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1. Introduction

Variational principles in continuum mechanics have a complex history, going back at least to Walter [1;
1868] and Kirchhoff [2; 1876). For a historical survey with many references up to 1960. see Truesdell and
Toupin [3] and Serrin [4). In material representation the appropriate variational principles are essentially
the same as the classical variational principles of mechanics. However, since the equations in spatial or
convective representation are not in canonical Hamiltonian form, difficulties arise. This point was
investigated by Lin (5] and applied to many examples in the work of Seliger and Whitham [6); this
approach is closely related to the introduction of Clebsch potentials (Clebsch [7; 1857, 1859] also had
variational principles in view). In Seliger and Whitham [6; p. 6] it is stated that “Lin’s device still remains
somewhat mysterious from a strictly mathematical view”. We hope the results of this paper will help to
answer this type of concern by providing a suitable abstract and precise framework.

In recent years a Hamiltonian formulation of continuum systems written entirely in spatial representa-
tion and its relationship with the material and Clebsch representations has been established. Some of the
relevant references are Iwinski and Turski [8], Dzyolshinski and Volovick [9], Morrison and Green [10),
Marsden and Weinstein (11, 12}, Holm and Kuperschmit [13], Marsden et al. [14], Benjamin {15), and
Marsden, Ratiu and Weinstein [16, 17).

The purpose of this paper is to formulate precise variational principles in two contexts:

a) an abstract Clebsch variable setting, and

b) a variational formulation on reduced spaces, representing an abstraction of variational principles in
spatial representation.
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In both cases, the validity of the relevant variational principle is not postulated in an ad hoc way but rather is
derived from the standard canonical variational principles in material representation using the geometric
methods of reduction and canonical maps. This provides a coherent setting for the variational principles in
common use as well as giving a single abstract proof for many diverse principles. In addition we give new
direct variational principles in the spatial representation which are a natural outgrowth of this approach.

In section 2, we give the abstract variational principle for Lin constraints and Clebsch potentials for
systems whose configuration space is a Lie group G. The idea is as follows. Let L: TG— R be a left
invariant Lagrangian, and p: G X E — E be a linear representation. Elements a € E and b € E* are called
Clebsch potentials. Given curves g € 2(G) (the space of curves on G), a € 2(E) and b € Q(E*), we will
prove later that

f"[l-(g- g')+ (ﬂ’-(jg,—’a—), r*(g b)>]dr = f"'[L(g, g') +{a’ +vg(a), b)] dr,

hH

where v € 2(g) is the body expression of the velocity and o is the infinitesimal generator of the action p.

Lin constraints as defined in this paper (see Definition 2.2) are the submanifolds of 2(g) X Q(E) defined

by the conditions: a’ + vg(a) = 0, a(1,) = a,, a(1,) = a,, with given a,, a, € E. We will prove that under

certain conditions on p, a,, a,, critical points (v, @) of the last integral, with these constraints, are such

that the component v is a solution to the equations of motion. The rigid body and homogeneous
~incompressible fluids are presented as examples.

ﬁ Section 3 generalizes the results of section 2 to systems whose configuration space is G X ¥ where V' is a
vector space. Compressible flow is given as an example. Section 4 generalizes this situation further to the
case where the configuration space is G X V' X W, where ¥ and W are vector spaces, G acts trivially on W
but nontrivially on V. Section 5 deals with variational principles on reduced spaces. Here the context is the
reduction setting of Marsden and Weinstein [18). On an exact symplectic manifold (P, «w = —d@) one
normally forms a variational principle in the usual sense of Hamilton’s principle:

Iy _
8[. [6-Hdr]=0.

Reduced spaces, such as those for rigid body motion have symplectic forms which are not exact.
Nevertheless, we shall show that this variational principle still makes sense. This section sets up the
abstract results first that are suitable for examples like the rigid body (where the reduced space is a sphere
in body angular momentum space) and incompressible fluids (where the reduced space consists of
“jsovortical surfaces”). Then a more general reduction result is given. Finally the end of the section links
the approach of reduced variational principles with the Clebsch-Lin approach using the idea of a dual
pair.

While a number of examples are treated in this paper to illustrate the theory, we do not attempt an
exhaustive treatment of them. However, from the examples presented, it is clear that one could treat many
others as well. For example, one could do plasmas (see Low [19]), superconductors and superfluids (see
Holm and Kuperschmit [20, 13}), elasticity (see Seliger and Whitham [6], Holm and Kuperschmit [13].
Marsden, Ratiu, and Weinstein {16, 17}, Krishnaprasad and Marsden {21), and Simo, Marsden and
Krishnaprasad [22]), stratified flow (see Long [23], and Abarbanel, Holm, Marsden, and Ratiu [24]), free

(W\boundary problems (see Lewis, Marsden, Montgomery, and Ratiu {25]) and relativistic systems, including
fluids. plasmas, and MHD (see Tam {26], Tam and O'Hanlon {27), Bao, Marsden and Walton [28], and
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Holm [29)) and references therein. A few additional examples are treated in a slightly expanded version of
the present paper, which we shall provide on request. We also remark that one can generalize many of the
constructions in this paper to the case of systems on principal bundles in the context of Montgomery,
Marsden, and Ratiu [30). This is the planned subject of a future paper (of Cendra, Ibort and Marsden
[31)).

2. Ciebsch potentials and Lin constraints

Lin [5] pointed out that for ideal compressible flow, a variational principle with the Lagrangian density
given by the kinetic energy minus the potential energy,

L(o,p,0) = 4pliv|>- pw(p, ), (2.1)

where o is the Eulerian velocity, p is the density, ¢ is the entropy, w is the internal energy, and with
constraints given by conservation of mass and entropy, gives a velocity field of the form

v= Vo + nVo. (2.2)

This is an unreasonable restriction, since for isentropic flow, it implies that v is irrotational. To avoid this
difficulty, Lin gave a variational principle in terms of the Clebsch representation,

v=Vo+nVo+ 8- Va. (2.3)

He imposed the condition that the R3-valued function « be a function of the original position of the
particles only (which amounts to assuming that da/d!=0) as a further constraint with the Lagrange
multiplier 8.

These ideas of Lin were extended and applied to several cases in continuum mechanics by Seliger and
Whitham [6). For the case of a fluid in a simply connected region, they used the pressure as a Lagrangian
density regarded as a functional of the other variables, to produce the desired equations of motion. A
Clebsch representation of the velocity of the type (2.3), with a and B real valued rather than R>-valued
appears among the equations.

In this section, by using the geometric approach to Clebsch variables given in Marsden and Weinstein
[12], we will generalize those ideas from fluid mechanics to a general abstract context, thereby making
them useful in other examples of physical interest. Our approach also clarifies how the variational
principles written in terms of Eulerian quantities and Clebsch potentials, like those considered in Seliger
and Whitham’s paper, are reformulations of the standard Hamilton’s principle written in terms of material
(Lagrangian) coordinates. We do this using a systematic reduction procedure that takes into account the
system’s symmetry, such as particle relabelling symmetry for fluid mechanics. A result of this procedure is
a sufficient condition (assumption 2.3 below) which ensures existence of a Clebsch potential representation
of the type considered in Seliger and Whitham [6]).

To start, we recall that according to Marsden and Weinstein [12), Clebsch potentials are given by
momentum mappings J: S — g*, where S is a symplectic manifold on which a Lie group G acts by
symplectic diffeomorphisms and g is the Lie algebra of G. We are interested in the following particular
case. Let £ be a vector space and p: GXE— E be a left (or for some examples a right) representation of
G on E. [For the fluid mechanics example above, G will be the group of diffeomorphisms of the fluid




-

66 H. Cendra and J.E. Marsden / Variational principles

particles and E will be a vector space of a’s.] The elements of E will be denoted by “a” and the
representation corresponding to a group element g acting on a will be denoted p(g, a) = py(a)=p(g) =
ga. Let E* be a space in duality with E and () EXE*—R be the associated pairing. For each
8€G,pl-: E*—E* is the dual of the linear isomorphism pg-1: E— E. Since E is a vector space,
T*E=EXE®* and the map (pg pg-v is the cotangent lift of pg for each g€ G and therefore is a
symplectic map (Abraham and Marsden [32; p. 180]). If we write TT*E=E X EX E* X E*, the canonical
form 6, on T*E becomes

85(a,d, b,b) = (d,b) (2.9)
and the momentum mapping induced by the action is
J(a,b)(¢) = (¢x(a), b), (2.5)

where £ is the infinitesimal generator of the action of G on E and § € g (see Abraham and Marsden [32;
p- 283]). The body coordinate map B: TG - g is defined by

B(y,)=T,L,_v,=v, (2.6)

where L, is left translation by g on G.
For a given manifold M and ¢, and ¢, € M, we write

‘Q(M) = Cw([’l’ tz]’ M)’
2, (M) = {ce 2(M)c(t) =<,), @.7)
Le.c(M)={ce@(M)lc(t,) =¢, and c(t;) =c,}.

Also, if f: M — N is a C* map of manifolds, we define

2(/): 2(M) > 2(N) by 2(f)(c)=fsc. (28)
Lemma 2.1. Let g€ 2(G), a € 2(E), b Q(E*) and write o= B(dg/dr). Then
<%.p'(g“,b)>= (d +vg(a), b)
=6y(a.a,b,b) +J(a, b)(v). (2.9)

Proof. The last equality is a consequence of the expressions (2.4) and (2.5) for 6, and J. From the identity

aP(agg. a) %f_ _ ap(agg.a) ,T'vagpg[ap(e,a) .,,] = p,(0(a))

we get

( dp(‘ﬁ-ﬂ) ,p'(g",b)> =<3p—(§?ﬁ'—)%+p,(d).p;—l(b)>

= (py(d + vg(a)), p2-1b) = (d + vs(a), b). n
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Definition 2.2. a) A given Lagrangian L: TG - R is called left invarian: if L(TL,,) = L(vy) for all
5, €TG and h€G. In body coordinates this is equivalent to L5(g, v)=L%(e.v)= L(v), where
LB g, v)= L(TL, - v). By abuse of notation, we shall often write L( g v) for L3(g. v).

b) For a given Lagrangian L: TG — R, define a new Lagrangian LE: T(GXE X E*) -» R and action
cpf: GXEXE*—>G+EXE*of GonGXEXE* by

LE(vs, a,d,b, 13) =L(v,) + (dp(g,a)/ds, ps-1b)
= L(v,) + (d + vg(a), b)
= L(v,) +6y(a,d,b,b) +J(a,b)(v) (2.10)

and
9Z(h,a,b)=(gh,a,b).
c) For given a,, a, € E, the Lin constraints are defined by
{(v,a) € Q(a) X 2(E): d+v(a) =0,a(1,) =a,,a(1,) =a,}.
Remarks. 1) If L is left invariant, then LF is invariant under the action ¢f and
LE(vx, a,d,b,b)=L(v)+ (d+vg(a), b)
= L5(v,a,d,b,b). (2.11)
2) According to the momentum lemma (Abraham and Marsden (32; p. 288)),
J(a,b)(v) +0y(a,d,b,b) = (9°6;)(v,,a,d,b,5) (2.12)

where @* denotes the pull back by the action ®: G X T*E — T *E, the lifted action of p. Notice that the
expression (2.11) is valid for any element g of G, for example the identity. In particular, we get the
following expression for LE:

LE=L oTm, + ®*4,, (2.13)
where m: G X T*E — G is the projection.
Consider the following assumption:

Assumption 2.3. There is an open set U C E such that the following conditions hold:
1) GCE;
2) p(Gx U)yc U,
3) For each a in U, p,: G = E is a diffeomorphism onto its image.

We will assume that 2.3 holds from now on. The assumption that U is open should be properly
interpreted in each example, especially in infinite dimensional cases. This involves issues of functional
analysis that we will not detail here. The point to keep in mind is that U should allow enough variations of
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curves to apply the usual variational techniques. Similarly, the assertion that p, is a diffeomorphism onto
its image should be properly interpreted in examples. It should be remarked that in many examples we can
find E, U, and p satisfying the assumption 2.3 by realizing G as a matrix group of nXn matrices,
choosing U = GL(n), E=L(R",R"), the vector space of linear maps of R" to itself, and p(g,a)=ga.
The following observation will be useful. For given g€ G, a€ E and b€ E*, there is a b’ € E* such that
Jor all 5g € TG, -

(8g, b) = ( %g"')sg, b’> . (2.14)

Notice that since G C E, we can think of 8g as being an element of E to make sense of the left-hand side s
of (2.14). To prove the assertion, first note that by using left translations, it is enough to prove (2.14) at ’
g = e, the identity. Thus what we must prove is that

(€, b) = (¢c(a), b") (2.14a)
for all £ € g determines b’. Since p, is a diffeomorphism onto its image, the map .

(:W\ A,: f'—bfﬁ.(a) (2.15)
from g C E to E is one to one. Letting A denote its inverse, from range (4,) to g, we can let 5’ be any
extension of (4;')*(blg). (In infinite dimensions, we assume that range (A4,) is closed and that the
adjoint exists.)

The main results of this section can now be stated. First an observation to get rid of some technicalities
in the proof: for fixed u, € U we have an embedding P.,: G — E. Thus we can identify G with Pu(G).
Under this identification the action L, of G on itself by left translations can be extended to an action of G
on E by L.(a)=p,(a). Since we have the natural inclusion Tp,,: TG — G X E, we can extend every left
invariant Lagrangian L: TG = R to an invariant function L: GX E— R. In examples this usually comes
about in a natural way. We will always assume such an extension has been chosen to make sense of
expressions like 9L(g, g)/9g.

Theorem 2.4. Let a),a,€ U, and g,, g, € G be such that Pg(ay)=p,(a,). Let L be a Lagrangian on :
TG,g(1) be a curve in £, , (G) and v, = dg/dr. The following assertions are equivalent: : o
i) g(¢) is a critical point of '

f"L(vx)dl=f"L(g, v)d?

on 2 _(G).

&8
if) There are curves a in £, ,(U) and b in 2(E*) such that (g, a, b) is a critical point of

flzLE(vg. a,d,b, 5)dl
h

on £,(G) X2, , (U)X 2E*).
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If in addition, we suppose that L is left invariant, then either condition (i) or (ii) is equivalent to:
iii) There are curves a in 2, ,.(U) and b in 2(E*) such that (v, a, b) is a critical point of

f”L‘-‘(o. a,d,b,b)dr
O

on 2(g) X &, ., (U)X QE*™).

Example 2.5. The free rigid body. (See Abraham and Marsden [32), and Marsden, Ratiu, and Weinstein
{16, 17).) Here G = SO(3), with the group elements denoted 4 € SO(3). The Lie algebra is written

g=S0(3) = {slve R},

where for v R3,

0 - U,
o=| b 0 -ul.
"02 Dl 0

Traditionally the angular velocity in body coordinates v is denoted “w," We shall follow this notation and
shall write the components of wp as = (@;, ¥y, ;). Note that &y =4 -14. Define E = L(R3 R*) which
we identify with E* using the pairing (@, b) = — 1 Tr(ba) and we let p(4, a) = Aa, so that p*(47%,b)
= bA - and we let U= GL(3). We easily check that {p,a, p%..b) = (4, b), and assumption 2.3 is readily
verified. We consider the left invariant Lagrangian given by the kinetic energy:

L(wg) = [11("’1)2 + Iz(""z)2 + 13(“’3)2]/2,

where a body frame is chosen in which the moment of inestia tensor [ is diagonal. Therefore using (2.11).
and writing 4 for a tangent vector to SO(3) at 4, we get

LE(A,a,d,b,b)=L(wp)+ (d+dza,b),

where, as in the general theory, &p =4 4.
Since rigid body dynamics is in canonical Hamiltonian form on TSO(3), we know from Hamilton’s
principle that critical points of

[fL(4)ar on 8, 4,(50(3)

h

are solutions to the equations of motion (see Armold [33)). Therefore using 2.4, we conclude that wp(1) is 2
solution to the classical Euler equations if and only if there exist curves @ and b such that (wg,a,b)is a
critical point of the integral
(] -
f"{g[l,(wl)’ + I(wy)2 + I(wy)] + (d+ dpa, b)) dt
1

on 2(g) X, (U)X Q(E*). If we apply the usual techniques of the calculus of variations, considering
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arbitrary variations 84, in £2(g), 8a in £,.4(U) and 8b in Q(E*), we get the system in Clebsch
representation

250, = (ab)y; - (ab)s,,
2hu,= (ab)sx "“b)n-
25wy = (ab),, - (ab),,

with the evolution equations
d+dza=0, b-bsy=0.

Observe that we can replace the velocity from the first three equations into the last two, to give the
equations of motion written in terms of Clebsch potentials.

Let us now turn to the proof of 2.4.

Lemma 2.6. Let B: TG — g be the body coordinate map defined by (2.6). Then for each fixed g, in G, the
map

(™ a(s)e(/a0): 2,(6) ~ 2(a) (216

is an isomorphism.

Proof. Let v be a given curve in g. Define the time dependent vector field X on G by X(g, ) = T,Lgo(t).

This vector field has a unique integral curve g(r) satisfying g(,) = g,. The map so defined is the inverse of
the map (2.16), so it is an isomorphism. |

Proof of 24. Let (g,.a,b,)e £2,(G)x 2., (U)X Q(E*) be a curve with (80, 800 By) = (g, a, b).
Integration by parts and using the functional derivative notation on L regarded as a function on G X E
gives:

gd;f,"[l-(g,, g,)+ (ﬂﬁ’,’ﬂm‘(g:‘,bx)ﬂdf

where

=1+1I

s=0

l=f": % BL(g:'g.:) _18[‘(81'8.:)
A ds ég d¢ 68,

s=0

dp(gs'a ) d -
+<—d,—’-ap‘(8, ‘.b,>

]dl
s=0

do(g,.a,) d i,
—< ds 'E”'(S: l‘bx>
s=0

-
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and

1=/ 98 6L(g. %)
ds’ 8g

dp(g.a)dg, . _
(2 )
s=0, t=1,

s=0, t=1y

Proof of (ii) = (i). Assumption (ii) gives I+ II =0 for any choice of curve (g,, a,, b,). If we chose the
curve such that g, = g, a, = a (independent of s, but still depending on ), and b, is arbitrary, dg,/ds =0,
and so II=0. Thus =0 as well. Using this and the fact that dp*(g;}, b,)/ds=dp*(g"}, b,)/ds
becomes an arbitrary variation and also that dp(g,, a,)/ds=dp(g, a)/ds = 0, we conclude that

. dP_(ngil —0. (2.17)

Now choosing g, = g, b,= b, but a, arbitrary, one shows using a similar argument that

dp*(g~, b
"—.i({’r—) =0. (2.18)

If g, is a curve in 2,  (G) then since the endpoint g,(t,) is fixed, dg,/ds],.,, ;o= 0 and so Il =0.
From this and (2.17) and (2.18) we can conclude that

f:,[<g_g£ 8L(g,.48,) d sL(g,,g,)>

d.f iy 88 df 88-3 ]dl=0. (2.19)
s=0

Integrating the left-hand side of (2.19) by parts, assuming that g,(¢,) = g, is fixed, we get

d g R
a];‘L(g;o g,)dll,_o

and so (i) is proved.

Proof of (i) = (ii). The usual integration by parts argument shows that (i) gives the Euler-Lagrange
equations:

8L(g, d 6L(g, ¢
(gg 2) 'E__(si' g) _o, (2.20)
Thus (2.19) holds. Define a(¢) = Pg-1°pga,. Using 2.3, it follows that a(r) € U and that a(t,) = a,. Thus
a€f, .(U).Itis also obvious that pPza = p, a, does not depend on ¢, so that dp(g, a)/dr =0 and thus
(2.17) holds. Now use the observation following assumption 2.3 to prove that there exists b, = b(t,) such
that I = 0. Then define b(¢) = PzPg. - 1b,. It follows that dp*(g~!, b)/d1 =0, so that (2.18) holds. From
(2.17-2.19), it follows that I=0 for any curve (8. a,,b,) € 2,(G) X 9,,.,:(U)x (E*) such that
f@“ (8u(1). ag(r). bo(1)) = (g(2), a(1), b(r)). Thus for those (8, a,, b,), we have I + II = 0 which is equivalent
to (ii). This finishes the proof of the equivalence of (i) and (ii).
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Proof of (ii) = (iii). This is a consequence of the commutativity of the diagram:

2,(G)XQ, (U)XUAE*)—0(a)x 2, (U)X 2E*)

[LE(v,a,4,,b)dr
I

[*L%0, a,d,b,b)d
L {

4

where ¢ = 2(B)°d/d! X (identity on £, ,.(U)) X (identity on (E*)), which is an isomorphism by (1.5).
»

Remarks. 1) The previous results can be generalized without difficulty to the case of a right representation. ' Iy
Accordingly, we should replace L, by R,. This is an important consideration in many examples. “
2) Theorem 2.4 may be regarded as a particular case of the Lagrange multiplier theorem, using the
constraint dp(g,a)/dt=0 in the space 2,(G)XQ, ,(U)XQ(E*) with the Lagrange multiplier
p*(g"", b). One checks that a curve (g, a, b) satisfying this constraint is such that g(t,) = g,, as in part (i)
f the theorem. In fact, dp(g, a)/d¢ =0 implies that p(g(1,), a(1,)) = p(g(t,), a(t,)) and since g(1,) =
g a(f) =a, and a, € U, we can use injectivity of p,, to get g, = g(#,).

)
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Example 2.1. Homogeneous incompressible fluids. Let D be the domain in which the fluid is moving,
G = Diff ,,(D), the group of volume-preserving diffecomorphisms, and g be the Lie algebra of G, which
consists of all divergence free vector fields on D parallel to 3D. Let g € 2(G) be a given motion of the
fluid. Using the homogeneity assumption (density = 1) the kinetic energy becomes:

1 o 1 r[og(x,0))?
3(%:8)=3 fb[%] a*X. (2.21) : S
Let v=T,R,_,g be the Eulerian velocity. Then the change of variables formula, using the fact that the ‘

Jacobian determinant of g is 1, implies that

14, 8)=1(o,0) (2.22)

which shows that the kinetic energy is right invariant. With the potential energy set equal to zero,
Hamilton's principle will say that solutions g to the equations of motion are critical points of

! f, (g, g)dt (2.23)

(@ on 2, ,(G). (See Arnold [33] and Ebin and Marsden [34].) Let E be the space of functions of D to ®3
(these functions really should be of a specific differentiability class such as those found in Ebin and
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Marsden {34]). Identify E* with E using the pairing
(a,b)y= fa(x) -b(X)dX.
D

Using the right actions
p(g.a)=acg, and p*(g7 ', b)=beg,

the change of variables formula gives

(p(g,a).p* (g7, b)) =(a, b).

We let U be the set of all @ € E such that a is an embedding. Then the conditions of assumption 2.3 are
readily checked. Thus we can apply theorem 2.4 to obtain the following variational principle:

A curve v of vector fieldson D is a solution to Euler's equations for a perfect fluid if and only if there are
curves a and b in U such that (v, a, b) is a critical point of

ftsz{%llv(x, l)“z+ Mg’—’)— +u,( X, ,)9_“%:;)] «b(X, ,)} a’xdr

on 2(8)X 8, 4 (U) X Q(E*). By the usual procedure of the calculus of variations, we get for the
corresponding Euler-Lagrange equations:

80: o*= —J(a,b), where v*(8v)=(v,80) defines o*

. _ da(X,1) . 8p
e v=-—"an b(X, 1)+ T

where p is a function determined in the usual way by the incompressibility condition,

5b: da/dt+0v3a/3X'=0 ie. p(g,a) is a constant,
Sa: 3b/d+vdb/3X'=0 ie. p*(g~',b) isaconstant.

These last two equations just say that the vector quantities @ and b are advected by the flow. (This
example can also be done in terms of the vorticity instead of the velocity as in Marsden and Weinstein

(12})
3. Lagrangians depending on a parameter

For compressible flow, the Lagrangian in material representation depends parametrically on the fluid
density; only in spatial representation does the density become time dependent. We shall generalize the
results of the previous section to cover cases like this. We shall also generalize the configuration space
somewhat 1o be of the form G X W, where W is a vector space. The Lagrangian will be taken to be a map
L, T(GX W) — R, depending on the parameter &g in a vector space V. We assume that there is a left (or
right) representation 7: G % V — V. For compressible flow, G will be the group of diffeomorphisms of the
region D containing the fluid (we assume that the fluid has fixed boundaries), W is absent, V is the space
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of densities on D and the representation r is by push forward of densities (corresponding to the advection
of the density by the flow.)

The cotangent lift of r,: V= V is the map (r,, 7,1): VX V* > VX V™, where r*1 is the dual of the
map rp-i: V- V. If we denote the natural pamng of Vwith V* by (, ): VX V* — R, then we have
(rea, rt18) = (a, B), for a€ ¥ and B &€ V*. Now define the Lagrangian LV TIIGXWXVXV*)>R

by
L"(g g, w. W, a,6,B,8) =L, (8 §.w,w) + (dr(g.a)/d1, r2\B)
=Lr(x.a)(gv gv W, ﬁ')+ <d+ov(a)7 B)v (3.1)

where the last equality comes from eq. (2.9). The following proposition relates the dynamics on G X W
described by L, for fixed a, and the dynamics on G X WX V' X V' * described by L.

Proposition 3.1. Let g,, 8, €G, w;,w, € W and a,,a, € ¥V be given and assume that r(g,;, ;) =r(g,, a;)
= ay is fixed. Then the following conditions on a curve (g, w) € £, ,(8) X 2,, (W) are equivalent:
i) (g, w) is a critical point of

j‘ "L, (g, g, w.W)ds (32)

(wnn the space 2, . (G)X Q,, (W)
ii) There are curves a in .Q, .a,(¥) and B in £(V*) such that (g, w, a, B) is a critical point of

f‘ “1¥(g, g, w, w,a,a,B,B)dt (3.3)
1

on the space 2, . (G)XQ,, (W)X&, .(V)XL(V*).

81+ 82

Proof. We will give the proof for the case W= {0}, so that L,: TG~ R and LY"T(GX VX V*)-R.
The proof for the case of a general W is entirely similar. First assume that (ii) holds, and let

(8,0, B)€8, ,(G)xQ, o(V)xQ(V*)
be a variation of (g, a, 8) such that for s =0,

(go(1), ag(£)Bo(1)) = (g(1), a(e), B(1)).

Then we have

0~_f'z[ L. .')(g”gs)_*_(gm ‘(g,".B,))]dr

Choose g, in 2

(3.4)

s =0

s,.5,(0) arbitrarily and choose a, =r(g; !, a,) so that dr(g,, a,)/d? = 0. Therefore

d o 5
(&\W 0= IS: j:l Lgn(gs' g:) d’lg-o

for any given variation g,, which is equivalent to (i).
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Next we assume that (i) holds. Choose a=r(g™', a,), so that dr(g, a)/dr=0. Let us denote
dL,., (8 8)/del, o= Li(g, £)(§). Integrating (3.4) by parts gives

d i )
-a?-[’:ILV( 85+ &5 Oy, &y ﬂ,; B,) dtlS-O

dr(g,,
.[L(e a)(g'g)[ "(8: d +f a?L“o(g"g‘)I:-O
ty ar* ;l, A 1y 50 &y
e 180 (2

The third term on the right side of (3.5) is obviously zero and the second is zero by assumption. Now write

d:

,4r=(s™".8) > i, (35)

s=0

dr(g,,

Li.ag 2)[ < d'(gv":) I

,(,..,(g.g)>

If we choose 8 € ¥ * such that
d - 8 ,

37"(8 l,p) = er(g.a)(g’ g):

then the proof will be finished. But we can choose
.18 .
rg f ELr(x.a)(g' 8)dt' a
Our Lagrangian will be said to be /eft invariant if
Lr(h.ao)(TsLh v, W, W)= L, (v w, ) (3.6)

for all g and 4 in G,a, in V, v, in T,G and where we take r to be a left representation. Likewise, we will
say that L is right invariant if we take r 10 be a right representation and

L,(,o‘,,,(TxR,pvg,w, t‘o) =L¢°(vs,w,t'v). (3.7)
The following proposition is readily verified:
Proposition 3.2. Let @ be the action of G on GX WX V' X V * given by

or(8.w.ag) = (hg, w, @) (3.8)
if r is a left representation and

oa(g.w.a0) = (gh.w. a) (3.9)

if r is a right representation. Then in both cases, L, is invariant if and only if L* is invariant under the
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action of ¢. In this case, LY can be written as

L"(g, g.w,w,a,4,8,B) = L,(e,0,w, W) + (¢ +v,(a), B), (3.10)
where, as usual, v denotes g in body (respectively space) coordinates.
Remarks. 1) Consider the integral (2.3). Variations §8 produce the equation

dr(g,a)/dt=0 i.e.a=r,i(a,) for some ay€ V (3.11)
or equivalently & + vy (a) = 0. This means effectively that the parameter a is “Lie dragged” along by the

motion g on G. The same thing happens to 8 as one sees by taking variations in a.
2) If L, is invariant, then L, is invariant in the usual sense under the action of the isotropy subgroup

G, = {g€GIr(g,a0) =ay}.

The converse need not be true, however.
3) If L, is invariant, the integral (2.3) becomes

(W\ f:[L‘,(e.v, w, %) + (B +vy(a), B)] dr. (3.12)

The variational principle allows arbitrary variations of we 2. (W)aeR
However, variations of v are constrained by the condition

(V) and Be Q(V*).

a,ay

o=T,L,(2.4) and ge9, (6);

arbitrary variations of g with fixed endpoints will not produce arbitrary variation of v. We will avoid this
difficulty in the next section by using Lin constraints. This will be a slight but useful generalization of the
results of section 1.

4) The roles of ¥ and V'* in the previous definitions and results are interchangeable, and in some
examples such as fluids, in which the parameter is the density which is naturally an element of the dual to
the space of functions (see examples D and E below), it seems quite natural to do so. This interchange is
also consistent with the useage in the general theory of semidirect products in Marsden, Ratiu, and
Weinstein [16, 17).

Suppose that V,¥V*,(, ), and r are as before and that we have a Lagrangian depending on a
parameter 8, € V' *, say

L‘,o: T(GX W) -R.

(ﬁ&en define

LY T(GXWXVXV*)-R
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by

. dre,
L*(g, g.w.,a,&B,8) =L, ,4(g. g, w, ) + <’x°=- %8.>

=L,. ,5(8 g, W, %) + (e, B+ 0,.(B)).

The Lagrangian Ly is invariant in the sense that
Lr;. .po(TthUm W, 'i') = Lp,,( Uy W, W)

if and only if L”" is invariant under the lifted action as before. In that case we have

L (g, g, w.%,a,&,B8,8)=L""(e,v,w,¥,a,4,8,8)
=Lp(e, v,w, W)+ (a,ﬁ+v,,.(ﬁ)).

Examples 3.3. A) The heavy top in body representation. (See Marsden, Ratiu, and Weinstein {16, 17)] for a
general reference; we will, to a large extent, follow the notation of this reference.) A heavy top is a rigid
body moving in three dimensional Euclidean space about a fixed point and under the influence of gravity.
The configuration space is G = SO(3) and the motion of the body is a curve 4 € 2(G). Let M be the total
mass of the top and let /x denote the vector determining the center of mass, where x is a unit vector along
the line from the fixed point to the center of mass. Also let &, be a vector representing the force of gravity
(usually a, is taken to be a vector pointing vertically downward in spatial representation), with magnitude
llxoll the acceleration due to gravity. Thus the potential energy is

V(A,ay) = Mlay* Ax = MIA " a,- x. (3.13)

The kinetic energy, being as in the example of the rigid body, we have the Lagrangian L,: TG—R given
by ’

L, (A4, A) =} 5ol + Lw? + Iw}] — Miay Ax. (3.14)

We regard L, asa Lagrangian depending on a parameter (even though ay is of course fixed) and take the
action of G on the parameter space ¥ =R?> to be the usual left action. The vector x and the moment of
inertia tensor / are held fixed under this action. We also identify V* with V using the standard dot
product. Since the kinetic energy is left invariant, as in the free rigid body, the Lagrangian L, is left
invariant in the sense of Lagrangians depending on parameters. We also compute using (3.1) or (3.10) with
ag = Aa, that

LY(A,4,a,&.B,B) =L, (4)+(é+wzXa,B)
=4[ ho? + Lw} + Lo} = Mla x + (& + wy X a, B). (3.15)

Thus, by proposition 3.1, solutions of the heavy top equations are given by critical points of the integral
(2.3). (We accept as known that the heavy top equations satisfy Hamilton's principle on TSO(3) for the
Lagrangian (3.14) with « held fixed-see for example, Marsden, Ratiu. and Weinstein [16, 17).)

B) Compressible isentropic fluids. Here we start with the Lagrangian

L, : T(Diff(D)) - R
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given by
L, (9.8) =4 [ po(X)lioe o(X)I2 X = [ po( X)w(po( X)(Jy-1 = 9(X)) X, (3.16)
where J_-1 is the Jacobian of ¢!, Choose
V=F(D)=V>,
(@.0) = [a(X)p(X) X, |
and
r(p,a)=acp, r*(p,p)=peo Y, ;
so that we have the usual invariance property ,
(r(g.a).r*(97%,p)) =(a, p).
The Lagrangian L, is invariant as is readily verified, and so we get ,
(™ Lebadnp) =4[ o(x)lo(x)IPd = [p(x)w(p(x) e
+fDa(x)(p+ v(pv)) d’x, (3.17) ¢

and thus the continuity constraint § + V(pv) = 0 appears in a natural way. I
Additional examples that one can treat in a similar fashion are the following: the heavy top in spatial '
representation, incompressible inhomogeneous fluids, compressible nonisentropic fluids, and fluids in the EREEIEE
convective picture (see Holm, Marsden, and Ratiu [35]). The reader who is interested in these examples can T
receive from us a longer version of the present paper. '

4. Variational principles and Lin constraints for parameter dependent Lagrangians

In this section we will introduce Lin constraints for variational principles involving Lagrangians of type
L: T(G X F)— R, where F is a vector space. For example, the Lagrangians considered in section 3 are of
this type, with F= WX VX V=,

The main result of this section is a generalization of theorem 2.4. The result is similar enough so that we
may omit the proof; however, it is still useful in examples. Another interesting case of this type is that of a
Lagrangian L: TT*G — R, L=0,— H, where §, is the canonical 1-form regarded as a function on TT*G
and H is a given Hamiltonian. In this case we identify T*G = G X g* (using body or space coordinates)
so that we can take g* = F. More generally, we may consider Lagrangians like L: T(T*(G X W)) - R,
where W is a given vector space. Then F=g* X T*W=qg*X WX W *.

Let ¢ be the (left) action of G on G X F given by @ (h, f)=(gh, /)= (Lh, f). We will often represent

(" T(GXF)=GXgXFXF where TG is identified with G X g using the body coordinate representation. A
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typical element of T(G X F) will be denoted by (g.v, f, f) where v= TL,-\V,, Ve T,G. Now assume
that E, E*, p, p*,{ , ), U, 8,, and J are as in section 2. Note that these can be chosen once the group G
is given, no matter what the space F is. For a given Lagrangian L: T(G X F) — R, define the map
LE. (GXFXEXE*)-R by

L%(g.v, 1. f.a,d.b,b)=L(g,v, f, f')+(d"(g’“) p*(g™! b)>

=L(g.v, f, f) + (d+0g(a), b)
=L(g,v, f, f)+6y(a,d,b,b)+J(a,b)(v). (4.1)

Proposition 4.1. Suppose that (g, f)€EGXF, i=1,2, a;,a, €U, and p a, =p, a,. Then the following
assertions are equivalent: B

i) (8, f) is a critical point of .
[L(g.0. 1. f)ar | P
]

on

(@\ 98:-82(6) X 'QIJ:(F)' . .:;

ii) There are curves a, b such that ( 8 [, a, b) is a critical point of
[°L%(g.0. 1. f.a,d,b,b)ds -
h L
on
2,(G)x 82, ,(F)x 2,.a,(U) X 2(V*).
Assume, in addition, that L is invariant under the (lifted) action of the left action @ on G X F. Then, either

of conditions (i) or (ii) are equivalent to:
iit) There are curves a, b such that (o, /. a, b) is a critical point of

[L%(o. 1, f.a,d,b,5)dr
4
2(a)x 82, ,(F)x 2,,..,(U)xQ(V*),
where LE(o, /. £, a, d, b, b) stands for LE(e, o, /. f.a.d,b,b)

Remark. The previous proposition and definition can be readily modified for the case of a right action

(" ok £)=(hg. f)=(Rh. 1).
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Examples. The following examples correspond to those in section 3. In each case, we first choose E, E*,
{, )p,p* U and then, as a direct application of (4.1), we write the variational principle involving Lin «
constraints. Each time we start with the Lagrangian L = LY obtained in section 3.

A) Heavy top in body coordinates. We choose F= VX V*, with ¥=R? and L given by

3
L(4,0p.a,6,B8,B8)=1 Y Lol — Mila-x+ (&+(d;),(a), B). (42)
i=1
Since G = SO(3), we may choose E, E*, p, p*,U,( , ) as in example 2.5. Then we get the Lagrangian ' ,
N i
LE(g,wB,a,d.B,ﬁ,a,d,b,b)=§ Y Iw}-Mlasx+{(d+wyXa,B)+ (d+bga,b). (4.3) IXES
i=1 i

Since the variations dwg, 6a, 68, 6a, and 8b are arbitrary (except for a fixed endpoint condition in some
cases) we can apply the usual techniques of the calculus of variations to the integral SR

j 1€ d;

4
(@\and obtain the following equations:

dwg:  Thw,=1((ab)y — (ab)y) — By, + Brery,
1w, = §((aby, — (ab)ys) — Byas + By, .
Iywy= }((ab)yy = (ab)y) - By + Biary ey

T . i _."'.
(or Io=¢+ BXa, where = M) -‘3'7:"?': Bats

88: a+wyXa=0.

da: B+wyXB+Mix=0.
8b: d+dza=0.

da: b-boy=0.

B) Compressible isentropic fluids. Let E, E*, p, p*, U be chosen in a way analogous to example 2.7, and A
let L¥" be the Lagrangian obtained in section 3, example B. Then we get g

L%(p.v,a,d,p,p,a,4,b,b) = %po(x)Ilv(x)ll’d’x-po(x)W(p(x))d’x

+foa(x)(b+ V‘(pv))(x)d’(x)+fb(a+ -g%v‘(x))‘b(x)dsx.

(W\ Variations 8¢||0D, 8a. 8p. 8a. 6b can be chosen arbitrarily (except for the usual fixed endpoint conditions
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imposed in (4.1)) and we get
da b da .
dv: p;= i T [Clebsch representation)
Sa: p+v-(pv)=0 [Continuity)

8b: d,+v*va;=0, i=1,23

8a: by+v Vb +bVev=0, i=1,2,3
3 [Lin constraint]
Sp:  &={llv|*~ 55 (pw(p)) — v va.

As in section 3, we remark that the additional examples of the heavy top in spatial coordinates,
incompressible inhomogeneous fluids, compressible nonisentropic fluids, and fluids in the convective
picture are available in a longer version of the present paper.

S. Variational principles and reduction
Let (P, w) be a symplectic manifold where the symplectic form w is exact, say w = —d@, where 8 is a

1-form. Then solutions to the equations of motion for a given Hamiltonian H: P — R are critical points of
(" the function

[7[o( ) - ), (51)

where

ZEQz“;:(P) -f".'

and zy, z, € P. Now assume that G acts on P (say, by a left action) by #-preserving diffeomorphisms of P,

and let J be the associated momentum mapping. According to reduction theory (see Marsden and

Weinstein (18] and Abraham and Marsden [32]), there is a symplectic structure w, on the reduced space

P, =J"Yp)/ G,, where G, is the isotropy group of the coadjoint action that leaves p € g * fixed. Note that

w, is not necessarily exact. In other words, one cannot expect to obtain a reduced version of the 1-form 8, .

except in some particular cases. :
The purpose of this section is to show that, nevertheless, we can still give a reduced version of the :

variational principle. Let G be a group. Then T*G is a symplectic manifold and G acts on T*G by either

(lifted) left or right translations.

Remark. Some of the concepts on this section are related to results of Novikov [36]. There the functional
on curves given by

f “9(dz/dt)ds

fy

i1s studied as a locally defined object when w is not exact, giving rise to a further definition of an infinitely
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sheeted covering and a related global extension of the previous functional. However, the main purpose of
Novikov's paper is to study some generalization of Morse theory, while the role of symmetry is not ‘
considered; see also Weinstein {37]. There are some remarks in Novikov's paper, concerning Clebsch
potentials as locally defined objects and the question of conditions for its global existence is raised. Our
assumption 2.3 partially answers this question.

5.1. Cotangent bundle case

We will begin with the case P=T*G and will leave considering a more general situation for later.
Notice, however, that many interesting examples (compressible flow, MHD, etc.) are still included in the
case P=T*G by taking G to be a semidirect product (see Marsden, Ratiu, and Weinstein [16]).

The momentum mapping corresponding to left translation, say J: T*G — g*, is well-known to be

J(a,)=a,°T.R,. :
In body coordinates a, becomes v =TSL a,, so we identify a, with (g,»)EGXg*= T*G, and so J . ‘.';ts'
becomes ,
J(g,v) =Ad%1v.

The set J~}(u) is the graph of the 1-form a, given by

(W a,(g)=peT,R, (5.2)
which is invariant under the (lifted) action of G by right translations, and is also left invariant under the
(lifted) action of G, by left translations. Let H: T*G — R be a given Hamiltonian, and let &,: 2(G) - R
be the functional

2.0= [ 1o-(*52) - #eton]o

= [*[a(e)(8) - H(au(2))] et B
= f'fz[Ad; (o) - H(a,(g))] dt, (5.3) ;-ff"‘i

where o=T,L_,§ is the body representation of the velocity. Observe that if H is (left) invariant then, in
addition to the equalities (5.3), we have

Z,(g)= _[,"[(Ad;u)(v)-H(Ad:u)] dr. (54)

Since the map a,: G—J -1(p) is a diffeomorphism, to find critical points of £ ,(g) on g€ 2,,.5(0)
amounts to “restricting” the variational principle (5.1) to J~!(p)< T*G. Critical points of (5.1) are
solutions to equations of motion that stay on level sets J =1(p), and they project under 7&: T*G — G onto
@m'\ critical points of .?F(g) on 93,.g=(6) for some g,, g;. However, it can be readily verified in simple
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examples that critical points of Z,(g) on £, ,(G) are usually not unique. Moreover, by applying the
usual techniques of the calculus of variations we get part (a) of the following proposition:

Proposition 5.1. a) Critical points of .?”(g) on 93.. sz(G ) are curves g such that
~-da,(g,08) - dH(g)(8g) =0 forall 8g,

where H(g) = H(a,(g)).

b) A curve g is a critical point of £,(g) on &£, .(G) if and only if the projection 7,(a,(g)) is a
solution of the equations of motion of the reduced system, where = J “}(pu)— P, is the natural
projection.

We can prove part b) of proposition 5.1 by using part a) and techniques from Abraham and Marsden
[32; p. 302).

Let us observe that the map =, is given by m,(a,(g)) = Ad} p and that F, coincides with the coadjoint
orbit G-p= P,

As an immediate consequence of proposition 5.1b and the definition of the isotropy group G, =
{he€ G|Ad} p=p), we have:

Corollary 5.2. The curves g and g€ &, . (G) are critical points of £,(g) that project onto the same
solution of the reduced system on P, if and only if there exists h € £2(G,) such that h(r)g(1) = g(1).

The quantity
IR CHYOLE
1

that appears in (5.3) and (5.4) clearly depends on the curve g € 2, . (G). However, it can be shown after
some calculation that it only depends on the curve

Adfp=ve Q,I_,:(Pp),

where »,= Ad} p, i =1,2, at least for small variations of the curve » about a fixed position. This amounts
to showing that

d
ﬁfled:axp(vl)d’ =0,
L]

where hy(1)EG,, ho(t)=e for 1€[1,1;), hy(1,)=e, i=12, and 0,=TL, ,,-(dk,g/d1). To be
precise, let us introduce the following notion. Define on 2(G) the equivalence relation g ~ g if and only if

)
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there exists h, € 2(G,) such that hy(1,) =e, for A€ (0,1}, ho=e for 1 €[5y, 1,}, and h,g =g. Then £,(g)
induces a function .S?’F: 2(G)/ ~ — R. In other words, we have a commutative diagram - &

P,)

a 2(Jea,)

2(G)

where a, 8 are the obvious natural maps.
An important observation is that the restriction B|2, .(G)/~ is a local diffeomorphism onto
2, ,(F,) where v,=Ad}p, i=1,2 (this is readily verified and it is also a consequence of the
corr&spondmg result in part B, below), though it is not a diffeomorphism unless G, is simply connected.
Thus .? induces, in general, a multivalued function, say 2 on .Q,' v(F), and thxs will be single valued
(wm‘( G, is samply connected. Another important fact is that the variation

82,:9, ,(P)~T*%, ,(P)
is given by
82, (»)(8v) = f “[w,(v, 8%) = dH(v)(8»)] dt. (5.5)

In particular, this implies that 8.?“ is a well defined single valued 1-form on £, , (F,).
The proof of these facts will be given in (B) in a more general situation.

Remarks 5.3. 1) Given a symplectic manifold (P,w) and a Hamiltonian H: P — R, solutions to the
equations of motions are critical points of

[*lo(2,82) - dH(2)(82)] s (5.6) o

on £, ,(P). In other words, the integral (4.6) is 0 for all 8z if and only if z(¢) is a solution to the
equations of motion. This is an obvious fact.

2) All the previous results remain valid, after appropriate modifications, if we work with right invariant
systems rather than left invariant systems.

3) To determine

(m\ f’-'zAd;p(v)dt
1

th



S - P . . -
L S . . . B e IC IR PP - e B

H. Cendra and J.E. Marsden / Variational principles 85

as a locally defined function on £, ,.(F,) amounts to choosing a map
Q':-’z( PF) - 98:-8:(0)

such that, composed with g— Ad} p, it gives the identity. In many cases this can be done in a natural
way.

5.2. Exact symplectic manifold case
Let (P, w) be a symplectic manifold with w = —d#@.

Lemma 54. Let z€8, ,(P)and let z, beacurve on £, , (P) at z, meaning 2,(2,) = 2(;), i= 1,2, and
2o(t) =2(1), 1 €[1,, 1;]. Then

d 5] gz_k' 10 az a_z
ﬁfr. a( = )d: =f“ w(—aT. ah)dz

In other words,

A=0 A=0

¢! _ 2 _ = %
sf“a(z)dz-j; d6(z, 6z)dt ];:,w(Bz)dt. (5.7)

Proof. Consider a partition 1, =a, <a,...a,=1, such that, for each i=1,2,...,n-1, the curve z(1),
1€(a, a,,,) belongs to the domain of a chart of P. Therefore, in local coordinates, we have

2[0:.1[30; 9z 8zf 9%z

& [ atetan-Fonal 5 9% ar +0anw |

A=0 a, A=0
B R Y 4
., L3z 0N O T g dr N X )|, ol,
e 9z az 9z Gt
- -da(--. )d: + [o(—)] 58
fa, 3 ax )4t lAax )], (538)
Adding up expression (5.8) over i=1,2,...,n -1, we get
d pn,{0z 1; 9z 0z
o[ Z\d =["-d0(x,5)dr| (5.9)
a'x-[,, ( 3') - f,‘ ( a1 a)\) o
since (3z/9A)(¢,)=0,i=1,2. [ |

Proposition 5.5. Let (P, w) be a symplectic manifold such that w= —d#@, and let G be a group of
6-preserving diffeomorphisms of P. Let p € g* be chosen and define the equivalence relation . on 2(P)
as follows: z — z’ if and only if there exists a curve h, on £(G,), A €10,1] such that A,(¢,)=¢ fori=1,2

.
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and A€[0,1), ho(r)=e for t €[s),1.] and 2’ = hz. Denote by Z the equivalence class of z € (P), and,
for z,€ J~Y(p), denote 7,(z,)=Z,.
Let H: P — R be a G-invariant Hamiltonian and define %: 2(P)— R as follows:

2£(z) =[’[0(2’)—H(z)] dr. (5.10)

Then

a) & induces a function on (P)/ .., the restriction of which to 2(J~'(p))/ ~ will be denoted Z,..
The map _g: 2,.:.J )/~ - 2:,.:(P,) is a local diffeomorphism and £, induces a multivalued
function &,: £; ;(F,)— R. We have the commutative diagram

'?ﬂ
Re 2, (P
y B 182V T B
\5=..,,(J-‘(u))/~ A
P [a o)

2, 7))
cm b) The variation
82,: 2, ;(P)-T*%; 1,(P) (511)
is a well defined (single valued) function.

c) The critical points of 8?,,, i.e.. the points Z&€Q; ;(P,) such that 8?”(2)(82) =0 for all 6Z €
T&;,.5,(F,), are exactly the solutions of the equations of motion on the reduced space.

d) The functional 8.%,(Z)(82) on Q. ; (P,) has the expression
82,(2)(87) = [*[w,(,8(z) - dH,(2)(82)] ar
4
= f“[w(z,sz) - dH(z)(8z)) dr. (5.12)
h
Proof. a) The assertion about 8 being a local diffeomorphism amounts to construction of a map

93,.13( Pp) - Q:‘.:g("~l("’))

in a neighborhood of each curve B(z) such that, composed with B, this map gives the identity map. This
can be readily achieved by using the fact that z, is a submersion.

To see that &, is well defined, we should check that, for a curve h, € 2(G,) such that hy(r)=e for
1€[1,t;] and hy(1,)=e, i=1,2, and. say z) = h,z, we have

‘w\ :_Aj:h[a(z'x)—ﬁ(zx)]dtk =0

X,
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for small values of A,. It is enough to check the case A, = 0 since we can always replace z by A, z. Then,
by using the lemma, we have

S [o0() - HE ad = [*a(2.82) - dH(2)(82)],
0 o h

A=

where 8z = (3z/8A)(¢,0).
Now, from the reduction procedure we have

w(2,82) - dH(z)(82) = &, (Tm 2, T78z) — dH,(7,(2))(Tn8z).

But

=0,
A=0

d d
Trlz= -&-xvr“(h,‘z) o x(2)

which proves the assertion.
b) and c) follow from d)
d) As in the proof of a), we get

52,(2)(82) = 8.2(2)(52)
=8 [*[8(2) - H(z)] dt

= [*lo(2,82) - dH(z)(82)] dt

= ft:[‘,,“(z‘, §7) — dH,.(‘z')(GE)] dr. .

Remarks. 1) It may be of interest 10 compare the previous procedure with the variational principle given
in Balachandran et al. [38]. There the action for a system (P, w, H) is defined by

f_\[“’(g_f' g_’z\) - H(z(s, A))]d: AdA,

where 4 C P is the surface defined by = = z(¢, A), 1, €1 <1,,0 <A < 1, constrained as follows: 8z(¢;, A) =0,
82(t,. A) =0 for A €[0,1}. This amounts to considering the action as a functional on the “path space” of
curves with fixed origin z,. Thus z(¢.A) is a curve on that path space and the condition 8z(¢;, A) =0,
i=1,2, A€[0,1] is the usual fixed endpoint condition.

2) The approach of Capriz [39] appears to be closely related to the Clebsch potential approach of Seliger
and Whitham {6].

Remark. We will combine some cases of Clebsch representation, like these described in previous sections,
with the reduction of a variational principle. Thus, let G be a group acting on a vector space V by a
representation p: G X ¥ — V as in section 2. In particular, we have 2 momentum mapping Jg: VX V'* —
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g*. If K is the group of canonical transformations that leave J; invariant, i.e., K is the Gauge group of
Ji;, then we have a dual pair (see Marsden and Weinstein [12] and also Weinstein [40]) .

Vvxve*
a* £

The reduced spaces for the action of K are the symplectic leaves of g*, i.e., the coadjoint orbits. Now By
suppose that a Hamiltonian is defined on g*, giving rise to a Hamiltonian H on ¥ X V' * by composition )
with J;. Then H is K-invariant and we can apply the methods described in this section to get a variational :
principle on coadjoint orbits of g* starting with the variational principle with Lagrangian given by § — H DL

on V X V*, and reducing by the action of X. o
This also gives an interpretation of Lin constraints in intrinsic terms. In fact, Lin constraints are
restrictions on curves (a,, b,) € VX V* of the type (p(g,» a,). p*(8 ", b,)) = (ao. b;) fixed. Since Jy is '

G-invariant, this implies that Ji(a,, b,) = A is fixed. Now assume that, given (a,, b,),(a,, b,) € Jg'(A),
there exists g € G such that (p(g, a;), p*(g~, b,)) = (a3, b,). Then Lin constraints would be the level sets
of Ji, which in turn are in one to one correspondence with coadjoint orbits of G.
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