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Nonlinear Stability in Fluids and Plasmas

Jerrold E. Marsden!
and -~
Tudor Ratiu?
Arnold’s geometric methods are used to establish physically meaning-
ful stability criteria for the Kelvin-Stuart cat's eye solution for two di-

mensional ideal fluids, vortex patches, reduced magnetohydrodynamics, and
oceanographically interesting stratified shear flows.

1. Introduction

This paper discusses some recent progress in the field of stability of
fluid and plasma equilibria. The objective is to derive explicit criteria
which guarantee the nonlinear stability of specific equilibria. Most of the
work described was done by H. Abarbanel, V. Arnold, R. Hazeltine, D. Holm,
P. Morrison, M. Pulvirente, T. Ratiu, Y. Tang, Y.H. Wan, A. Weinstein and the
author, although others have been involved in related work cited in the paper.

There are various meanings that can be given to the word "stability.”
Section 2 uses ideas from the theory of dynamical systems to clarify the
several gulses carried by this fundamental concept. Intuitively, stability
means that small disturbances do not experience large growths as time passes.
Being more precise about this notion is not just mathematical nitpicking —
indeed, different interpretations of the word stability can lead to different
stability criteria, as we shall mention later on in connection with the stability
of stratified shear flows that are_ofcen used to model oceanographic phenomena.

The basis of our method was originally given by Arnold [1966a,b] and

applied to two dimensional ideal fluid flow, substantially augmenting soﬁe
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pioneering work of Lord Rayleigh [1889]. Related methods were found some-
what earlier in the plasma physics literature, notably by Newcomb [1958],
Fowler [1963] and Rosenbluth [1964]. However, these works did not provide
some key estimates needed to deal with the nonlinear nature of the problem.

In retrospect, we now view other stability results, such as that for solitons
in the Korteweg-de Vries equation, due to Benjamin [1972] and Bona [1975]

as being instances of the same method used by Arnold. A crucial part of

the method exploits the fact that the basic equations of nondissipative

fluid and plasma dynamics are Hamiltonian in character. Section 3 recalls
some facts about Hamiltonian mechanics and explains the nature of the recently
discovered Hamiltonian structures that are used in the stability analysis.

The last four sections of the paper discusses the results which can be ob-
tained when the method is applied to four specific problems. These are:
first, the Kelvin-Stuart cat's eye solutions of the planar ideal fluid eqgua-
tions; second,vortex patches for planar ideal flow (these solutions are reminiscent
of Jupiter's red spot); third, the equations of reduced magnetohydrodynamics
(RMHD) that are sometimes used to study plasma confinement for fusion reactions
in tokamaks; and, finally, the equations for an ideal, stratified fluid in a

velocity and density regime of oceanographic relevance.

25 he Meaning of Stability

=]

Stability is a dynamical concept. To explain it, we shall use some funda-
mental notions from the theory of dynamical systems (see, for example, Hirsch
and Smale [1274]). The laws of dynamics are usually presented as equations

of motion which we write in the abstract form
U= ¥(u). (2.1)

Here, u 1is a variable describing the state of the system under study, X
is a system-specific function of u and u = g%u where t is time. The

set of all allowed u's forms the state space P. For classical mechanical systems,
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u is often a 2n-tuple (ql, cees qn,pl, ceoes pn) of positions and momenta
and for fluids, u is a velocity field in physical space. As time evolves,
the state of the system changes; the state follows a curve u(t} in P. The
trajectory u(t) is assumed to be uniquely determined if its initial condition

= u{0) is specified. An equilibrium state is a state ue such that

)
x(ue) = 0. The unique trajectory starting at u, is u, itself; that is,
u, does not move in time.

The language of dynamics has been an extraordinarily useful tool in the
physical and biclogical sciences, especially during the last few decades. The
study of systems which develop spontaneous oscillations through a mechanism
called the Poincaré-Andronov-Hopf bifurcation is an example of such a tool
{see Marsden and McCracken [1976] and Chow and Hale [1982], for example).

More recently, the concept of “chaotic dynamics" has sparked a resurgence of
interest in dynamical systems. This occurs when deterministic systems such
as (2,1) possess trajectories that are so complex that they behave as if
they were random. Some believe that the theory of turbulence will use such
notions in its further development. (See, for example, Ruelle [1980] for a
popular account.) We are not concerned with chaos directly, although it can
play a role in some of what follows. In particular, we remark that in the
definition of stability below, stability does not preclude chaos. In other
words, the trajectories near a stable point can still be very complex --

stability just prevents them from moving very far from equilibrium.

To define stability, we need to choose a measure of nearness in P.
This is done in texms of a "metric" d. For two points w and u, in
P, @ determines a positive number denoted d(ul,uz) which is called the
distance from u, to u,. In the course of a stability analysis, it is
necessary to specify, or construct a metric appropriate for the problem
at hand. In this setting, one says that an equilibrium state u, is stable
when trajectories which start near u remain near u, for all t > 0.

(Technically, given any number € > 0, there is a & > 0 such that if

d(uo,ue) < §, then d(u(t).ue) <€ for all t > 0). Figure 1 shows examples
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of stable and unstable equilibria for dynamical systems whose state space is

!
& 7

the plane.

(a) (b)
\@
(c) (d) /N

Figure 1. The cquilibrium point (a) is unstable because the trajectory u(t)
does not remain ncar Uug. Similarly (b) is unstable since most
trajectories (eventually) move away from ug. The equilibria in (c)
and (d) are stable because all trajectories near up stay near Ue-

As we shall see in Section 6, fluid systems can be stable relative to one
distance measure and, simultaneously,unstable relative to another. This seeming
pathology actually reflects important physical processes.

A well-known physical example illustrating the definition of stability
is the motion of a free rigid body. This system can be simulated by tossing
a book, held shut with a rubber band, into the air. It rotates stably when
spun about its longest and shortest axes, but unstably when spun about the
middle axis (Figure 2). (The distance measure defining stability in this example
is a metric in body angular momentum space, which becomes indefinite in case (c)

of Figure 2, see, e.g. Arnold [1978] and Holm, Marsden, Ratiu, and Weinstein [1984].)

/qﬁﬁ
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(a) (b) (c)

Figure 2. If you toss a book into the air, you can make it spin stably about
its shortest {(a) and longest (b) axis, but it is unstable when it
rotates about the middle axis {(c).

There are two other ways of treating stability. First of all, one can
linearize equation (2.1); if O&u denotes a variation in u and Dx(ue)
denotes the linearization of X at u, (the matrix of partial derivatives,in

the case of finitely many degrees of freedom), the lincarized equations describe

the time evolution of "infinitesimal” disturbances of u :
L (8u) = DX(u )+du. (2.2)
dt e .

Equation (2.1) on the other hand, describes the nonlinear evolution of finite
disturbances Au = u-u . We say u, is linearly stable if (2.2) is stable
at du = 0, in the sense defined above. Intuitively, this means that there are
no infinitesimal disturbances which are growing in time. If (Gu)o is an

eigenfunction of Dx(ue) , that is, if

Dx(ue)-(é‘u)o = )\(Gu)o (2.3)

for a complex number A, then the corresponding solution of (2.2) is

Su = eﬂ(du)o, (2.4)
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This is growing when A has positive real part. This leads us to the third

notion of stability: we say that equations are spectrally stable if the eigen-

values (more precisely points in the spectrum) all have non positive real parts.

Under technical hypotheses, one has the following logical implications

stability => linear stability ==> spectral stability

If the eigenvalues all lie strictly in the left half plane, then a classical
result of Liapunov guarantees stability. (See, for instance, Hirsch and
Smale [1974) for the finite dimensional case and Marsden and McCracken [1976]
for the infinite dimensional case.) However, in systems of interest to us,
the dissipation is very small -- our systems are essentially conservative
and, in an appropriate sense, Hamiltonian. For such systems it is known that
the eigenvalues must be symmetrically distributed under reflection in the real
and imaginary axis. This implies that the only possibility for spectral
stability is when the eigenvalues lie exactly on the imaginary axis. Thus,
the Liapunov theorem is of no help in this case.

In fact, spectral stability typically does not imply stability; instab-
ilities can be generated by the nonlinear terms through a mechanism called
Arnold diffusion. (See, for example, Lichtenberg and Lieberman [1983] for
an account of much of what is known, both theoretical and numerical.) Thus,
to obtain gencral stability results, one must use other techniques to augment
or replace the linearized theory. We give this technique in Section 4.

Here is a simple planar example of a system which is spectrally stable
at the origin,but which is unstable there. (This is not a conservative sys-
tem -- to get such an example requires more work.) In polar coordinates

(r.0), consider the evolution of u = (r,8) given by

£ = 2 (1-r)
(2.5)
$=1
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The eigenvalues at the origin are readily verified to be i/:i, so the
origin is spectrally stable; however the phase portrait, shown in Figure 3
shows that the origin is unstable. (We included the factor 1-::2 to give
the system an attractive periodic orbit -- this is merely to enrich the
example and show how a stable periodic orbit can attract the orbits expelled
by an unstable equilibrium.)

Despite the above situation relating the linear and nonlinear theories,

there has been much effort devoted to the development of spectral stability

_—é\

~§\\“~;>___——'

Figure 3. The origin is a spectrally stable, but
unstable point for this dynamical system.

methods, including expensive numerical codes. When instabilitieg are present,
spectral estimates do give important information on growth rates. As far as

stability goes, spectral stability gives necessary, but not sufficient

conditions for stability. In other words, for the nonlinear problem spectral

stability can predict instability, but not stability. Our purpose is the

opposite: to develop sufficient conditions foxr stability.

3. Hamiltonian Systems

The traditional view of Hamiltonian mechanics, as it is found in the
classical treatises such as Whittaker [1917], is that the dynamics is

governed by a special form of (2.1) called Hamilton's equations:

cees N (3.1)

™

1
-
~

i 9H . oH
LI <

= 8pi' i 3
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Here ql, cenr qn, are configuration variables and Pyr oeees P, are their
conjugate momenta. These 2n equations describe the evolution of the phase
point u = (ql, cees qn,pl, [ pn). Hamiltonian theory is remarkably
successful in describing many situations in dynamics such as satellite motion.
For our purposes, however, a generalization is nceded. For instance, con-

gider the classical Euler equations for rigid body motion: these are

-1, 11 1T
: " =T I1 3 By =T I2 mm, (3.2
2'3 31 12

where m = (ml.mz,m3) is the angular momentum of the body as seen by an

observer moving with the body and Il' Iz' 13 are the fixed roments of
inertia; the body angular velocity W = (ml,mz,w3) is related to the
angular momentum by Ilml =By Izub = My 13w3 @ my. It is clear that (3.2)
are not in the form (3.1) because for one thing, (3.1) consist of an even
number (2n) of equations, while (3.2) has an odd number (3) of equations.

In what sense are (3.2) Hamiltonian? One way to answer this is to formulate
the equations in terms of Euler angles ($,8,¥) and their conjugate womenta
(p¢, Py p¢). Then the classical texts (such as Goldstein [1980], Chapter 4)
show that the corresponding equations have the form (3.1). However this
requires six equations, while (3.2) needs only three. If one wishes to deal
with (3.2) directly, which is useful for a stability analysis,a new idea is
neceded. The crucial step is to concentrate on Poisson brackets.

Given two scalar valued functions F and G of ql, cesr qn.pl. Y

P, their Poisson bracket is defined by

n
fr,c} = § -9—‘;-—311-—391—333-] (3.3)
i=13q" Py a3t Pi
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Using this notation, the chain rule shows that Hamilton's equations (3.1) can

be equivalently written in Poisson bracket form:

F = {r,u} (3.4)

holds for any function F(gl, veny qn,pl, R pn).

The Poisson bracket (3.3) enjoys four properties which turn out to be
crucial. Let F, G, K be functions of ql. vees q",pl, «eer P, and a be
a constant. Then

1. {F + aG,k} = {F,x} + a{G,x}

2. {r,6}= -{G,F}

3. {{r,c},x} + {{x,F},G} + {{G,K},F} = 0 (Jacobi's identity)

4. {rG,x} = r{c,Kk} + {F,X}G (Leibniz' rule)

{(These four properties have been isolated by many authors, such as Dirac
[1964), p. 10) Abstracting this situation, we say that a phase space P is
a Poisson space {or Poisson manifold) when therec is an operation {+, *}
on pairs of functions on P satisfying properties 1.-4.
This abstraction would of course be useless unless it included interesting
examples of non-canonical brackets; that is, brackets not of the form (3.3).
The rigid body provides one. Let P be the space of all m's and let the

Hamiltonian be the kinetic energy, known to be simply

A I
H = %I—1+I—2+I—3, (3.5)
1 2 3
and let the bracket be defined by
{F,G} = -m*(FF X v0), (3.6)

"un
where "+" is the vector dot product, X 1is the vector cross product and
VP, ¥6 denote the gradients of F and G (understood to be evaluated at

m in (3.6)). It is straightforward to check that the bracket (3.6) makes
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P into a Poisson space and that the equations of motion (3.2) can be recast
in the form F = {F,H).

The general notion of a Poisson manifold goes back to Sophus Lie [1890]
(see Weinstein [1983]). The first textbook we know of that discusses gen-
eralized Poisson brackets in this sense and their applications to mechanics
is Sudarshan and Mukunda [1974]. (The bracket (3.6) appears there on
page 318.)

To deepen our understanding of where (3.6) comes from, we consider the
relation between the angular momentum vector m and the Euler angles and
their conjugate momenta (¢,6.¢,p¢,pe,p ). This relation is given by classical

v
mechanics texts (such as Goldstein [1980]) to be

m, = [(p¢-p¢ cos @)sin ¥ + pe sin 0 cos Y]/sin 6,

1
m, = [(P¢-p¢v cos f)cos Y - Py sin 8 sin ¢]/sin 9, (3.7}
my = Py,

Given functions F and G of (ml.mz,maj, substitution of (3.7) expresses

them in terms of (¢,6,lp,p¢.pe,pw). Now compute the canonical bracket.

A lengthy, but straightforward calculation shows that the answer ig precisely

(3.6). Thus, in a certain sense, (3.6) is a transformation of a canonical bracket.
The procedure described for the rigid body turns out to hold for other

systems as well. An important one is the Euler equations for homogeneous in-

compressible flow. We state the result for planar flow in a region D for

simplicity, although there is an analogous result for three dimensional

flows. The equations for the velocity v are
v
-af.q.{!.y,\_,: -Vp, {3.8)

where the pressure p is determined implicitly from the condition div v =0
together with the boundary condition that v be tangent to the boundary of
D. If v = (U,V), the vorticity is the thizd component of the curl of v:

L 8v _ au

“ e (3.9)

w ax 3y



(ﬂ’-\

m

Taking the curl of (3.8) produces the vorticity equation,

dw _
E TR Yw= 0. {3.10)

Let P be the space of w's (with v determined by (3.9), divv = 0 and
the boundary conditions -- such a v is uniquely determined if D has no

holes). The Hamiltonian is the kinetic energy, given by

H= %-I |l|2 dx dy,
D

assuming the density is unity. The bracket of two scalar functions of the

vorticity is defined by
§F &G
{r,G} = JD “’{s—m' Gm} dx dy, (3.11)
Xy

where %5 is the functional derivative (defined as in Goldstein [1980]) and
{. }xy denotes the canonical bracket (3.3) with q = x, p = y. Again,
(3.11) makes P into a Poisson space and Euler's equations (3.10) (or
equivalently (3.8)) can be recast as F = {F,H}.(I“ writing (3.11) we have, for
simplicity, ignored certain boundary terms; see Lewis et. al. [1985] for a
complete treatwment.
The brackets (3.6} and (3.ll) share a common structure., Both are

examples of what Marsden and Weinstein [1983] call a Lie-Poisson bracket,

which is a special type of bracket associated with a group. If d’f is the
dual of the associated Lie algebra, these brackets are given by the formula
ér SF
{r,Gl, = :u-[é;u 3;] {3.12)
where “+* denotes an'inner product”and [ . ] is the Lie algebra bracket.
Formula (3.12) is due to Sophus Lie [1890]. We won't define Lie brackets

in general here, but just point out that it corresponds to the cross product

in (3.6) andto { , } in (3.11).
xy
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The group agsociated with the rigid body is SO0(3), the rotation group
and we choose “-" in (3.12), while that for fluids is the group of area
preserving, invertible, transformations of D to D (also called the
particle relabeling group or the area-preserving diffeomorphism group) and
we choose "+" in (3.12).

The procedure described earlier for deriving the rigid body bracket has
an analogue for fluids. This involves the passage from the material to the
spatial description of a fluid: canonical brackets in material representation
get mapped to the non-canonical brackets (3.11) in spatial representation.

Figure 4 summarizes the situation for a general continuum theory.

Material Representation:{ , } i cal
(Lagrangian coordinates) canonica
left group right group
translation translation
Body Representation: { '} Spatial Representation: { ,}
(Convective coordinates) (Eulerian coordinates) +

Figure 4. The passage from the material to the body and spatial representations
takes canonical brackets to Lie-Poisson brackets: "+" for spatial,
w."  for body.

This picture was painted by Arnold [1966a]; he does not express things
in terms of Poisson brackets, but in equivalent terms. The two passages in
Figure 4 are special cases of a general procedure called reduction which was
developed by, amongst others, Smale [1970] and Marsden and Weinstein [1974];
this general theory is described in books which give the gecmetric approach

to mechanics, such as Arnold [1978] and Abraham and Marsden [1978].
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A resurgence of interest in Poisson structures began with the infusion
of examples from plasma physics. Notable amongst these are the papers of
Bialynicki-Birula and Iwinski [1973], Iwinski and Turski [1976], Dyzhaloshinski
and Volovick [1980],nnd Morrison {1980]. Brackets were found, using trial and
error and quantum limiting procedures, for, amongst others, MHD and the Maxwell-
Vlasov equations —- these are basic sets of equations for fluids and plasmas
wmoving in magnetic and electromagnetic fields. The relativistic case and
charged fluids were also treated by Iwinski and Turski. The Maxwell-Vlasov
bracket was derived by the reduction method (and one term of Morrison's bracket
corrected) by Marsden and Weinstein [1982]. A similar derivation for the charged
fluid bracket was given by Speé@r and Kaufmann (1982]. We shall give the bracket
for RMHD in Section 7, referring the reader to Marsden, Weinstein, Ratiu, Schmidt
and Spencer [1983] for a survey of the theory and other literature, including how
the alternative methods of Lin constraits and Clebsch representations fit into
the theory of Poisson manifolds in a natural way. (See Seliger and Whitham [1968]
and Holm and Kupershmidt [1983], respectively.)

In many examples (such as RMHD) the Lie-Poilsson bracket involved comes
from a special Lie algebra structure called a semidirect product. These are
typified by the Euclidean group: the group of rotations and translations in space.
The first time (known to us) this was shown to occur in mechanics was for a rigid
body with a fixed point under gravity by Sudarshan and Mukunda [1974], p. 366.
{See also Holmes and Marsden [1983) and references therein.) For compressible
fluids the bracket of Morrison and Greene [1980] is readily checked to be Lie-
Poisson for a semi direct product (see Marsden [1982]). The Poisson bracket for
MHD is also of this same type, as was shown by Holm and Kupershmidt [1983]. The
general theory for this, based on the ideas of Figure 4 was developed by Marsden
et. al. [1983] and Marsden, Ratiu and Weinstein {1984a,b], building on some key
theory of Guillemin undeternhetg [1980] and Ratiu [1980, 1982). More recently,
general relativistic systems of this kind have also been treated; see Bao et.
al. [1984], Holm {1984) and references therein. Variocus other examples (including
extensions to nonabelian fields and generalized two-cocycles) in physics of semi-

direct product Lie~Poisson brackets appear in Holm, Kupershmidt, and Levermore [1983].
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It is reasonable to expect that the stability method described in
Section 4 is just one of several possible applications of the new Hamil-
tonian formalism. (See for example, Simélon, Kaufman and Holm [1984), and
Lewis, Marsden Montgomery)and Ratiu {1984)). It should also prove useful
for plasma-wave interactions model building (such as for guiding center
plasmas), perturbation theory and for understanding the relatiomship
between the classical and quantum theories (for example, Littlejohn

[1979], Kaufman and Bogosian [1984) and Goldin [1984]).

4. The Energy-Casimir Method

Non-canonical brackets have another interesting feature: they can admit
large classes of conserved quantities. There is, besides the energy, con-
served quantities associated with group s}mmetries such as linear and angular momen-
tum. Some of these may be termed “"reduction remnants® since they are asso-
ciated with the group that underlics the passage from material to spatial or
body coordinates. These are called Casimirs; such a quantity, denoted C , is charac- /““%

terized by the fact that it Poisson commutes with every function; that is,

{c,rl =0 (4.1)

for all functions F on phase space P.

For example, if ¢ is any function of one variable, the quantity

c(m) = & =% (4.2)

is a Casimir for the rigid body bracket, { 3.6), as is ecasily seen by using the chain

rule. Likewise,

clw) =j olw) dx dy (4.3)
D

is a Casimir for the two dimensional fluid bracket (3.11). (As in (3.11), this

calculation ignores houndary terms that arise in an integration by parts).

Casimirs are conserved by the dynamics associated with any Hamiltonian
H since C = {c,u} = 0 by (4.1). Conservation of (4.2) corresponds to

conservation of total angular momentum for the rigid body, while conservation
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of (4.3) represents Kelvin's circulation theorem for the Euler equations. {Note that
(4.3) provides infinitely many constants of the motion which Poisson commutes i.e.
{Cl,CZ} = 0 , but this does not imply that these equations are integrable.)
For Hamiltonian systems in canonical foxm (3.1),there is a classical
stability criterion due to Lagrange and Dirichlet. First of all, notice that
an equilibrium point (c_;e,ge) is a point at which the partial derivatives of
H vanish, i.e. it is a critical point of H. If the 2n X 2n matrix Dzl-l of
second partial derivatives evaluated at (ge.ge) is positive or negative
definite (i.e. all the eigenvalues have the same sign), then (ge.ge) is
stable. This follows from conservation of energy and the fact, proven in
advanced calculus, that the level sets of H near (ge,ge) are approximately
ellipsoids. This condition implies, but is not implied by, spectral stability.
hpart from KAM (Kolmogorov, Armold and Moser) theory, which gives stability
of periodic solutions for two degree of freedom systems, the Lagrange-Dirichlet
theorem is the only known general stability theorem for canonical systems.
The energy-Casimir method is a generalization of the Lagrange-Dirichlet
method. Given an equilibrium ue for 1 = X{u), it proceeds in the follow~

ing steps:

Energy-Casimir Method

Step A. Write the equations in Hamiltonian form ¥ = {F,H}.

Step B. Find a family of conserved quantities C, such as a family
of Casimirs.

Step C. Select C such that H + C has a critical point at ue.

Step D. Check to see if Dz(n + Q) (uc), the matrix of second partial

derivatives of H + C at u,s is positive or negative definite.

With regard to step C, we point out that an equilibrium golution need not
be a critical point of H alone; in general DH(ue) # 0, An example where

this occurs is a rigid body spinning about one of its principal axes of
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inertia. In this case, a critical point of I alone would have zcro angular velo-

city; but a critical point of K+ C 1is a (nontrivial) stationary rotatiom about

one of the zero axes.

In principle, the same argument used to establish the Lagrange-Dirichlet
test also works here. Unfortunately, for systems with infinitely many degrees
of freedom (like fluids and plasmas), there is a technical snag. The cal-
culus argument used before simply runs into problems; one might think these
are just technical and that we just need to improve the methods. In fact
there is widespread belief in this "energy criterion” (see, for instance,
the discussion and references in Marsden and Hughes [1983], Chapter 6). How-
ever, Ball and Marsden [1984] have shown by means of a realistic example from
elasticity theory that the difficulty is genuine. To overcome this difficulty

we must modify step D using a convexity argument of Arnold [1966b].

Convexity Analysis

Modified Step D

(a) Let Au= u-u, denote a finite variation in phase space.

(b} Find quadratic functions 2 and Q2 such that

(c)
(a)

Q (Au)

Q2 {Au)

Require that

Introduce the

|A

H(u + Au) - H(u ) - DH{u }-Au
e e [

< C(ue + bu) - C(uc) - Dc(ue)-Au,

Ql(Au) + Qz(Au) >0 for all Au # 0,

norm laul by

2
faul” = @, (Aw) + Q,(4u),

so laul as a measure of the distance frem u to u ;
e

d(u, ue) = [laull,

=
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{e) . Require that
ln(.ue +bw - H{u)| < c, faul
and

lctu, + du) - C(uell < c,laul

for constants Cl and c2,and laul  sufficiently small.

These conditions guarantee stability of u, and provide the distance
measure relative to which stability is defined. The key part of the proof

is simply the observation that if we add the two inequalities in (b), we get
18wl <H(u + Aw + Clu + Aw) - H{u ) - C(u );
- e e e e

herxe, Dﬂ(ue) «Au  and DC(ue)-Au have added up to zcro by step C. But H

and C are constant in time so

I (au) i 2 [, +Aw + Clu, + 8u) - H(u ) - c(u)]]

time t time 0°

Now employ the inequalities in (e¢) to get

ﬂ2

Fau) time t

20 + cz)ﬂ(A\.\)tj_me OH
This estimate bounds the temporal growth of finite perturbations in texms of
initial perturbations, which is exactly what is needed for stability.

In the ensuing scctions we will give examples of how this technique
applies in concrete examples. We shall only discuss the results and their
significance, leaving the technical details to the research literature cited.
The examples we have chosen are only a fraction of those to which the method
applies. We refer to Holm, Marsden, Ratiu and Weinstein [1985] for a more

extensive survey.
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5. Stability of the Kelvin-Stuart Cats Eyes

The energy-Casimir method was used by Amold [1966a,b] to establish the
nonlinear stability of a shear flow solution to ideal incompressible flow in
two dimensions. The condition needed for stability is satisfied when, for
example, the velocity profile has no point of inflection; this situation

was established for the linearized cquations by Rayleigh [1880]);: see Fig. 5.

YA

uly) é
X ~

(a) Stable (b) could be unstable

v

Figure 5. For equilibrium flows of the form u = (U(y),0), stability holds
if U has no inflection point as a function of y.

The “cats eyes” solution of the Euler equations is given by the stream

function

, = log[a cosh y +Ja2~1 cos x] (5.1)

where x is a 27-periodic variable and a > 1. The corresponding velocity

L ay
ficld is v_ = —9-, - . For a =1 we recover a shear flow. The
e Ay Ix

solution (5.1) was found by Stuart [1967] and was known to Kelvin for the

linearized equations; it has the interesting flow pattern shown in Figure 6
which gives rise to the name'cats eyes!" This solution is believed to be

important in many fluid pehnomena such as the roll patterns one sees in clouds.

For a linearized analysis, see Drazin and Reid [1981), p. 1l4l.



119

-4 + X
0 a 4

Figured . Computer plot of the cat's eyes streamlines for
the stream function ¢(x,v¥) in (5.1} with a = 1.175,

One now goes through the steps of the energy-Casimir method to test (S5.1)
for stability. The energy and Casimir functions for this situation have al-
ready been discussed. For step C one computeS directly that H + C has a
critical point at the cats eye solution if ¢ (see equation (4.3)) is chosen
to be

(0 = 3 Allog(-) = 1) , for A <0 (5.2)

With this choice, one can now test step D, (or more precisely, the modified step
D.) An interesting complication which is not encountered for shear flows without
an inflection point (but which Armold noticed could occur for certain situa-
tions with inflection points) is that the second variations of B and C

do not have the same sign. One has to show that, nrevertheless, the second
variation of H + C does have a definite sign. To do this requires the use of

Poincare's inequality, which has the form
2 { 2
[fl dx dy < Constant J IVfl dx dy,

where the constant can he determined by the eigenvalues of the Laplacian.
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The results of the calculations, which are done in Holm, Marsden and

Ratiu [1984] are that if the range of y is limited to a region containing
the eyes (shaded in Figure 6), one has stability if

a - a2-1)2 > 2£2/(ﬂ2 + 22)’ (5.3)

where

Numerically,one finds (5.3) to hold for

1 Sa <M. (5.4

The method also produces an estimatec on the growth of perturbations. Here

it shows that the square of the L? norm of the vorticity perturbations,

defined by

lawl? = JJ[bwlzdx dy (5.5)
remains small in time if it starts out small. We will come back to the stabilicy

of the cats eyes solution in Section 7.

6. Vortex Patches

A vortex patch is a vorticity distribution which is constant in a region
D of the xy plane and is zero outside the planc. The vorticity evolves
in time according to the Euler equations and this causes the region D to
move, giving a new vortex patch. The motion of these patches is bclieved to
be basic in the understanding of fluid phenomena and could even be related
to the motion of Jupiter's red spot. The problem has been extensively dis-
cussed by Zabusky and his co-workers ({see Zabusky [1984] and rcferences
therein) .

The stability of vortex patches is interesting for these physical rea-
sons and has a number of curicus mathematical features that are relevant to

the problem, As a subclass of solutions of the Euler equations, vortex
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patches have their own Hamiltonian structure. This structure, worked out by

Marsden and Weinstein [1983] has features in common with the KAV (Korteweg-

deVries) equation, famous for its solitons. However, an asymptotic analysis suggested
that ripples on. the vortex patch boundary do not retain permanent form, but

rather form cusps or break like waves. That the boundary of a smooth patch

need not remain smooth is consistent with the existence theorems that apply

to this situation (Iudovich [1964]).

The energy-Casimir method does not literally apply to this situation.
For one thing, the fact that the vorticity is not a smooth function on the
planc causes technical difficulties. Nevertheless, inspired by the method,
Wan [1984], Wan and Pulvirente [1984] and Tang [1984], were able to prove
stability theorems.

There are two solutions that are fundamental. One is the circular
patch and the other is the Kirchhoff rotating ellipse (Figure 7). The
circular patch is a stationary solution, while the ellipse is a steadily
rotating solution. (The latter beccomes stationary in a rotating reference

Cgh\ frame). The circular case can be modified to an annular distribution of

vorticity or to a circular patch in a circular container. Calculations for

Figure 7. Two exact solutions of two dimentional Euler flow.

the linearized case by Kelvin [1880] show that the circular type solutions

ought to be stable, while calculations of Love [1893] show that the Kirchhoff

-
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solution is linearly stable if the ratio of the lengths of the axes of the
ellipse does not exceed 3.

These results have been proved in the nonlinear case in the references
cited. However the exact interxpretation requires care. The measure used
for the distance from the equilibrium solution is the shaded area in Figure 8.
This result does not say that the absolute distance between the boundaries of
the patches remains small. HNor does it say that the boundaries remain émooth.
In fact, computational work indicates that such posgibilities really do occur.
Figures 9 and 10 show some numerical studies of Dritschel [1984]. Figure 9
shows the evolution of a nearly annular distribution of vorticity and the
development of steep, small waves. Figure 10 shows the evolution of a per-
turbation of an ellipse with axis ratio near 1/3 and the development of a

long thin tail,

(a) Initial, nearly circular (b) The patch evolves in time
patch

Figure 8. If the shaded area starts small, it remains small.

Thus, in this context we have stability with respect to one distance
measure, but not with respect to another. The distinction is reflecting
important physical mechanisms.

For unstable patches it is very interesting to understand how they
tend to split apart, merge,or fommother curious patterms. We refer to
Dritschel {1984} for some examples. The theory on this aspect requires

much development.
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Figure 9. The eyolution of a
(Ditschel [19841)

nearly annular vortex patch.
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Figure 10. The evolution of a nearly elliptical vortex patch.
(Dritschel [1984]1).

7. Reduced Magnetohydrodynamics (RMHD)

Here we describe a result of Hazeltime, Holm, Marsden and Morrison [1984].
RMHD is a simplified model deriving from three dimensional MHD. It is a model

which is contemplated for use in describing a plasma in a tokamak configura-

tion (Figure 11).

O

Figure 11. RMHD deals with plasma in a
toroidal cavity.
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In this approximation the fields that are singled out are the components
of the fluid velocity v and magnetic field B parallel to a cross-sectional
plane (shaded in Figure 11). We assume v and B are parallel to the boun-
dary of this planar region and are divergence free. We introduce a stream

function { and magnetic scalar potential A by writing

- |3 - 2 - [an _ oA
ve oy Tax)t 2T oyt T o) (7.1)
let
w=-Y% and J=-Y2 (7.2)

be the current and vorticity. These variables evolve according to

g—:" = (W!(ﬂ}xy + {J'A)xy »
(7.3)
-ai =

at (w,a}xy ’

- of 3g _of 3g . - .
where {f,g)xy * 3 3y 3x is the Poisson bracket with x and y play-
ing the role of conjugatc variables. Here one can choose eithor ¢ or w
as the basic dynamic variable for the fluid; onc is determined by the other
via (7.2) and suitable boundary conditions. As an example of an ecquilibrium

solution of (7.3), we consider the Grad-Shafranov equilibria for which the

equilibrium values satisfy

¥, =0, J, = GA) (7.4)

for some function G. When substituted into the right hand side of (7.3), one
gets zero, so we have an equilibrium.

The equations (7.3) arc Hamiltonian. The energy and Poisson brackets are:

H=% J(le2 « 1813 ax dy (7.5)

(regarded as a function of w and A) and

o - Bl 48 Al 88 {8

) dx dy (7.6)
Xy
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This bracket is due to Morrison and Hazeltine [1984}; its group theoretic
meaning and its derivation from a Lagrangian description is found in Marsden
and Morrison [1984].

A class of Casimirs for the bracket (7.6) arc checked to be

(
C(w,A) = J (wd(A) + Y(A)) dx dy (7.7

where ¢ and Y are arbitrary functions of one variable. Steps A and B
in the energy Casimir method being complete, we turn to step C. One must

show that for suitable @, ¥, the sum H + C has a critical noint at (6.4). The
condition D{H + C)(we,Ae) = 0 is found to hold if ¢ = 0 and Y(a) = -JG(a)da.
The convexity estimates in step D hold if Y is a convex function; this

amounts to the assumption

0<s<-G'(a) <8 <= {7.8)

for constants s, S. The procedures in step D also yield. the noxm for mea-

suring the size of perturbations:

Ly, 02 = 2 J(|V(Atp) 2+ |veaar |2 + s)an)? ax ay . {7.9)

Thus, in this case the method shows that if (7.8) holds, then the

Grad-shafranov equilibrium (7.4) is nonlinearly stable in the morm (7.9);

that is, if (¥,A) starts close to (¢e,Ae) t t =0 in the sense that

{7.9) is small, where AY = w—w;, and An = h-he. then (7.9) remains small

for all time. One can treat cats cye type equilibria (also called magnetic islands®
where Ao is given by equation (5.1). In fact the methods mentioned in that
section show rhar rhe <ame conditions on the parameter g imply stability in the RMHD
setting rather than the fluid setting. In the literature (Finn and Kaw [1977],
Pritchett and Wu [1979),and Bondeson [1983]) these magnetic island solutioms are
seen to be unstable; as D. Holm pointed out to us, this can happen if one allows
arbitrary disturbances in the y direction--transverse to the eyes. Our ap-
proach gives stability since our disturbances are confined to a finite extent in

that direction.
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We mention that the Grad-Shafranov equilibrium is just one member of a
class of equilibria that can be treated by the same method. Furthermore,
more sophisticated models and even the full three dimensional MHID equations
can be treated (see llolm, Marsden, Ratiu and Weinstein [1984]). also there
is a very beautiful application of this method to RF stabilization of plasma
oscillations in Similon, Xaufman and Holm [1984]. It is obvious that stab-

ility results of this soxt are crucial to the design of fusion reactors.

8. Stratified Fluids

Our final example, taken from Abarbanel, Holm, Marsden and Ratiu [1984)
concerns a situation of oceanographic interest. In this context, one is
interested in in;ompressible fluids with density variations. The equations
we shall use comprise the Boussinesq approximation to the inhomogeneous Euler

equations (we do not include the Earth's rotation to simplify the exposi-

tion):
v (
Pol3e oW = -¥p - pgi
(8.1)
%+rb=0
Here, 2 is a unit upward pointing vector (the z-direction), g is the

acceleration due to gravity, po is a reference density, which we can choose
to be one, v is a divergence free, three dimensional, velocity field
(parallel to the boundary of a given region in space), and p is the density
(constant on the boundary). The equations (B.l1) are Hamiltonian; the energy
is

H = J[% l‘ilz + pgz] dx dy dz . (8.2)

The bracket is the one associated to the Lie algebra which is the semidirect
product of divergence-free vector fields and functions. (This Hamiltonian

structure was also found by Benjamin [1984]).
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Ifwelet w=9 x¥ be the vorticity and q = w'¥p be the poten-

tial vorticity, then a family of Casimirsis

C= Iﬁ:(q.p) dx dy dz (8.3)

One can also check directly that C iis conserved by computing d€/dt. Using (8.1) let
(!c,pe) be.an equilibrium solution. In particular, we are especially
interested in shear flows of the form !e[x,y,z) = (U(z) + £(y),0,0),

P ® pc{z) (Figure 12), 7

—

~ > 2

Figure 12. An‘equilibrium soluiton of (8.1)
with a shearing velocity field and
a density gradient.

For step C in the energy Casimir method, one computes that H+ C has a

critical int at v i
point at V., pe provided

¥y = %qPe * Y4, (8.4a)
and
gz + ¢p = _@e'léq {8.4b)
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where ¢q = gg, etc,, and are evaluated at equilibrium. Equation (8.4b)
is referred to as long's equation. Equilibrium solutions can be independently

characterized by a Bernoulli function K(qe-pe), which satisfies

1 2
= = 8.5
P, * 0,92 + 3 v | x(qe,pe)’ (8.5)

which is a form of the well-known Bernoulli law for stationary flows. Equa-

tions (8.4) and (8.5) can be connected by choosing

Klg .,p )

e
Q(qe.pe) = qu 3 dqe {8.6)

e

which is analogous to the way we chose the Casimir (7.7) depending on the
equilibrium (7.4) in RMHD.

One can now proceed to examine Second variations and do the convexity
analysis for the shear flow equilibrium !e' If it is stable then one can
assert that nearby solutions remain nearby. These nearby solutions are
related to internal waves in the ocean that are approximately described by
the Benjamin-Ono equation.

The computations required to ascertain stability are a bit lengthy;

here is roughly what comes out: Define the generalized Richardson number by

8.7

which, to linear approximation in y , agrees with the standard definition:

Ri= - 5—‘]9/%— (8.8)
au’
dz

(see, for instance, Drazin and Reid [1981]). Our result states that

Ri> 1 implies nonlinear stability . (8.9)
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There are some important comments to be made:

(a)

(b)

{c)

The result depends on limiting the values of Vp to a range

consistent with the Boussinesq approximation.

The result mentioned is three dimensicnal: some genuine three dimensionalitv
through a small but non-zero £ in Y. = (U(z) + £(y),0,0) Iis

used. There is also a two dimension result, but the stability

criteria are different. The reason is, basically, because the rich

family of Casimirs given by (8.3) is not present in two dimensions.

The result for linearized theory, due to Synge, Miles and Howard

(see Drazin and Reid [1981) for a complete account) is:

Ri > %‘- implies spectral stability (8.10)

The results (8.9) and (8.10) are consistent. But here we see a

case where nonlinear stability requires more stringent conditions
for its validity. It is not outrageous to conjecture that non-
linear instability can occur if Ri< 1; indeed, the mechanism of fﬂ%)
Arnold diffusion mentioned earlier will generally occur in the
absence of any nonlinear saturation mechanisms -~ the only such
mechanisms known are nonlinear bounds of the sort provided by the
energy-Casimir method. Of course only a closer examination of

the theory and experiments will settle this issue for sure. The
fact that R1i for the Earth's ocean is often in the range between
1/4 and 1 makes the whole issue of linear versus nonlinear stability

especially interesting.
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