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Abstract

The dynamics of a rigid body with flexible attachments is studied. A general
framework for problems of this type is established in the context of Poisson
manifolds and reduction. A simple model for a rigid body with an attached linear
extensible shear beam is worked out for illustration. Second, the Energy-Casimir
method for proving nonlinear stability is recalled and specific stability criteria
for our model example are worked out. The Poisson structure and stability results
take into account vibrations of the string, rotations of the rigid body, their coup-
ling at the point of attachment, and centrifugal and Coriolis forces.

1. Introduction

Recently there has been renewed interest in Hamiltonian structures and their
application to problems of stability. The main original work is due to ARNOLD
[1966a, b]. This has been revived and applied to a number of fluid and plasma
problems by HoLMEs, MARSDEN, RATIU and WEINSTEIN [1984, 1985] and other
authors cited by them. They coined the phrase *‘the Energy-Casimir method™
for the basic procedure. These and related methods were applied to the control
and stability of dual spin spacecraft by KriISHNAPRASAD [1984]. Here we put
together a continuum model for flexible structures with the finite-dimensional
rigid body model and use the general Hamiltonian methods to analyze nonlinear
stability.

The motivating physical situation is the stability of spacecraft with attached
flexible antennas or solar panels. There is a substantial literature in the field of
aerospace engineering which is devoted to problems concerning the control and
stability of rigid spacecraft with flexible components. The papers by LIKINS
[1974], KANE & Levinson [1980), MeroviTCH & J. N. JUANG [1974), and the
recent book of KANE, LikiNs & LEvVINSON [1983] should provide a useful sample.
In those works, a variety of finite-dimensional approximations are used and rough
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stability criteria are presented. There are many related problems studied in the
literature such as the dynamics and buckling of rotating beams and rods; see, for
example, ANTMAN & NACHMAN [1980], NACHMAN [1985] and references therein.
However, a fundamental study of Hamiltonian structures and their application to
the dynamics of rigid bodies with elastic attachments presents essentially unexplored
territory. Efforts in this direction may be found in MemovitcH [1974] and in
BanLLIEUL & Levi [1983, 1984). The purpose of this work is to continue such in-
vestigations by including symmetry and reduction for Hamiltonian systems applied
to question concerning stability of coupled rigid-elastic structures. We note that
concrete stability criteria are useful in specific satellite design problems such as
the Dynamics Explorer A carrying a plasma wave instrument (including a pair
of 100 meter wire antennas). See HUBERT [1981].

In this paper, we explicate the Hamiltonian structures needed and derive
explicit stability criteria for a simple model. We have chosen a specific linear
second order shear beam (string-like) model for purposes of illustrating the me-
thod; it is not intended to be realistic. However, the procedures used are general
and can be adapted to situations of interest at hand. In following papers we plan
to discuss the effect of including damping and shall use a nonlinear beam model
of Kirchhoff-Love type but including shear and torsion (see REISSNER [1973, 1981],
ANTMAN [1974], ANTMAN & KENNY [1981] and Simo [1985]). We also plan to
discuss a similar model for plates and shells.

The contents of the paper are as follows. Section 2 gives some general results
concerning the reduction of Poisson manifolds that are motivated by and needed
in our example. Section 3 studies the Hamiltonian structure of the example.
Section 4 reviews the Energy-Casimir method and Section 5 applies it to get
specific stability criteria for our example.

2. Generalities on Poisson Structures

We now derive some general formulas for Poisson structures on certain
spaces. The idea as far as rigid bodies are concerned is to represent the flexible
structure in coordinates attached to the body. Doing so introduces Coriolis and
centrifugal forces which must be taken into account in a systematic way. We do
this using the general theory of reduction (MARSDEN & WEINSTEIN [1974)).
Reduction involves taking the quotient by a group action; this procedure can
be viewed as the passage from the kinematic description of the bodies’ motion
relative to an inertial frame to the description relative to a non-inertial body
frame. (In corresponding fluid and plasma problems it represents the passage
from Lagrangian, or material, *“coordinates™ to Eulerian, or spatial, “coordi-
nates™.)

The material below assumes the reader is familiar with some general theory of
Poisson manifolds, reduction and the Lie-Poisson bracket on duals of Lie algebras.
Expositions of this theory may be found in MARSDEN & others [1983] and KRisH-
NAPRASAD [1985]. We remark in passing that a number of the developments here
paralle] the development and applications of the theory of reduction for principal
bundles (sec MONTGOMERY, MARSDEN & RATIU [1984] and LEwis, MARSDEN,
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MONTGOMERY & RATIU [1986]) and the theory of Poisson reduction in general
(MARSDEN & RaTiU [1985)). :

We begin by recalling a few facts about Lie-Poisson brackets. Let G be a Lie
group (finite dimensional in this paper). ® its Lic algebra and @* the dual space.
For a (smooth) function F:®*—R, define its functional derivative 8F/8u:
G*— @ by

DF(pu) - 8= <—§£ . 8u> 2.n

where DF(y) is the (Fréchet) derivative of F, 8u€ ®*, 8F/5u stands for SFf8u
evaluated at € ®* and ¢, ) is the pairing between @ and G*. We let G2 denote
®* with the + Lie-Poisson bracket, which is defined by

{F.G}- (W) =% <p, [%E %%D (2.2)

where [, ] is the Lie algebra bracket on @. The map from T*G to &% given by
sending «,€ T}G to TL} o, € B* isa Poisson map (in fact a momentum map)
which induces a Poisson diffeomorphism of the quotient space T*G/G with G*.
Here L, is left translation by g, TL, is its tangent, and TL? is the dual of TL,.
If, instead, o, is sent to TRy - &, then we geta Poisson map from T*G to ®2.

The quotient space T*G/G is called the reduction of T*G by G. Thus, left
translation to the identity identifies this reduced space with the Poisson manifold
®&* . For the rigid body, one takes G = SO(3) and uses left translation; the reduced
space is so(3)* =R3* and is jdentified with the space of angular momenta m
in body representation. The Lie-Poisson bracket in this case is then given on func-
tions of m by the triple product

{F,G}(m)=—m" (VFxVG). 2.3)

The Euler equations for a free rigid body then are equivalent to Hamilton’s equa-
tions in Poisson bracket form

F={F, H), (2.4)

where H is the rigid body Hamiltonian. (See also HoLMES & MARSDEN [1983]
for an exposition of this theory and its application to the heavy top.)

For a rigid body with attachments, we generalize the above scheme by replacing
T*G by T*G x P where P is the phase space for the attachment. Since the body
and attachment can be simultaneously rotated, we assume that G acts on P.

Abstractly, we assume G is a Lie group acting by canonical (Poisson) transfor-
mations on a Poisson manifold P. Define ¢:T*GXP—> ®*x P by

Moy x)=(TL] "6 8" - x) 2.5)

where g—! - x denotes the action of g~! on x€ P. For our example, G = SO(3)
and &, is a momentum variable which is given in coordinates on T°SO(3) by the
momentum variables p,, ps, P, conjugate to the Euler angles ¢, 8, y. The mapping
¢ in (2.5) transforms &, to body representation and transforms x€ P to gt x
which represents x relative to the body.
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For £€ @ we let §p denote its infinitesimal generator on P, so &, is the vector
field on P given by

d
£4) = 57 (P () X)mo-

For F,G:@*xP—R, let {F,G)_ stand for the minus Lie-Poisson bracket
given by (2.2) holding the P variable fixed and let {F, G}, stand for the Poisson
bracket on P with the variable u€ G* held fixed.

Endow @&*x P with the following bracket:

F.6) =0+ EN—aF(3) +ao-(5) @9

where d_F means the differential of F with respect to x¢ P and the evaluation
point (u, x) has been suppressed.

2.1 Proposition. The bracket (2.6) makes &*XP into a Poisson manifold and
¢:T*Gx P— B*x P isa Poisson map, where the Poisson structure on T*GXx P
is given by the sum of the canonical bracket on T*G and the bracket on P. Moreorer,
¢ is G invariant and induces a Poisson diffeomorphism of (T*G x P)|G with G* X P.

Proof. For F,G:@*xP—R, let F=Foc¢ and G = G-¢. Then we want
to show that {F, G}r«g + {F, G}p = {F, G} - ¢. This will show ¢ is canonical.
Since it is easy to check that ¢ is G invariant and gives a diffeomorphism of
(T*Gx P)/G with @*x P, it follows that (2.6) represents the reduced bracket
and so defines a Poisson structure.

To prove our claim, write ¢ = ¢sx¢p. Since ¢; does not depend on x and
the group action is assumed canonical, {F, G}, = {F,G}p-¢. For the T*G
bracket, note that since ¢ is a Poisson map of T*G to @2, the terms involving
¢c will be {F, G}_< ¢. The terms involving ¢p(a,, x) = g—! - x are given most
easily by noting that the bracket of a function X of g with a function L of &, is

— = 8L
d,K'r.‘

where 3L/3a, means the fiber derivative of L regarded as a vector at g. This is
paired with the covector 4, K. Letting ¥,(g) = g~! * x, we find by use of the chain
rule that missing terms in the bracket are
3G 8F
d.F- T?’,-g— d,G-TW,-s—#.
3G 3G
However, TV, - = (E‘-

the last two terms in equation (2.6). [J

) o ¥,, so the preceding expression reduces to
P

Before applying this to our example, it will be convenient to develop the theory
a little further. Suppose that the action of G on P has an 4 d* equivariant momentum
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map J:P— @*. Consider the map x: §*xP—+ G*xP given by

oy, x) = (u + J(x), x). @7
Let the bracket {, }o on @&*XxP be defined by
{F, G}o = {F, G}~ + {F, G} (e2)

Thus {, }o is (2.6) with the coupling or interaction terms dropped. We claun that
the map « eliminates the coupling:

2.2. Proposition. «: (8*xP,{,}) = (8*xP,{}o) is a Poisson diffeomorphism.

Proof. For F,G:®*xXP—>R, let F=Fox and G = Goo. Then letting
v = p + J(x), and dropping evaluation points, we conclude that

3F OF . /SF N\
§;=E and d,F= '8—vidx‘,/+dxp'

Substituting into the bracket (2.6), we get

{F,G} = \,u» [SF 86] ) HiRG+ {/8F > <886 4 J>'r
{/ 3F de> , d,GL + [d,F, {5 de>}’

-G (5)) -4 (5),

+ar )0 ),

However, {d,F, s dJ /} means the pairing of d.F with the Hamiltonian

vector field associated with the one form { 8_G , d,J\ , which is i‘i , by defi-
\ 8 / 5 /p

nition of the momentum map. Thus the corresponding four terms in (2.9) cancel.
Let us consider the remaining terms. First of all, we consider

(¥ > i \] 210
\8 ’ de ] L] de/ ( . )
Since J is equivariant, it is a Poisson map to @%. Thus, (2 10) becomes
[ﬁ §§_]> Similarl h of the te / ( \ d
J, ' . Similarly each of the terms \8 yd g %),/ an

BG yd J - (SF) > equals — \J [8F 86] , so these three terms collapse to

3F 3G\ 3F 3G\
< [89 5 ] / which combines with —\p. 5w -5;] / to produce
8F &G

-~ g"s?D = {F. G)-. Thus, (29) collapses to (28). []
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Remark. This result is analogous to the isomorphism between the “Sternberg”
and “Weinstein™ representations of a reduced principal bundle. (See GuILLEMIN .
& STERNBERG [1984], MONTGOMERY, MARSDEN & RaTiU [1984] and references
therein.)

Recall that a Casimir function is a function whose Poisson bracket with any
other function is zero. From Proposition 2.2, we get

2.3 Corollary. Suppose C(») is a Casimir function on ®*. Then
Clu, x) = C(p + J(x))
is a Casimir function on &*x P for the bracket (2.6).

We conclude this section with some consequences of Proposition 2.1. The first
is a connection with semi-direct products. Namely, we notice that if § is another
Lie algebra and G acts on §, we can reduce T*Gx9* by G.

2.4 Corollary, Giving T*G X H* the sum of the canonical and the **-" Lie-Poisson
structure on $*, the reduced space (T*Gx9*)/G is ®*xH* with the bracket

{F, G} = {F, G)g- + {F, G)go — d.F " (86) +dG- (g’f )e_ @11)

where (u, v) € @* x ©*, which is the Lie-Poisson bracket for the semidirect product

&) 9.

This is compatible with, and reproduces some of the reduction results of
MARSDEN & others [1983]), and MARSDEN, RATIU & WEINSTEIN [1984a, b] (see
also HoLM, KUPERSHMIDT & LEVERMORE [1983]). Of course such structures are
important for examples like a rigid body with a fixed point in the presence of a
gravitational field (see HoLMES & MARsDEN [1983)).

Here is another result similar to Proposition 2.1 which reproduces the sym-
plectic form on T*G written in body coordinates (ABRAHAM & MARSDEN [1978,
p. 315]). We phrase the result in terms of brackets.

2.5 Corollary. The map of T*G to ®8*xG given by o v+ (TL}5,, g) maps the
canonical bracket to the following bracket on @*xG:

{F,G} = {F. G}~ + d,F+ TL,+— :G d,G-TL :F 12

where ue @* and g€G.

Proof. This is proved by the same method as in Proposition 2.1. For F: @*xG

—R, let F(a,) = G(u, g) where p = TL}x,. The canonical bracket of Fand G
will give the (—) Lic-Poisson structure via the u dependence. The remaining terms
are

G”s/ @13/
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where -:f means the fiber derivative of F regarded as a vector field and 4G
means the derivative bolding g fixed. Using the chain rule, one gets 212. O

‘We now combine this corollary with Proposition 2.1 to produce a Poisson
structure on ®*x @* X G. This structure may be relevant to the motion of two
rigid bodies coupled with a ball and socket joint. (The exploration of this point is
planned for another publication.)

2.6 Corollary. The reduced space (T*G X T*G)/G is identifiable with &*x @*XxG,
with the Poisson bracket

3G 3F
{F, G} (u1, 2, 8) = {F'G};.'*‘{F’G};:_drF'TRl"g";:'*'d:G'T l'm

3G 8F
+ d,F-TL, '-8—”—2 ~dG-TL, '-g’-‘—z (2.13)

where {F, G}, is the “—" Lie-Poisson bracket with respect to the first variable
1, and similarly for {F, G},

Proof. The isomorphism of (T*GxT*G)/G with ®*x®*xG is implemented
by the map

(ap )~ (TLgay, TL*B. gt h). (2.149)
We map this in two steps. First, map
T*GXT*G—>T*GX®*xXG

by using Corollary 2.5. Now regard G as acting on 8*xG by left multiplication
on the last factor alone. Then map T*G x(®*xG) to &*X ®*xG by Proposi-
tion 2.1. Noting that at the point (u,, 2, g)

SF SF
— — s R * o—
(8F1.)0°x0 (0 TRe 8#1)
we get (2.13). O

This bracket (2.13) can also be verified by a direct calculation using the map
(2.14).

Finally, we remark that the theory in this section can be applied to a variety
of situations besides those in this paper. For example, ALVAREZ-SANCHEZ [1986]
uses these ideas to obtain some of the results of KRISHNAPRASAD [1985]).

3. A Rigid Body with a Flexible Attachment
The influence of flexible attachments on the dynamics of an otherwise rigid

spacecraft structure is of great interest to aerospace engineers. Such flexible
attachments are common (e.g., solar panels, antennae, instrument booms, etc.)
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and pose problems in control and stabilization of the spacecraft. Here we take

up a model problem of this type where the flexible attachment is a very simple -
linear elastic shear beam. A more realistic example involving a nonlinear beam

model for the attachment will be the subject of a subsequent paper. We

plan also to include questions about passive damping and related asymptotic

stability.

In Figure 1 we show a rigid body with a fiexible attachment in a reference
configuration. In the reference configuration the axis of the attachment is along
the axis two of a frame attached to the rigid body. We then view a typical confi-
guration of the attachment as being given by a smooth map,

o:[0,L]—>R3, (3.1

Here o(s) is the Lagrangian (or material) position vector and L is the length of
the beam in its unstressed (natural) state.

Fig. 1

Similary, #(s) is a Lagrangian momentum density given by gv (material mass
per unit length) x (material velocity).

If we denote by Q the space of all maps o then the phase space for the attach-
ment is P = T*Q, identified with the space of pairs (o, #).

The whole assemblage is moving freely in space, in the absence of external
forces or torques. The center of mass of the system is inertially fixed at the origin.
We now make the following (small deflection) assumption to simplify our analysis:
The deflections of the attachment away from the nominal, suitably scaled by the
mass of the attachment are sufficiently small that the center of mass of the rigid
body has negligible motion.

Under the small deflection assumption, the configuration space of the rigid
body is SO(3). Furthermore, SO(3) acts on (the left on) the configuration space P
by transporting (or swinging) the attachment around. It follows that the action
of SO(3) on P is a Poisson action, where P = T*Q carries its natural (non-
degenerate) Poisson structure. We are now in a position to apply Proposition 2.1
and write down the bracket (2.6) on the reduced phase space so(3)* X P.
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To make things more explicit, we introduce the relative position #(s) and relative
momentum density M(s) for the attachment

r(s) = A~ o(s)
M(s) = A~ M(s).

Here A denotes the element of SO(3) identifying the rigid body configuration.
Further, let m denote the body angular momentum of the rigid body. In terms of
these variables, the reduced bracket (2.6) takes the form

3.2)

L
8F 8G &F &G
{F’G}=—m'(vaXVG"J+J(§;'W—m'-§;)dS

L
3
+ [ [%g(v,;,pr)+.8—;-(v,,.rxu)] ds 33)
[

L
3F 5F
— 6[ 5 VmGx0) + 537" (V,,,GxM)] ds.

Here F and G are functions on the reduced (phase) space so(3)* x P which con-
sists of the variables (m, r. M).

Next, we shall apply Proposition 2.2 and its Corollary 2.3 to this situation.
The action of SO(3) on P has a momentum map given by the relative angular
momentum of the attachment:

L
J:P—>so(3)* where J(r,M)= [ r(s)xM(s)ds. (3.4)
(1]

This can be checked by noting that the action of G on P is a cotangent lift (see
ABRAHAM & MARSDEN [1978, p. 283]). Now, for any ¢:R —R, the function

E“ :s0(3)* >R where Cy(m) = &(m|?) 3.5)

is a Casimir function with respect to the (minus) Lie-Poisson bracket on so(3)*.
From (3.4) and Corollary 2.3, we then conclude that

C,:503)t xP—>R,
(3.6)

L
Cym, 1, M) = ¢(]|m +f erdsu’)
[

is a Casimir function for the Poisson bracket (3.3). A direct check of this requires
the application of vector triple product identities and is left to the reader. (of
course it was doing this example by hand that prompted us to prove Proposi-
tion 2.2 and its corollary abstractly.)

We choose the Hamiltonian to be

L Am . FIMOR v/, dr dr\
H—i‘§71+iof % ds+&!\Ads.ds/ds c%))
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where 4 is a positive definite symmetric matrix. Qur choice of H models the
attachment as a “linear extensible shear beam."” * Also, for the sake of simplicity, .
we have dropped from H a term corresponding to the kinetic energy of the attach-
ment arising from its “swinging” along with the spinning rigid body. The coeffi-
cients I, I,, I, represent the principal moments of inertia of the rigid body. The
mass per unit length of the attachment is assumed to be a constant g,. We also
impose the boundary conditions:

(point of attachment) r(s) = af at s= 0, -
(stress free end) rs)=jats=L. @8

Next, let us derive the equations of motion using the bracket (3.3) and Hamil-
tonian (3.7). The equations are determined by the requirement that

F={F, H}. (3.9)

for all functionals F(m, r, M). To unravel (3.9) to get explicit equations for m, r,
M, we take the following steps.
Suppose F = F(m) is a function of m alone. Then

F=V,F-r. (3.10)
On the other hand, from (3.9) and formula (3.3) for the bracket,

, ~3H *3H
= —m - (VuFx V) + [ 5 (aFxn)ds + [ s (mFxM) ds.
o 0

@3.11)

Comparing (3.10) and (3.11) and using the vector identity 4 - (BxC) = B+ (Cx 4),
we get
) L 8H L SH
m=me,,.H+6[ rx-s—'ds-i-ofost. 3.12)

Similarly, by considering functions F = F(r) of r alone and noting that F=
L

f %f - 7ds, we get

$ r

. SH
4 =m+ fXV,,.H. (3.13)
A similar calculation with F dependent on M alone yields
. 8H
= — 3 — VaHxXM. (.14)

® Some prefer to call this a “string” model. This model deliberately does not in-
clude second derivatives of r in the energy expression (i.e. fourth derivative in the equa-
tion), since the present model is more appropriate for generalizations to Kirchoff-Love
type rod models to be considered in another publication. See MAGRAB [1979], Chap-~
ters 4, 5, ANTMAN [1974], ANTMAN & KENNY [1981], and Simo [1985] and refercnces
therein for more information,
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The functional derivatives in (3.12)~(3.14) can be computed using the definition

of functional derivative:

) A
S . fle+e8) — 1@
3¢ O¢ds=lim . -

In the present context, we compute

V.H=J'm where J=diag(l,h 1),

SH _ r
3r ds2’
and
#_M
8M - 90 '

(3.15)

(3.16)

3.17)

Substituting these into (3.12)-(3.14) and, noting that MxM =0, we get the

equations of motion of our system:
L 6-2'.

n= -1 —_— —
m=mxJ'm erAas,

. M
Fr==—+rxJ!'m,
Qo
. e%r
— A — -1
M Aa$,+MxJ m.
Notice that

foﬁ=-€; rxAE XA—

é*r 0 ( or or or
T s as

and so, using the boundary conditions,

La 2';d--ra—'
!as X5 B =X

L . or
N r(L)xj — aj x (-3—5)

s=0

(3.18)

Hence the system of equations of motion (3.18) simplifies to take the final form:

P L
m=mxJ'm-+axA (a—:) or or

s=0

. M
r=—-+rxJ'm,
€o

-

. &y
— — oS |
M—Aasz-}- MxJim,.

— L) xj+ fExAE;ds,
0

(3.18")
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The system (3.18') has smooth solutions globally defined for all 72 0. This
can be proved using routinc methods of nonlinear analysis and the a priori esti- .
mate provided by conservation of energy (see for example, HOLMES & MARSDEN
[1978] or MarsDEN & HucHes [1983] for similar examples). We just state the
result and make a few comments.

3.1 Proposition. The initial boundary value problem (3.18'), (3.8) admits globally
defined unique solutions for initial datam inR?, v in H'([0, L), R3), M in H°([0,L),R°)
and satisfying (3.8). for all ¢ = 0. If r and M are C™ at t =0, and satisfy the
necessary compatibility conditions, they are C® for all time jointly in s and 1.

Remarks. One writes (3.18') in the form # = ofu + #(u) where u = (m, r, M)
€R3x H!x H®° = X and where & is the linear operator

@
S Py '8%‘“0— fL)xJ
o (;,)= Moy

A d*rfes?

Since & is wave operator in the arguments r, M, it generates a one parameter
group on X, with the domain of & being R*X H2x H' (with the boundary con-
ditions imposed). The nonlinear terms #(x) define 2 C*™ map of X to X, so by
standard local existence theory, (3.18") generates a local flow on X. Because of
conservation of energy, solutions remain bounded in X and so are defined for
all time. Finally, by theorems of regularity, the domain of any power of &, namely
Rx H** ' x H*, or R*xC®xC®™ is invariant under the flow. (This last state-
ment assumes the initial data satisfy the obvious necessary conditions for compa-

. . M
tibility with a solution, such as: from r =e—+ rxJ-' m at s = 0 we get
0

0= M +afxJ'ml_o). O

€0 {s=0,r=0

Next we turn to the stationary, or equilibrium solutions of (3.18') (also called
relative equilibria of the system before reduction — see ARNOLD [1978] and MARSDEN
& WEINSTEIN [1974)). These equilibria are given by setting m =0, ¥ =0 and
M =0 in (3.18"). We look for equilibria of the form

m* = Qni, r()=ri®j, M(E)= M)k 3.19)

where Q,> 0 is a constant angular velocity. We also assume that the matrix
A is diagonal in the body fixed frame i, j, k; ie., that A = diag (k. k,, k).
The equilibrium conditions from the second and third equation in (3.18°) are

M3

= r5Q, (3.20)
Qo
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and

d*r}
ds?
Substituting (3.20) into (3.21), we get

d‘.’ ¢
F? = —rip,2. (3.22)

For the equation (3.22) with boundary conditions (3.8), there are two cases:

k= = —M3Q,. (3.21)

k,

® cos( i—"—.Q,L):&:O
¥
and
(i) cos( i—:Q,L)=O (i.e.li—‘;a,z_=%,n=x,3,...).

If case (i) holds, then the solution of (3.22) satisfying the boundary conditions
is given by 4

) = 005 05 — D)) + - sin s} ¢.23)

ol

where o, = |/i—°.0, and
y

Mj(s) = @of2.54(s). (3.24)
If case (ii) holds, then the boundary conditions are consistent only if
ri(s) = acos w,s + B sin @5, (3.25)

where § is a free parameter. We now have a specific equilibrium point whose sta-
bility we wish to investigate.

4. The Energy-Casimir Method

The “Energy-Casimir method” (see HoLM, MARSDEN, RATIU & WEINSTEIN
[1984, 1985)) is based on a systematic development of an original idea of ARNOLD
in the context of Lie-Poisson systems and their variants. The method provides
an algorithm for determining sufficient conditions for the nonlinear stability
of equilibria for systems whose underlying Hamiltonian structure has a rich col-
lection of Casimir functions. In the present context, we shall use this method to
investigate the stability of the equilibrium (m*, r*, M") given by (3.19) and (3.23)-
(3.25).

We recall now the main steps of the Energy-Casimir method. We present
it in more generality than is actually needed for our example so the reader can better
judge its range of applicability as well as its limitations.
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The Stability Algorithm

A. Equations of Motion and Hamiltonian. Choose a (Banack) space P of
fields u and write the equations of motion in first order form as

u=F) 4.1
Jor a (nonlinear) operator ¥ mapping a domain in P to P. Find a conserved function
H for (4.1); that is, amap H: P— R such rhatg? H(u) = 0 for any C! solution
u of (4.1). (Usually, H is the energy of the system.)

Remark A. Often P is a Poisson manifold, i.e., 2 manifold admitting a Poisson
bracket operation {, } on the space of real-valued functions on P which makes
them into a Lie algebra and which is a derivation in each variable. The brackets
are usually derived by reduction, as in Section 2. The equations (4.1) to which the
method applies are often Hamiltonian for such a bracket structure:

F={F,H) @.2)

where H is the energy, F is any function of w¢ P, and F is its time derivative
through the dependence of « on 7. Thus, in our case, this first step has already been
completed.

B. Constants of Motion. Find a family of constants of the motion for (4.1).
d
That is, find a collection of functions C on P such that Z C(@) =0 for any C*
solution u of (4.1).

Remark B. Unless a sufficiently large family of constants of motion is found,
the ensuing step (C) may not be possible. A good way to find such functions is
to use the Hamiltonian formalism in Remark A to find F’s suh that {F, H}=0
and to find Casimir functions for the Poisson structure; that is C’s such that
{C,G} =0 for all G. In our case, a family of Casimirs is given by (3.6).

C. First Variation. Relate an equilibrium solution u, of (4.1) ie., F(u,) =0
(so that-;—lt-u, = 0) and a constant of the motion C by requiring that Hc:= H + C
has a critical point at u,. Note: C may or may not be uniquely determined at this
stage. Keep C as general as possible; any freedom may be useful in step (D).

Remark C. If Remarks A and B are followed, then, in principle, such a C
exists, at least locally, for most equilibria. Indeed, level sets of the C’s define the
“symplectic leaves” of the Poisson structure {, } and equilibrium solutions are
critical points of H restricted to such leaves. Thus, by the Lagrange multiplier
theorem, H + C has a critical point at u, for an appropriate Casimir function C.
(Because of technical problems, one cannot guarantee that Casimir functions can
be explicitly found in all cases.) We have yet to carry out step C for our example.
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D. Convexity Estimates. Find quadratic forms Q, and Q, such that
0.(4u) < H(u, + 4u) — H(,) — DH(u,) - du @3)
and
0:(4u) £ C(u, + 4u) — C(u,) — DC(w,) - 4u (4.4)
Jor all Au in P. Require that

Q;(Au) + 0,(4u) >0 4.5
Jor all Au in P, Au 0.

Remark D. Formal Stability-Second Variation. As a prelude to checking
(4.3), (4.4), and (4.5) it is often convenient to see whether the second variation
D*HJu,) - (4u)?, is definite, or when feasible, whether D*H(u,) restricted to the
symplectic leaf through u, is definite. This is a prerequisite for step (D) to work,
but it is not always sufficient (see also Remark 2 below).

E. A Priori Estimates. If steps (A) to (D) have been carried out, then for any
solution u of (4.1) we have the following estimate on du=u—u,.:

0y(du()) + Q2(4u(1)) = Hc(u(0)) — Helu,). 4.6)
(This is proved below.)

F. Nonlinear Stability. Suppose steps (A) to (D) have been carried out. Then
if we set

Iv]? = @i(¥) + Qa(v) > 0 (for v = 0), CY)

50 ||v|| defines a norm on P, and if Hy is continuous in this norm at u,, and provided
solutions to (4.1), exist then u, is nonlinearly stable, i.e. for every € > 0 thereis a
8> 0 suchthat if |u—u,| <8 at t=0, then Jlu—u,| <e for all 1. (This
represents dynamic stability against finite perturbations using the full nonlinear
equations.) Should solutions of (4.1) not be known to exist for all time, we still have
“conditional stability:” i.e. stability as long as C* solutions exist. A sufficient condi-
tion for continuity of H is the existence of positive constants C, and C, such that

H(u, + Au) — H(u,) — DH(u,) - du < C; ||4u?, 4.8)
C(u, + 4u) — C(u)) — DC(u,) - du < G, || 4u]l. 4.9
In this case, one gets the stability estimate
Au()]? := Q,(4u(1)) + 0:(4u(r)) £ C10,(dul0)) + C2Q:(41(0)) (4.10)
< (C1 + C) 14012
(These assertions are proved below.)
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Proof of a priori estimate (4.6). Adding (4.8) and (4.9) gives
0,(4u) + 0x(4u) £ HAu, + 4u) — Hu,) — DHu,) - du  (4.11)
= Hclu, + Au) — Helu,)

since DHu,) =0 by step (C). Because H is a constant of the motion,
Hdu, + Au) — H{(u,) equals its value at ¢ =0, which is (4.6). O

Proof of the Assertion in Step (F). We prove nonlinear (Liapunov) stability of
u, as follows. Given £ > 0, find a 8§ such that |¥ — u,| < 8 implies
|Hu) — H(u,)| < €. Thus, if |u(0) — «,[ < 8, then (4.6) gives

lu(t) — v || < |He(0)) — Helw)| < &. (4.12)

Thus, u(r) never leaves the ¢-ball about u, if it starts in the 3-ball, so u, is non-
linearly stable. To see that (4.8) and (4.9) suffice for continuity of H at u,, add
them to give, as in the proof of (4.6),

| Heu, 4+ du) — Hu,)| < (C; + C,) || 4u]? 4.13)

which implies that Hc is continuous at v,. []

Remarks. 1. In many examples, including ours, O, and Q, are each positive
(so H and C are individually convex). Then (4.5) is automatic. However, as already
noted by ARNOLD [1966b] (see also HoLM, MARSDEN & RATiU [1985]), there are
some interesting examples where Q, is positive, 0, is negative, and yet 0, “beats”
Q, and (4.5) is valid. If O, “beats” Q, so @, + 0, is negative, then one can apply
analogous procedures with H 4 C replaced by —(H + C).

2. In some cases, it is sufficient to check formal stability, i.e.; definiteness
of the second variation of H at u,. This is the case for all finite dimensional
examples and also often occurs when the fields are functions of a single spatial
variable, such as in the KdV equation (BEnsaMIN [1972] and BoNa [1975]). This
remark is based on the use of Sobolev inequalities special to one dimension.
In our example, we shall use a combination of convexity and Sobolev estimates.
In other examples, such as two or three dimensional nonlinear elasticity it is
known that definiteness of the second variation is not sufficient (see BALL & MARs-
DEN [1984)).

3. In examples where solutions form shocks, the solutions leave the space P
and the stability algorithm may apply only up to the first shock time. Shocks
may form, for example, in flows of compressible fluids; see HoLm and others
(1983), [1985], for discussions of conditional stability for such cases. This is
not an issue in our example since, by Proposition 3.1, solutions are smooth and
exist globally in time.

4. More delicate analytic techniques than those employed in the examples
here are sometimes needed to obtain or play the role of the convexity estimates.
“This occurs in the stability of the circular vortex patch in two dimensional flows
©of incompressible fluids that was proved by WaAN & PuULVIRENTE [1985).

5. As already noted, in systems with a finite pumber of degrees of freedom,
formal stability implies nonlinear stability. This fact was used by ARNOLD [1966a]
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to reproduce the well known results on stability of rigid body motion (sec also
HoLM, MARSDEN, RATIU & WEINSTEIN [1984]). See MARSDEN & WEINSTEIN
[1974] for the relations of the ideas on formal stability to the stability of relative
equilibria and reduction.

6. For Hamiltonian systems with additional symmetries, there will be addi-
tional constants of the motion besides Casimir functions. These are usually
incorporated into the expression for C in step B. This is needed in fluid examples
with a translational symmetry, for example, and in the stability analysis of a
heavy top. (See HoLM, MARSDEN, RATIU & WEINSTEIN [1984)}.)

7. For two dimensional flows of incompressible fluids, the appropriate Casi-
mir function is the generalized enstrophy. This suggests, as is mentioned in
BRETHERTON & HAIDVOGEL [1976) and LeiTH [1980], that the Casimir functions
may play a role in the “selective decay hypotheses™ when dissipation is added.
As has been noted by MORRISON [1985), Casimirs can be identified with the entropy
functions for many systems. A similar situation occurs in spacecraft dynamics with
internal rotors, and damping, as is discussed in KRISHNAPRASAD [1985); we plan
to deal with this aspect in another publication.

8, Stability of Equilibria for Rigid Body Motion
with & Flexible Attachment

We now apply the Energy-Casimir method to determine the stability of the
equilibrium solution of (3.18') given by (3.19), (3.23) and (3.24). We have already
completed steps A and B and so now turn to step C.

Taking C, to be of the form

Co= &d’(llm +ofLr><Mdsll’)

L

and letting & = .1, + [ r;M5ds, we find that the first variation conditions
[

in step C, namely 3(H + C,)(me o mey = 0, Teduce to

2, + ad'(x?) =0, CH))
d’rs .
k,z,i — M{pd'(6?) = 0, (5.2)
and
e o) + 50 = 0. 53
(]

As long as ¢ satisfies (5.1) the conditions (5.2) and (5.3) automatically follow from
(3.20) and (3.21). Thus we have determined the value of ¢' at one point, ie.,

ad'(a?) = —Q,. 54
This is the only requirement on ¢ for step C to hold.
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For step D, we begin by writing down an explicit formula for the second varia-
tion at (m¢, r*, M°). In fact,
S.V.:= Dz(H + C‘)(mc',e'uc) . (Sm, 8', 354)2

- 3m? FIsMyR I3ul? 2,
‘z' f —ds +f< —3r, A dss >ds—-a—-

L
—20, f (Br x 8M), ds + 24" (6) o3 (Su)? (5.5)
[/

L L
where 8u =3m + [ SrxMcds+ [ r x3M ds.
1] [

We can impose the condition
Q,
&

2¢"(a?) a? =

, (5:6)

without violating (5.4), and so

3 V] 20 20
+(f 8M|’5d5)] '8m1f8r|M3ds+—'8m3f8Ml
0

d ¢ Fismpp  F 4. d
_Z-Qfsf 8’28M3d5+29'6f8f38M2d5 +6/'g_°+6[<z8r'l‘zsr> ds

(5.7

3m? 1 Q) 29, 2
=-;i:1+[asm§(]—z T)+—8mzf8r.M,ds+ﬁ,(f 8r, M3 )]
1 Q,\ 20, . . ?
+[8m§ (1—3—-“—) + = om (f 8M1f5d5) + ﬂz(o.f 8M|r§dS)J
L 2 L 2
Q Q,
0 (1]

L||8M;" Ligom L L
+ a[ e—ods+6[ HES'H ds — 28, of 3r,8M, ds + 20, of 8,3 M, ds

(5.8)
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where
Q2 .Q’I, .
b= on P-w—on 9
Recall that
L
a=QI + [ iMSds
1]
If we require that
L
& — IZ'Qt = (Il —I;)Q,-*‘! Qoge(’f)zd-"> 0
L
(which holds if #, > I, where S, =1, + df po(r5)? ds) and
o~ K2, =012+ f 062(rf)ds >0 (5.10)

(which holds if #, > I,) then use of the Cauchy-Schwarz inequality shows that
the terms in the first two block parentheses in (5.8) become bounded below by
perfect squares. The following Poincaré-type inequality holds, (see also HoLm,
MarspeN & Ramu [1985]):

f (df) dschf=ds 5.11)
0

where C = n?/4L? is the lowest eigenvalue of —d?/ds? on [0, L] with the homo-
geneous boundary conditions f(0) = 0, f*(L) = 0 appropriate for 3r. (Thisreadily
follows by expanding f in eigenfunctions of —d?/ds?). Using(5.11)and the Cauchy-
Schwarz inequality twice, we get

2
S.V.2 {8% + [square] + [square]} +

f [su, (E'-- y,) + SM’( ) + w,( 10) + 8r}(k.C — y2) + 8r3 - k,C

(1]
83 -k,C — 20, 3r3M, + z.o,ar,sM,] ds, .12)

where
(J (ra)*ds) QQ, 7’2—(f(M:)2¢') QQJ (5.13)

1t follows that S.V. > 0 if the integrand in (5.12) is positive.
From Sylvester’s theorem, the following conditions ensure that the integrand
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in (5.12) will be positive:

1
_>
2o e

ka > Y2

k
Zc> 2,
@o
k,C
= > 2.
2o
These inequalities together with the inequalities (5.10) ensure that S.V. is positive
and hence that the considered equilibrium (m*, r*, M*) is formally stable.
We are now ready to formulate our stability criterion:

(5.14)

8.1 Theorem. The dynamics (3.18') of the rigid body with elastic attachment
governed by the Hamiltonian H of equation (3.7) has a (relative) equilibrium at

m* = Qi
= ri(s)] = —t D]+ —si
= ()] -m{a c0s (s = L)} + -sin fous)

(where w, = Vgo/k,82,), and
Me = p,Q,rsk.

L
Furthermore, in terms of S, = I, + f 0o(r5)* ds, the effective moment of inertia,
0
the following inequalities are sufficient conditions Jor the equilibrium (m°, ¢, M*)

to be a nonlinearly stable equilibrium in the R>x H'xL* norm on (m, r,M)
space:

(a) Si—=I>0
L Q 2
(®) S—hL> [f go(r;)’ds]( : ) (5.15)
¢ ks
go 2L
k =
(C) Q¢< E;'ﬁ

where k = min (k,, k;).

Note that (5.15) (a) (b) are similar to the rigid body stability criteria I, — I3 >0,
I, — I, > 0 and (c) states that the angular frequency of the body should not
exceed the characteristic transverse beam frequencies.

Let us now complete the proof of the theorem. The conditions (5.15) together
with our preceding calculations show formal stability. To establish the precise
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estimates, in (4.3) let @, be H itself (since H is quadratic). Let ¢" be bounded
below by-z-“?%(sec (5.6). Then -

C‘(m' r, M) - C.(m", "i M‘) - ch(m't f', M‘) ¢ (Am’ Ar, AM)
L L
= 3[#0u1) — 40D — #1Gu 120, (Am + [ rxamds + [ drxme ds)]
= 3 [#(u|?) — ¢Qu.1?) — ' (e 1) (el — 182 + 1 '(p\?) .- [ ArxAM ds)

= 425 o - I - i%ﬂ. + [ ArxAM ds. (.18)

o3

For Ap = p — p, sufficiently small, this is
Q, 1
2 55 (e 4 — 5o et [ ArxAM ds =: Qy(Am, Ar, AM).

The argument given for the second variation shows that (4.5) holds. The norm
determined by O, + @, is equivalent to the standard norm on R*xH'xL?
(by using arguments standard in elliptic theory, for example). Notice that small-
ness in R3x H'xL? implies Au is small, so our disposing of these terms in (5.18)
is justified. Finally. (4.8) is obvious and (4.9) holds (for 4x sufficiently small) by
the argument used to derive Q,. The arguments at the end of Section 4 complete
the proof.
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