < 8 holds, then any C* solution of (3.2) is contained in C{,,(X, Y) for sufficiently
small 5> 0.
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Proof. Since h is at least of class C? and a solution of (3.3), by uniqueness of the
solution of (3.9) we have D%.h= %4(e, h, D, h) with ¥ given either by (3.17) or by
(3.18). Hence, it remains to show that he C*''(X,Y) implies (e, h, D.h)e
CYX, %% (X,Y)) in case (a), and heC"(X,Y) implies %(e h, Dih)e
CiF (X, £(X, Y)) in case (b).

If f and g are of class C* and he C*'(X, Y) for some k=2, then the (k—2)nd
derivative of each term in the series (3.17) (resp. (3.18)) exists and is continuous. It
is easily proved by induction with respect to k that these derivatives are of the form
(j=0,1,2,---)

5 (’0Dz%-l(¢;>%)vz%<¢é>%,-

Ya=k—2 \i=
(4.1) . )
( [1 Disd(di)Pus 11 Dﬁ&f(fbfi)@m-)
i=j—1 i=j—1
or
J i .
oz (H D:%(«pr’)%)Dz%(w*‘)@wm
a=k—-2 i=1
(4.2) 1 1
( I Did™(bi)Puir Il Di’ﬂ“l(fﬁfi)g’ai)
i=j+1 i=j+1
where

B =RB(e, h, Dh), Fy=F;(e, h, D.h), oA=s(¢, h, D.h),
and 2,; is an a-tuple of products with i factors of the form
DiA(¢1)P,, (0=n=i-1)
(resp. DA (1P (1=n=1)).

These sums have less than 3k!(j+1)*"? terms, each of which is a “product” of less
than (k+1)j+2 (resp. (k-+1)(j+1)) factors, with at least j—k+3 (resp. j—k+2)
factors B (resp. B), at most kj(resp. k(j+1)) factors sf(resp. & '). Besides these
factors there are at most k—2 factors which are derivatives of such factors, or of %;
of order less than or equal to k~2. Of course, %; is itself a factor if no derivative of
it is contained in the product.

Now assume that

(4.3), 197 ol sllo<q<1 (resp. [|Bloll s o<g<1) (0=i=k)
holds, where g is some real number which does not depend on i. Then
Kia(j+ D) 7277 (j>k=3) (resp. Kia(j+ 1) ¢ (j> k—-2))

is an upper bound for the C° norm of the sum in (4.1) (resp. (4.2)), where the constant
K,, depends on k. Consequently, the series of these sums over j converges uniformly
with respect to x and represents the (k —2)nd derivative of %(e, h, D h). But, by (L1),
(resp. (L2),), (4.3), is satisfied for some number g, provided that 8 is sufficiently small.
Thus, part (a) of Lemma 4.1 follows.

Under the assumptions of part (b) the sum in (4.1) (resp. (4.2)) is contained in
Cin(X, £¥(X, Y)) for each j. Furthermore, if (4.3)4+, holds, by the above information
about this sum, its Lipschitz constant L; can be estimated from above by

Kis(j+1)'g7 7% (j>k-2) (resp. Kys(j+1)* g (j>k-1))
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with some constant K5 that depends on k. But by (1.1),. (resp. {L2).,), the condition
(4.3)4+, is satisfied for sufficiently small 8> 0. It follows that D*?%(e, h, D.h)e
Clip(X, £¥(X, Y)), since ¥, L; <co. Thus, part (b) of Lemma 4.1 holds. O

Remark 4.2. In case of center manifolds, the Cl'fip result, even fork=0and k=1,
is the usual result which is obtained by a fixed point argument ([15], [18]). For k=0
one assumes that (L1); or (L2), holds and that | f|o, | glle, and the Lipschitz constants
for f and g are sufficiently small. For k= 1 the assumptions are analogous to those of
Theorem 2.1. For k=2, see also Remark 3.6.

The Ciip center-manifold theorem together with Lemma 4.1(a) now yields the
center manifold theorem in C* spaces for any k= 3.

Moreover, observe that for fixed h, in C'(X, Y), (3.6) can be solved for H, in
the space C'(X, 4(X, Y)), provided that f and g are of class C?, || f]|, and ||g|, are
sufficiently small, and (L1), or (L2), holds (cf., Remark 3.6). Thus it follows that the
Cli, center manifold is actually contained in the class C? in this case; but this is the
C? center manifold theorem.
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