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Nonlinear stability is analysed for stationary solutions of incompressible inviscid
stratified fluid flow in two and three dimensions. Both the Euler equations and their
Boussinesq approximations are treated. The techniques used were initiated by Arnold
around 1965. These techniques combine energy methods, conserved quantities and
convexity estimates. The resulting nonlinear stability criteria involve standard
quantities, such as the Richardson number, but they differ from the linearized
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350 H. D. I. ABARBANEL AND OTHERS

stability criteria. For example, the full three-dimensional problem has nonlinearly
stable stationary solutions with Richardson number greater than unity, provided the
gradients of the variations in density satisfy explicitly given bounds. Specific examples
and the associated Hamiltonian structures for the problems are given.

1. INTRODUCTION

Stability of a stratified, or heterogeneous, shear flow is a classical problem of hydrodynamics
whose extensive history is reviewed, for example, in Drazin & Reid (1981). Our aim here is
to provide sufficient conditions for nonlinear Liapunov stability of equilibria of ideal, stratified
flows in both two and three dimensions, as described by either the Euler equations, or their
Boussinesq approximation.

The Liapunov method for proving stability of an equilibrium point of a conservative
dynamical system depends on finding a constant of the motion with a local maximum or
minimum at the equilibrium point. Usually this constant is taken to be the energy, perhaps
combined with some additional conserved quantity arising from a symmetry of the system.
These energy methods are a common tool in the study of fluid and plasma stability problems
(see, for example, Bernstein et al. 1958).

An important contribution to the applicability of the Liapunov method to fluid systems is
made in Arnold (1965, 1969). This method, as we now view it, is summarized below and in
Appendix A. The method depends on adding special conserved quantities to the energy. The
reason the Euler equations for incompressible fluids of uniform density possess these additional
conserved quantities is due to degeneracy of the Poisson bracket underlying the Hamiltonian
formulation of these equations. In general, degeneracy of the Poisson bracket for a dynamical
system means that there exist certain quantities — the so-called ‘Casimirs’ — which are constants
of the motion for any Hamiltonian expressible in terms of the given dynamical variables (see,
for example, Weinstein (1984) for an overview). Once determined from the Poisson structure,
the Casimirs provide an important family of conserved quantities for implementing the
Liapunov stability method. For fluid systems, the Casimirs are physically relevant quantities,
such as (generalized) enstrophy, in the case of planar incompressible flow with uniform density.
Degeneracy of the Poisson brackets for fluids and the associated existence of Casimirs in the
Eulerian fluid representation is due to particle-exchange symmetries of the action principle for
the fluid in the Lagrangian representation (see Seliger & Whitham (1968), Bretherton (1970),
and Marsden & Weinstein (1983). Lagrangian relabelling transformations are also discussed
in detail in §7 and Appendix B.).

Before turning to our main topics, we recall some terminology regarding stability. Consider
an evolution equation

du/dt = F(u)
for elements, 4, in the domain of a nonlinear-operator F defined in a normed linear space.
Equilibrium, or stationary solutions u,, satisfy F(u,) = 0. Such a solution is called Liapunov stable,
when any solution u(¢) beginning near u, at ¢ = 0 remains near «, for all time. Formally, this
means for every € > 0, there is a d > 0, such that when the norm [«(0)—u[l <4, then
lu(t) —uell < € for —oo < ¢t < 0.

Assuming F is differentiable (from its domain to the containing space), the linearized equation
at u, is given by the linear evolution equation

ddu/dt = DF(ug) - du,
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which describes the evolution of an infinitesimal disturbance, du, of the original equilibrium
solution, u,. If the solution of this linearized equation is (Liapunov) stable, then the equilibrium
solution u, for the original problem is said to be linearized stable, or linearly stable.

Most investigations of stability of fluid dynamics have concentrated on linear stability, i.e. on
the evolution of infinitesimal perturbations of a given flow. The monographs of Chandrasekhar
(1961) and Drazin & Reid (1981) contain excellent examples of methods for studying linear
stability of a stationary solution. This is usually done by examining the spectrum of the
linearized operator DF(u,). A necessary condition for linearized stability is that this spectrum
lie on the imaginary axis. (This is also sufficient under some extra hypotheses such as the absence
of multiple eigenvalues.). This situation is called neutral stability, or spectral stability. Drazin &
Reid (1981) also mention (in §53.2) the method of Arnold (1965, 1969) for the study of
nonlinear stability of fluid flows allowing finite deviations from a given stationary solution.
Certain steps in that method involving second variation arguments have been employed by
Blumen (1971), (other authors referred to in Drazin & Reid (1981), and Benzi et al. (1982).
For some model equations of hydrodynamical type, nonlinear stability has been proven by the
Liapunov method, as in the proof of stability of the single soliton solution of the KdV equation
by Benjamin (1972) and Bona (1975), and in the Benjamin-Ono equation modelling internal
solitary waves, by Bennett ¢t al. (1983). Recently, Holm, Marsden et al. (1983, 1985, 1986)
have used Arnold’s contribution to the Liapunov stability method in a number of fluid
and plasma problems. Convexity estimates are employed for the proof of nonlinear stability
and the Casimirs for fluid dynamics play an essential role. As we shall explain, second variation
arguments do not suffice to prove nonlinear stability.

The stability method carried out in specific cases in the body of the present paper proceeds
as follows (see Appendix A for a detailed summary). For a particular arrangement, one adds
to the energy functional, H, another conserved functional, C, depending upon the dynamical
variables of the problem (these are the Casimirs in the present case, but any other conserved
quantities should also be included), thereby obtaining a conserved quantity, H+C = H. The
quantity C is selected so that the first variation of H vanishes at an equilibrium of interest.
Definiteness of the second variation of the functional H at the equilibrium state is sufficient
for linear stability and is a formal indication of nonlinear stability. If this definiteness of the
second variation holds, we say our equilibrium is formally stable. Formal stability implies
linearized Liapunov stability, but it need not imply nonlinear stability. Nonlinear stability is
proved via certain convexity estimates, explained in Appendix A (see Arnold 1969; Holm,
Marsden et al. 1983, 1985). Formal stability was studied earlier in plasma physics; see, for
example, Kruskal & Oberman (1958), Newcomb (1960) and Rosenbluth (1964), and in
meteorology, see Eliassen & Kleinschmidt (1957) and Fjortoft (1946). However, in general,
formal stability need not even imply that H, has a local minimum or maximum at the
equilibrium. For example, Ball & Marsden (1984) have constructed equilibria in nonlinear
elasticity at which the second variation of the energy is positive definite, yet in spaces reasonable
to the problem, the equilibrium is not even a local minimum of the energy. (The deformations
which lower the energy do involve high wavenumbers, a situation compatible with the present
treatment.) Therefore, the convexity estimates are an important step that is necessary to
complete the argument for (nonlinear) stability.

In this paper, we employ the Arnold method to study stability of incompressible, inviscid
flows of a stratified fluid in a gravitational field; i.e. the buoyancy force is gp(x, t) Z, where p
is the density field, £ is the unit vector directed upward along the vertical axis, and g is the
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acceleration due to gravity. Buoyant flows are central to atmospheric and oceanic dynamics
(see, for example, Pedlosky 1979 and Gill 1982), as well as being important in laboratory studies
of the transition to turbulence, for example, in Rayleigh-Benard convection. We analyse both
two- and three-dimensional situations and consider in each instance two descriptions: the Euler
equations for heterogeneous incompressible flow, and the Boussinesq approximation to the
Euler equations. Discussions of the Boussinesq approximation appear in Chandrasekhar (1961),
and in oceanic terms, in Phillips (1977).

As we have remarked, one of the steps in the stability procedure is to choose the Casimir
C such that H has a critical point at the equilibrium solution of interest. We shall see that
this condition is closely related to the Long equation (Long 1953) for two-dimensional
Boussinesq solutions. Using this procedure for the three-dimensional case and for the Euler
equations, without the Boussinesq approximation, leads systematically to modifications and
extensions of the Long equation. We note in passing that solutions of the Long equation depend
sensitively on boundary conditions, for example, significant differences in behaviour occur for
fixed, free, or radiative boundaries, as indicated by the work of Lilly & Klemp (1979), and
Leonov et al. (1979). ,

The stability results we present for the Euler and Boussinesq descriptions differ from each
other in detail, but they are qualitatively very similar. In each description, 82H,,, the second
variation of Hy, is indefinite for sufficiently high wavenumbers of the density variation. This
result contrasts with the ‘Richardson number criterion’, which states that the spectrum of the
linearized problem for a two-dimensional stratified shear flow is purely imaginary if the
Richardson number is greater than one-quarter; see Synge (1933), Chandrasekhar (1961),
Miles (1961) and Howard (1961).

Keep in mind that 82H, can be indefinite and the equilibrium point be unstable, even when
the linearized problem has a purely imaginary spectrum. This can occur already in finite
dimensional problems due to nonlinear interactions via resonances and Arnold diffusion;
compare with Lichtenberg & Lieberman (1982), Holmes & Marsden (1982, 1983) and Vivaldi
(1984). Consistent with indefiniteness of the second variation we conjecture that all stratified,
incompressible, ideal fluid flows for sufficiently high wave numbers of the density variation are nonlinearly
unstable. As mentioned above, the indefiniteness of the second variation 2H, for such ideal fluids
is due to density perturbations with unbounded wavenumber. Accordingly, the conjectured
nonlinear instability is generated at high wave numbers. This means however, that lower modes
may also become unstable via nonlinear coupling among the modes, unless some nonlinear
saturation process (or dissipation) intervenes. This instability mechanism seems to be related
to the one discussed by Davis & Acrivos (1967).

Thus, instability is indicated by indefiniteness of the second variation 62H, for density
variations of sufficiently high wavenumbers or, equivalently, with sufficiently large gradients.
Still, it is possible to estimate the range of stable wavenumbers of density variations, for which
a certain equilibrium solution will be linearly, and even nonlinearly, Liapunov stable.

The main purpose of this paper is to show that as long as the gradient of the density displacement
away from equilibrium V[p(x, t) —po(x)] is bounded in magnitude by the following inequality

]V[p(x, t) _pe(x)]lz < ki[p(x’ t) _pe(x)]z, (1'1)

where k2. is explicitly determined by equilibrium state quantities, then there exists a set of stability criteria,
under which the stratified, incompressible, ideal fluid flows will be Liapunov stable, even for finite-sized initial
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values of the disturbance away from the the equilibrium state. To show this property and to find the
stability criteria explicitly, we establish nonlinear convexity estimates for H,. These nonlinear
estimates express Liapunov stability against disturbances of small, but finite amplitude for the
Euler and Boussinesq description in both two and three dimensions, for as long as the solutions
continue to exist and satisfy (1.1). As an illustration of the technique, we show that for a class
of shear flows in three dimensions, stability holds if the Richardson number exceeds unity, i.e.
Ri > 1. In this case, the quantity 4% in (1.1) is approximately proportional to (Ri—1). In two
dimensions, a stratified Boussinesq shear flow is linearly stable in the norm given by 82H, in
equation (2.40) of § 2 if condition (2.50) is satisfied, and nonlinearly stable in the norm defined
by (2.62) if conditions (2.59-2.60) hold.

For purposes of readability, we have not included precise differentiability hypotheses on the
various functions entering our analysis, nor have we discussed questions of existence and
uniqueness (see, for example, Marsden (1976) and Temam (1983)). However, the norms in
which we express nonlinear stability criteria are given explicitly.

The plan of the paper follows. In §§2 and 3, we investigate first two-dimensional, then
three-dimensional Boussinesq flows of inviscid, incompressible, stratified fluids. In §4, we discuss
examples of the stability conditions for three-dimensional shear Boussinesq flows. §§5 and 6
are devoted to the Euler equations in two and three dimensions, respectively, without the
Boussinesq approximation.

In each of §§2, 3, 5 and 6, we establish conditions for formal stability of equilibrium flows
and then use convexity arguments to determine conditions for their Liapunov stability. In
Appendix A we summarize the general steps one follows in proving stability by the
energy-Casimir method. In §7 (and Appendix B) we present the Hamiltonian structures for
the types of flows under discussion. The Poisson brackets and associated conservation laws
underlying the method are described, as well as the derivation of these Poisson brackets by
reduction from canonical Poisson brackets in the Lagrangian (material) picture, and their
relationship to Clebsch representations. The Hamiltonian structures of the linearized equations
are studied in Appendix C, where we show, that 82H, being the Hamiltonian for the linearized
dynamics, is preserved, and, thus, when definite, provides the Liapunov functional needed for
proving linearized stability.

The applicability of the inviscid Euler equations rather than the Navier-Stokes equations
is limited to the study of flows whose wavenumbers (or spatial gradients) are sufficiently small
(in practice, in regions away from boundaries and in the absence of discontinuities). Motivated
by this consideration, we show in §8 that a modified fluid model which ‘filters’ the energy
carried by the high wave numbers can be nonlinearly stable in two dimensions. The *filtered’
two-dimensional Boussinesq equations in §8 remove the high wavenumbers from the stream
function ¥ entirely and prevent their development, thereby enabling the modified equations
to be nonlinear stable. Thus, §8 departs in philosophy from the rest of the paper, by modifying
the starting equations. The rest of the paper treats the unmodified Boussinesq and Euler
equations, and shows how to determine the nonlinearly stable range of wavenumbers in the
density variation for a given initial equilibrium solution. One can consider ‘monitoring’ the
development of disturbances from an initial equilibrium state, expecting nonlinear instability
after the wavenumbers (or gradients) in density variation leave the stable range for that initial
state as determined in the present work.

§9 briefly presents the conclusions of this work.
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2. TwWoO-DIMENSIONAL BOUSSINESQ FLOW

In a Boussinesq fluid, the density varies little, yet buoyancy drives the motion. Thus, the
variation of density p(x, ¢) from a constant reference density p, is negligible everywhere except
in buoyancy effects. The Boussinesq equations describe the dynamics of an ideal, slightly
stratified, and rotating fluid, moving with velocity v(x, ¢) under the action of buoyancy, in
combination with pressure forces and Coriolis forces. The Boussinesq equations are, in three
dimensions,

/0t =— (v V)o—(1/py) Vo—(pg/ps) Vz+v X[, (2.1)
op/ot = —v-Vp, (2.2)
divo = 0. (2.3)

The additional notation is as follows: p is pressure (determined from the constraint divo = 0),
g is gravitational acceleration along Vz, and f = f(x, y) Vz is twice the frequency of rotation
about the z-axis. Rewriting the Euler equation (2.1) by wusing the identity
—(v'V)v=vxcurlv—1V|v|? gives

0v/0t = v X (@ +f) =V (p/ps+ilv*) = (pg/pPx) Vz, (2.4)
where o = curlw is the vorticity. Taking the curl of (2.4) produces the Boussinesq vorticity
equation,

O0w/0t = curl [ x (@ +f)]+ (g/px) VzXx Vp. (2.5)

In this section, we will consider two-dimensional motion in the (x, z) plane, with the z-axis
oriented upward and the x-axis in the horizontal direction. As is customary, £ and  will denote
the unit vectors along the Ox and Oy axes. Since divo = 0 and the velocity is tangential on
the boundary, one can show that there is a stream function ¥ (x, z, ), with v = $x Vi
= (0 /dz,— 0y /dx) and ® = curlv = Pw(x, z, t). For this model, the Coriolis force is assumed
to be zero, in order that the motion be strictly two-dimensional. The vorticity and stream
function in a certain domain are related by w = V*J, subject to ¥ being constant on each
connected component of the boundary; i.e. Vi x # = v-#fi = 0, with #i the unit normal vector
on the boundary. In unbounded domains, we demand that w and ¥ vanish appropriately at
infinity (precise function spaces for which the Laplacian V2 is then invertible are known; see,
for example, Cantor (1979)).

For two-dimensional motion, the Boussinesq equations reduce to

dw /ot = —v-Vw+[f;*%§, (2.6)
Op/ot =—v-Vp, (2.7)
or, in terms of the stream function ¥,
0w/0t = {w, Y} +1{g2/px> P} (2.8)
3p/0t = {p, ¥, (2.9)
with {,} the Jacobian (or the canonical Poisson bracket) defined by
{g, /z}=9‘§%—a—‘£”§/E (2.10)

0z0x 0x0z’
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for functions g(x, z), A(x, z). The sense in which (2.8) and (2.9) form a Hamiltonian system
will be explained in §7 (see also Appendix C).

In view of (2.8), (2.9) and the properties of the Jacobian, certain functional dependences
exist among equilibrium quantities, ¥, p,, and w,. By the continuity equation (2.9), for
stationary flows one has {p,, .} = 0, so ¥, and p, are functionally related. Assume that

Ve =¥(pe), (2.11)

for a function ¥. The use of this functional dependence in the vorticity equation (2.8) for
stationary flows leads to

dp
foos L0y o, e
so that the quantities (w -I-i dpe )
: A
and i, are also functionally related. Assume that
1 dp,
vt g 8= L), (2.13)

for a function L (which we call the Long function). Equation (2.15) is called the Long equation

for a planar Boussinesq fluid; compare with Dubreil-Jacotin (1935), Long (1953), Yih (1980).
As mentioned in the introduction, investigation of stability of stationary flows by the Arnold

method relies on the construction of conserved quantities that are extremalized by the stationary

flows. There are two types of conserved quantities for the two-dimensional Boussinesq equations
(i) the energy (normalized by p,),

H(w, p) = [ dxdz @it +paz/p.), (2.14)

which is verified to be conserved, using the boundary condition that v vanishes on the fixed
boundary 0D of the domain D; and

(ii) a family of conserved quantities C. , parametrized by two real-valued functions F and
G of a single variable, given by

CF’G=fDdxdz [wF(p)+G(p)], (2.15)

where F(p) is assumed to satisfy the condition

dp _
fDdxdz-a—;F(p) =0 (2.16)

for all p.

The condition (2.16) holds, for example, if the domain D is periodic in x, or if p is constant
on connected components of dD (isopychnal boundary conditions). The geometric meaning
of Cp ¢ is discussed in §7, in connection with the Hamiltonian structure of the Boussinesq
equations.

Denote by H (v, p) the sum

Hq(v, p) = H(v, p) +Cp, (v, p)+/\f dx dzw, (2.17)
D
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where A is a constant. We will show that the quantity H,(v, p) has an extremal point for
stationary states ¥, p,, provided the functions F and G satisfy certain conditions. Explicitly,
we are taking

He(w, ) = | dx dz ol +pgz/pa+ oF(p) + Glp) + Ao, (2.18)

where F, G and the constant A are to be determined. The first variation
0H,:=DH(v, p)- (0v, dp) (2.19)
is given by

8H, = fDdxdz{[wVF(p) X §]- 80+ [gz/px +F' (p) +G'(p)] ap}+/\fDdx dz div (§ x 8v)
(2.20)

- jD d dz{[av-ﬁV<w~F<p>>]+[gz/p*+wF’<p>+G'<p>]8p}+§faD (A+F(p)) 8-,
(2.21)

where dl is the infinitesimal line element on the boundary and prime, ’, refers to derivative
with respect to the stated argument. For a given stationary flow satisfying the functional
relations (2.11) and (2.13), the first variation 8H, vanishes, provided F(p,), G(p,), and A are
determined as follows:

F(pe) = ¥ (pe) (2.22)
(absorbing an additive constant into ),
— G (pe) = (g2/px) +we ¥ (pe) (2.23a)
V4 _1__ dpe
= V(o) (et o) (2.230)
and A+F(po)lsp = 0. (2.24)

Comparison of (2.2354) with the Long equation (2.13) shows that G(p,) is determined by
—G'(pe) =V (pe) L(Yre), (2.25)

which is easily solved, given the stationary flow functions ¥, = ¥(p.) and L(¢,), as

e

G(y,) = — f L(s)ds. (2.26)

Thus, with F, A, and G determined by (2.22), (2.24) and (2.26), respectively, a stationary solution of
the two-dimensional Boussinesq equations is an extremum of H.,.

This extremum is in a formal sense locally a minimum, a maximum, or a saddle, depending
on whether the second variation of H, when evaluated at the critical point is, respectively,
positive definite, negative definite, or indefinite (the example of Ball & Marsden (1984) shows
that caution is needed in making this correspondence). The second variation of H,

0%H:=D2H(v,, p,) " (6v, 8p)? (2.27)
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is given by 52H , = f dx dz [|50 |2+ 2F(p,) 8p 8w + A(8p)?], (2.28)
D

where the coefficient 4 of (3p)? is
A:= 0, F(p)) + C'(p,) (2.29)

_ & VP) _ i, g2 L)
- Px W(Pe) 2 (Pe)) dwe (2.30)
_ _dY.dw, g dz (2.31)

dpe dpe pu dpe’
as one finds, upon using the stationary flow relations. If 82H, in (2.28) has any definite sign,
it must be positive, as we see by taking 8p = 0. Then, taking 8y = 0, we see that the quantity
4 in (2.29) must be positive, as well. Were there no background flow and if p, depended on

z alone, then by (2.31) the positivity of 4 would mean stable stratification, i.e. dp.(z)/dz < 0.
Completing the square in the first two terms of 62H,, in (2.28) leads to

O°Hp = f Ddx dz[[V(3Y — 9 (pe) 8p) 12— V(' (pe) 8p) 2+ A(8p)?]
+2§ Vio(p)dpdu-dl (2.32)
op
= de dz[I[V(3y — 9 (pe) 8p) 2 — (¥ (pe))? VP
+ (' (pe) V2Y' (pe) +4) (3p)21+ 20 (pe)lan 3€an 6pdv-dl, (2.33)

where we have integrated by parts and chosen p,, to be constant on the boundary. The boundary
integral vanishes if either 8p = 0 on the boundary, or 8p|,, = const. and §, 8v-dl = 0. Now
consider variations satisfying 8¢ — 9’ (p,) 8p = 0, so that the first term vanishes in (2.33), and
allow 8p to have large gradients, say, |V8p|? = 02(8p)2, 02 > 1. Then the second variation
0%2H, will be negative if the quantity

[A=Y(pe) (—V2+02%) ¥ (pe)] (2.34)

is negative, with 4 given in (2.31) in terms of equilibrium quantities. Since ¢ can be made
arbitrarily large, 8°H,, is indefinite. This leads to the following.

Conjecture. Nonlinear stability can be lost in a stratified Boussinesq shear flow in a vertical plane via the
creation of density variations at high wavenumber.

This conjecture is plausible, since indefiniteness of 82H,, signals that the high wavenumber
modes could interact strongly enough via nonlinear terms to cause the solution to drift away
from equilibrium values, perhaps through resonances and/or the mechanism of Arnold
diffusion.

In §8 we shall consider the idea suggested in the introduction of limiting the maximum
wavenumber to a finite value, £,,. In the presence of such a cut-off in allowed wavenumber,

flows for which 4> (pe) (= V2 4 Kna) ¥ (pe) (2.35)

throughout the domain D will be shown to be nonlinearly stable. The results of §8 lend added
credence to the conjecture above that the physical mechanism for loss of nonlinear stability

28 Vol. 318. A
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is via the development of disturbances at high wavenumber. Such a mechanism is, of course,
consonant with ideas from linear spectral analysis.

The range of stable wavenumbers for a certain equilibrium solution can be estimated, as
follows. First, we rewrite H in (2.18) in terms of velocity v and density p, as

Ho = [_dx detiol + g2/pap-+ [Flp) +15-curl v+ () (2.36)

Consequently, the first variation 8H,, is given by

OHy = JDdx dz{v v+ (gz/p.)0p+[F(p) +A] ¢ curldv+[F'(p) 4 curlv 4G’ (p)] 3p}.
‘ ' (2.37)

Taking the second variation evaluated at the cquilibrium’state (Pes Vo) NOW gives
8H, = J.D dx dz{|dv|2+2F"(p,) 6pP - curlSv+[F"(p,) P cﬁrl v.+G"(pe)] (8p)%. (2.38)
Integrating the second term in (2.38) by parts and taking 8p |,, = const., as before, leads to
0*H, = fDdx dz{|dv|*+20v - curl (8pF’(p,) P) + A(8p)?}, (2.39)
where the quantity 4 is defined in (2.31). Thus, upon completing squares in (2.39) we have
8’H = fndx dz{|80+V(F’(p,) 8p) x PI*+ A(8p)*—V(F’ (p) p)[*}. (2.40)

Let us define a quantity 7 with dimensions of time by setting

IV(F’(pe) 8p)I* = (g7/p4)? (3p)?, (2.41)
where F’(p,) = dyo/dp,, by (2.22). Note that 82H,, in (2.40) will be positive definite, provided
4> (gr/pe), (242

where 4 is given in (2.31).

For a given equilibrium flow, the inequality (2.42) determines the maximum value of 7 in
(2.41) for which linearized Liapunov stability is assured by the present method. For each
equilibrium flow, then, one can consider ‘monitoring’ the quantities 4 in (2.31) and (87/pe)?
in (2.41) as the flow develops, knowing that as long as 4 > (g7/p,)? the flow will be linearized
Liapunov stable with conserved stability norm given by 82H,, in (2.40).

For a stratified Boussinesq shear flow, with p, = p(z), v, = #(z) £, we have Ve =V¥(2),
we = @(z), and inequality (2.42) becomes, with N? =—(g/p,) (dp/dz) defined to be the
Brunt-Viisild frequency,

4= (&/pe) (—%%@ Wl"’"‘- 1) > (g7/ps)2. (2.43)

Equivalently, we may write this as a quadratic inequality in N?,

T2(N?)2— N*4ii(2) "(2) < 0. | (2.44)
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For (47%)~! > i(z) #"(z), condition (2.44) is satisfied for real values of N¥? in the range
AL < NE<A, (2.45)

where A, = 1/272[1 4 (1 —47%0(2) 0"(2))}]. (2.46)

Note that for #(z)v"(z) < 0, stability is possible even for negative values of N2. Also, for
9(z) v"(z) < 0 the values of 7% are not bounded above by the requirement that the discriminant
of (2.44) be positive, although the range of N? satisfying (2.45) collapses to zero as 72 becomes
large. For 72 = 0, the stability inequality (2.44) becomes 4 < 0, or

N2 > 0(z)9"(2), (2.47)

which is reminiscent of the so-called Richardson number criterion due to Synge (1933), Miles
(1961) and Howard (1961), namely,

Ri= N*/(#(2))2 = 1, (2.48)

for spectral stability of the linearized equations for planar Boussinesq shear flows. In terms of
the Richardson number R: in (2.48), the condition 4 > 0 in (2.47) becomes

Ri d In7'(z)

which involves a logarithmic derivative of the velocity profile. Finally, in terms of N? and v(z)
the inequality (2.44) determines the stable range of density-variation gradients to be

where |7| = |V(3(z) 8p/ — N?) |/ |8p]|, by (2.41) and (2.22). So long as inequality (2.50) is satisfied,
the stratified Boussinesq shear flow p, = p(z), v, = 0(2) X will remain linearized Liapunov stable in two

dimensions with conserved stability norm given in (2.40). However, stability can be lost by the development
of high wavenumber density variations violating (2.50), subsequent to some initial perturbation with
wavenumbers in the stable range of (2.50).

A Hamiltonian formulation of the linearized equations and its relation to spectral theory
is discussed in Appendix C. In particular, 2H, is shown to be a conserved Hamiltonian for
the linearized equations, and the Taylor-Goldstein equation which governs spectral stability
is derived in a manner parallel to the present analysis. Again, we emphasize that spectral
stability in general does not imply linearized stability. However, if 82H, is definite, then its
conservation by the linearized equation does establish linearized stability.

Nonlinear stability for the two-dimensional Boussinesq equations is determined by examining
the conserved quantity,

ﬁC(Av’ Ap) = HC(ve+Av: pe+Ap) _HC(ve: pe) —DHC(ve> pe) '(Av) Ap) (2'51)
= J dxdz {|Av[2+ AF(p,) $-curl Av+G(Ap) +w, F(Ap)}, (2.52)
D

where the symbol A stands for the finite difference, for example,
AF(pe) = F(pe+Ap)_F(pe)’ (2‘53)

28-2



360 H. D. I. ABARBANEL AND OTHERS
and the symbol " means, for example,
F(Ap) = F(pe+Ap) —F(pe) —F'(pe) Ap
= AF(pg) —F'(pe) Ap. (2.54)
In a Taylor series around p,, we would have
F(pe+Ap) = F(pe)+F'(pe) Ap+3F"(pe) (Ap)*+ ..., (2.55)

so the symbol " stands for the second-order term plus the remainder of the Taylor series (2.55).
The factor of 1 in H, in (2.52) relative to 82H in (2.38) appears in the infinitesimal limit as
(Av, Ap) — (8w, dp) via the Taylor series convention,

He = Hg o+ 8Ho +3°Ho+ ... (2.56)

Thus, H in (2.51) is the second-order term plus the remainder of the Taylor series (2.56). Just
as for 82H, in (2.38), we first integrate H in (2.52) by parts using the boundary conditions
Ap |sp = const. and §;p, Av-dl = 0. Then we regroup by completing a square to find the desired
form (compare with (2.38)),

He = f dx dz A0+ V(AF(p,)) xS —HV (AF(po)) -+ [G(Ap) + 0 FlAP)T). (257

Note that V(AF(p,)) depends on VAp, the gradient of the density variation and that
V(AF(p,)) >V (F'(pe) Ap) as Ap—0. Next, we:
(i) define a quantity ¥ with dimensions of time by setting

IV(AF(p))I* = (g/px)* (Bp)*; (2.58)
(i1) assume the following convexity condition on the Casimir functions F and G,
0 < Ja(Ap)* < [C(Ap) +0, F(Ap)] < JE(Ap)? < o0; (2.59)
(iii) note that for a > (gf/py)?, (2.60)
with 7 defined in (2.58), we have from (2.57) and the second inequality in (2.59),
He(Av, Ap) > [[(Av, Ap)|*. (2.61)

Here, the quantity

(A, Ap) |2 = J dx dz A0+ V(AF(p,)) X P+ila— (e/p)")(Bp)Y (262

defines a norm in the space of pairs (Av, Ap), upon inserting (2.58) into (2.62) and using the
lower bound on 7, (2.60). Given the upper bound in (2.59), we may also assume that H,—~0
as (Av, Ap)—0. Consequently,

Hc(Av, Ap) < RI|(Aw, Ap) %, (2.63)

for some positive constant R.
If the convexity hypotheses (2.59-2.60) hold, then the equilibrium state (v, p,) will be
nonlinearly stable in the norm defined by (2.62). This stability is expressed by bounding the
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growth of disturbances (Av, Ap) at time ¢in terms of disturbances (Av,, Ap,) at time 0, by using
the conservation of H, and the two bounds (2.61) and (2.63). Namely, we have

I (Av, Ap)||2 < Hy(Av, Ap) = Hp(Av,, Ap,) < R||(Av,, Ap,) |2 (2.64)

As long as (2.60) continues to hold for 7 defined in (2.58), the inequalities (2.64) provide
bounding norms for H,. Thus, we have proved the following.

THEOREM. Given an equilibrium flow (v, p,) with constant density on each component of the boundary,
if (2.59-2.60) hold, then (v, p,) is nonlinearly stable in the norm defined by (2.62), as long as (2.60)
continues to hold for 1 defined in (2.58).

3. THREE-DIMENSIONAL BOUSSINESQ FLOW

The stability analysis in the previous section applies to planar flows in the (x, z) plane. Planar
analysis is appropriate for the linearized equations, since the Squire transformation reduces the
linearized three-dimensional spectral stability problem for Boussinesq shear flows to an
equivalent two-dimensional one, in the absence of rotation. Thus, the linearized stability
properties of a non-rotating Boussinesq fluid in three dimensions can be understood from
theoretical studies of plane parallel flows via the Taylor—Goldstein equation (see, for example,
Drazin & Reid (1981), §44). For example, Howard (1961) and Miles (1961) show spectral
stability (that is, purely imaginary spectrum) for a Taylor-Goldstein flow, provided the local
Richardson number is everywhere greater than or equal to one-quarter, i.e. Ri > 1, where, for
equilibrium quantities p, = p(z), v, = 9(z) £, with £ the unit vector in the x-direction,

Ri:= —;%%5)—/(%5)2. (3.1)

However, geophysical flows are often not planar, even in a first approximation and, thus, will
not admit the Squire transformation; for example, Coriolis force causes fluid motion out of the
(%, z) plane.

We now consider nonlinear stability for Boussinesq flows in three dimensions. We will find
nonlinear stability conditions, modulo certain assumptions on bounding the gradients of the
density variations that develop from an initial perturbation. In §4 these stability conditions
will be shown to hold for a certain class of shear flows if Ri > 1, with a Richardson number
defined relative to surfaces of constant density.

We recall the Boussinesq equations in three dimensions:

0v/0t = v X Q—V(ol*+p/pu+pgz/p«) +82Vp/ s, (3.2)
op/ot = —v-Vp, (3.3)
dive = 0, (3.4)

where 2:= (curlv)+f. As a consequence of the vorticity equation (2.5) written in terms of
2 as

0R2/0t = curl (v x 2)+ (g/ps) V2 X Vp, (3.5)

and the continuity equation (3.3), the potential vorticity q: = £ Vp is conserved along flow lines,
that is,

0g/0t = —v-Vy. (3.6)
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Discussion of potential vorticity and references to its role in geophysical stability analysis are
to be found in Gill (1982), Pedlosky (1979), LeBlond & Mysak (1978), and Thomson & Stewart
(1977).

Since p, the variation of density from its reference value, and ¢, the potential vorticity, are
both conserved along flow lines, the quantity

Con= [ 1800, 0+ A1 05 37

is a constant of the motion for any real-valued function ¢ of two real variables and constant A.
The term Aq is separated out for later convenience. Constancy of Cy , is readily verified upon
using the condition that fluid velocity be tangential to the fixed boundary 0D of the domain
D in which the flow takes place. Likewise, the total energy is a constant of the motion, namely

H= j (Hol*+pgz/pa) di 3.8)

after normalizing by p,.
The states of equilibrium (p,, v,) of the dynamical system (3.2), (3.3) are the stationary
three-dimensional Boussinesq flows. For such stationary flows, there are three ‘streamline

lati ’
relations, v, Vp, =0, (3.9)
v,'Vg. =0, (3.10)
Vo' VUl> +po/px+Ppe82/P%) = 0. (3.11)

The first two of these relations follows by conservation of p in (3.3) and ¢ in (3.6), while the
last one is the Bernoulli Law, which follows by taking the scalar product of v, with (3.2) and
by using v, Vp, = 0 for stationary solutions.

At points where v, # 0, the streamline relations (3.9-3.11) imply that the quantities pg, ¢,
and (3o, |2+ pe/psx + pe 82/p«) are functionally dependent. We assume, in fact, that

HVel* Do/ Pyt pe S2/Px = K(pes 4e)s (3.12)

where K(p,, ¢.) is called the Bernoulli function. We also assume that Vp, x Vg, # 0, so that level
surfaces of pg, ¢, are not mutually tangential anywhere in D. We will now show that if ¢, # 0,
then

Ve = 95" Kg(Pes 9e) VPe X V4o, (3.13)

which automatically satisfies (3.9) and (3.10). In (3.13), subscript notation denotes partial
derivative, for example, K, = 0K/dg. The motion equation (3.2) for stationary flows and the
relation (3.12) lead to

0. X R, = VK(pe, g0) — (82/px) VPe- (3.14)
Vector multiplication of this by Vp, produces
V(2. Vpe) —2:(Ve"Vpe) = Ky(pes 4e) VPe X Ve (3.15)

Relation (3.13) follows, since the scalar product v, Vp, vanishes and £, Vp, = ¢,.
Another useful relation for stationary flows arises by scalar multiplication of (3.14) by £2,,
yielding
P82 (e V4e) Ky(Pes )/ 9= Ky (Pes ge) = 0. (3.16)
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This replaces the Long equation, (2.13). Relations (3.13) and (3.16) will be useful in the
development of a variational principle for stationary flows in three dimensions.

Stationary flows will now be sought as extrema of the sum of the conserved quantities H + Cy
in (3.8) and (3.7). Let

He(p, )= H+C, , = fD[%|v|2+pgz/p* T+ (p, @) +Ag] dx, (3.17)

where A is a constant. Let 8H, be the first variation of H, i.e.
0H.:= DH(p, v)" (0p, 0v). (3.18)

After integration by parts and use of the divergence theorem, 8 H, is expressible as

Bt = [ dt[(g2/py+,~2-V,) 8p-+ (0= hyg Vo x Vi) -50]
+ ffaDds(qﬂqH) (8pR—Vpx50)-A, (3.19)

where 7 is the outward unit vector normal to the boundary 0D and dS is its area element.
Consequently, the first variation SH in (3.19) vanishes for stationary flows, provided ¢(pe, qo) 15
determined from K(p,, q,) by

K(pm qe) = _¢(pea qe) +qe ¢q(pea qe) (3'20)
in the interior of D, and A =—=0¢,(pe €)lop (3.21)

on the boundary 0D.

For stationary flows, the streamline relations v, Vp, = 0 and v, Vg, = 0 on the boundary
together imply that @,(pe, go)lop is @ constant. Thus, if (3.21) holds, the boundary integral
in 8H, will vanish. In view of (3.16), the velocity relation (3.13), and the definition
qe = 2. Vp,, the coefficients of dp and dv in (3.19) will also vanish, provided relation (3.20)
holds in D. Solving this gives

3o 10) = 40| ["(@5/5) Kpes 9+ 110 (3.22)

where «’( p,) is an arbitrary function of p, ; note that ¢, k' ( p,) is a divergence, which contributes
fop K(pe) i-R2dS to Cy .
At the equilibrium point (p,, v,), the second variation of H, defined by

62IJC = DzHC(pe’ ve) '(SP» 80)29 (323)

is expressible as a matrix formula

T O ¥ Kl I

where the element of the 2 x 2 matrix are to be evaluated at p,, v, and 82¢ = 2 curl dv- Vdp.
As mentioned in the introduction, positivity of 62H, implies linearized stability of the
equilibrium solutions pg, V.. A sufficient condition for positivity of 82H, is determined, as follows.
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Collecting the first and last terms in (3.24) and integrating by parts gives

f d3x{|30[2+2(¢,+A) curl v-Vdp} = J d3x{[30 |2+ 260 Vb, x V5p)
D D

= f d3x {80+ Ve, x V8pl2+ (V- Vop)2— |V V3pl2}, (3.25)
D

where we have used (3.21) to eliminate the boundary term and completed squares using the
vector identity |a x f|* = |a|?|f|>— (a* B)? for any vectors a, f. We control the last (negative)
term in (3.25) by setting

[Vép|% = |k|?(dp)% with |k|% < k2, (3.28)
where £2 will be determined in terms of equilibrium flow quantities. Thus, (3.24) becomes by

virtue of (3.25-3.26),

82H,, = f Dd3x{|80+V¢qx Vpl2+ (Vb V8p)2+ (8p, 89) [%_l;ﬂ:wq'g Z;’Z ] [2’; ]}
(3.27)

Sufficient for positivity of 82H, is that the 2 X 2 matrix in (3.27) has only positive eigenvalues
or, equivalently (by the Sylvester theorem), each subdeterminant be positive. This requires

=1 _ Yo VP X Ve
¢qq(pe» Qe) [by (32())] - de Kq(pe’ qe) [by (313)] - |VPe X qu|2 >0 (328)
— h2
and | k|2 < k2, with K= [?eﬂl—VA—WM] >0, (3.29)
q e

where subscript e in (3.29) means evaluated at (p,, ¢.) and we have used positivity of the
2x 2 determinant also to define £2. The requirements (3.28-3.29) for positivity of 82H
will provide conditional linearized stability criteria for three-dimensional Boussinesq flows, i.e.
sufficient conditions for linearized stability, so long as the condition

|| : =[V8pl / [8p] < k.| (3.30)

is satisfied. Thus, just as in the previous case of Boussinesq flow in a vertical plane, stability
can be lost upon development of sufficiently large gradients in the density variation. With
conditions (3.28-3.29) for formal stability in mind, we consider nonlinear stability.

The nonlinear stability argument uses convexity of the function ¢(p, ¢) in combination with
conservation of the following quantity

ﬁC(Av» Ap) = HC(ve+Av’ Pe+AP) '—HC(ves pe) _DHC(ves pe) '(A‘D, Ap) (3'31>

From H_, we shall obtain nonlinear estimates that establish Liapunov stability in a certain norm
(See Appendix A for an overview of the general procedure.). Here Av and Ap are considered
to be finite velocity and density disturbances at a certain time ¢, which have the values Av, and
Ap, at time zero and evolve according to the Boussinesq equations. The quantity H, in (3.31)
is conserved, since: H(v,+ Av, p,+Ap) is conserved for any Av, Ap; Hp(v,, p,) is merely a
constant real number and DH(v,, p,) vanishes.
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Definition (3.31) now yields the formula

Ho(do, 80) = [ @t QAGI+ oo+ B0, 40+ B0) = (s 1)
—@,(Pes 9e) Ap— [Bg(Pes e) + A1 (Ag— AR-VAp)}, (3.32)
in which Agq is defined as
Aq = (ge+A9)'V(pe+Ap)—ge'Vpe (3'33)
=Q.V(Ap)+AQ-Vp.+AQ-V(Ap). (3.34)
Combining the first and last terms in (3.32), integrating by parts, and completing a square
as in (3.25) gives
-;- f dox {|Av[2 +2(d, + ) curl Av-VAp)
D
= -12- f dPx{|Av+ Ve, x VAp |2+ (V- VAp)2—|Ve *IVAp|?}. (3.35)
D

The factor of one-half in (3.35) relative to (3.25) appears since in a Taylor series we have
HC =HC|e+6HC+%62HC+”' (3.36)
and H, in (3.31) is the second-order term plus the remainder of this Taylor series. Define also

P(Ap, Ag):= B(pe+Ap, got+Aq) —P(per 1) —DP(pes 40) (Ap, Ag), (3.37)
so that, by (3.35) and (3.37) equation (3.32) becomes

" 1
Ho(Av, Ag) = 5 JDdzx{lAv+V¢quApI” (Vo VAp)2= IV, [IVApI+ 26 (Ap, Ag)).

(3.38)
To find convexity conditions for H,, in (3.38) we first set, as in (3.26),

IVApI® = |k|*(Ap)* < Ki(Ap)?, (3.39)
where £% is to be determined. Next, we define

¥(p, q):= (P, 9) —1VPy(pes 40 PIKI0%, (3.40)

where p, ¢ are any arguments of ¥, but |V@,(p,, ¢,)|? is a fixed function of x determined by
the equilibrium flow. This means, in particular, that

Yf (pes qe) - ¢ |V¢q(pes qe)|2|k2|
IVéq(Pe ge) 17 A3

o(Pes 9e) —

Z ¢,,(Pes 9e) —

¥4q(Pes 9e) = Pgq(Pes Ge)s
Yoa(Pes 9e) = Bpg(Pes Ge)s

for the partial derivatives of ¥. Then the use of (3.39-3.40) in (3.38) gives

(3.41)

H.(Av, Ag) >-;- f A% {|Av+ Ve, x VAR + (V§,-VAp) +2¥(Ap, Ag)},  (3.42)
D
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where P(Ap, Ag) is defined by replacing ¢ in (3.37) by ¥ from (3.40). Finally, we strengthen
the positivity conditions for 62H in (3.28-3.39) to read

0<a< ¥,(Pes ge) < 0, (3.43)

o< [yl 17 Ela) <2 Lo ey gt e[ <o 340

which are convexity conditions for the functional [d®x #(Ap, Ag), in the range of values for
Pe> 96> Where a, B, and vy are finite positive constants, satisfying & > 0, ya— g% > 0. For given
choices of a, 8, and v, the second inequality in (3.44) determines £} in (3.39) as (with the use
of (3.41)),

0 <k} = [Bgq Ppp— (Bpat+ 72— 51/ Peql VP I* (3.45)

compare with equation (3.29). Inequalities (3.43) and (3.44) lead to a lower bound

Aclbo, &) > [t A0+ V9,00 00 < Va0l +38p.80) [} )| 30]} > 0. (240
Let

A
10, 89, Aq)1* = [atx{uso+ V8,0 00 x V8 +30p. 80 [ ][ W0]}
which by (3.43) and (3.44) defines a norm on the space of triples (Av, Ap, Ag).
Let us also assume that H,—>0 as (Av, Ap) >0 in the norm (3.47). To be specific, assume
that
W (pes 90) < & (3.48)

and qu(pe, Qe) pr(pe’ qe) - Y’?{p(pe’ qe) < &7_ﬁ2 (349)

in the range of p,, ¢, for finite positive constants &, £, 7. It follows that

for some positive constant R.

If the hypotheses (3.43), (3.44), (3.48) and (3.49) hold, then (v,, p,) is nonlinearly stable
in the norm (3.47), so long as (3.39) continues to hold, with £3 given in (3.45). Indeed, letting
(Av,, Ap,, Ag,) denote the initial value of a disturbance (Av, Ap, Ag) at time zero, we have

I (Av, Ap, Ag) |12 < Ho(Av, Ap) = Hi(Av,, Ap,) < R||(Avy, Apy, Agy) |12, (3.51)

which bounds the growth of future disturbances in terms of disturbances at ¢ = 0, and thus
gives conditional nonlinear stability (see Appendix A), so long as (3.39) holds, with £} given
in (3.45), in terms of the constants e, £, ¥, and equilibrium quantities.

In summary, we have proved the following.

THEOREM. Given an equilibrium flow (ve, p,), we form ¢(pe, qo) satisfying (3.20), (3.21). If
(3.43-3.44) and (3.48-3.49) hold, then (v, pe) is nonlinearly stable in the norm given by (3.47), subject
to condition (3.39), with k% given in (3.45).

The next section shows how to implement this result in specific cases of three-dimensional
flow.
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4. A RICHARDSON NUMBER CRITERION FOR NONLINEAR STABILITY
OF SHEAR FLOWS

Here we present specific examples showing how to implement the sufficient conditions for
stability given in the previous section.

The meaning of stability is roughly as follows. An initial condition near the equilibrium will
produce a time-dependent nonlinear solution; this solution may be approximated by the
linearized solution to first-order and by another equation (analogous to the Benjamin-Ono
equation, describing two-dimensional flow, see Benjamin (1972)) to second-order. The
second-order equation may represent either small-amplitude Rossby waves, or internal waves,
depending on the stationary flow. Stability of the stationary flow means that this nonlinear
solution remains close to the stationary flow for all time (while the solution exists and is C?).
This does not prove that the time-dependent solutions of the second-order equation are either
periodic or stable. See Bennett ¢t al. (1983) for results on stability of internal waves in a model
equation.

Example 1

We first present a simplified version of the basic example for which the analysis is relatively
straightforward. Below, we shall generalize some features of it. The example uses a velocity
field with a vertical shear, which is a function of ¥ as well as of z and points in the x direction.
The density profile is a function of z alone. In this example, there are no Coriolis forces and
we take p, = 1. Let

(%, Y, z) = (u(% z),0,0) (4:.1)
and Pals, 4, 2) = p(2). (4.2)

For f = 0, this is an equilibrium with pressure

02 == [ plo) dz (4.3

The Bernoulli function is
K(pes ge) = 3u*+p+pgz. (4.4)
Notice that Je = —Uy P, (4.5)
If p, # 0, we can solve p = p(z) for z = z(p) and if u,, # 0 we can solve ¢, = —u,p, for

y = y(g, z(p)). In this way, K becomes a function of p, and ¢,, which we shall just denote p, ¢
for notational simplicity in the rest of this section.
Before proceeding, we observe that the stability condition (3.48), namely

0<a<d,=K/9< 4,
becomes 0<a<u/(u,lp]’) <a (4.6)

by implicit differentiation; note that K, = K,(dy/d¢) = uu,(0y/d¢) and from ¢ = —u,p,,
1= —uyy(ay/aq) P, SO
ay/aq = l/uyypz' (4'7)

Alternatively, one may simply substitute the equilibrium expressions (4.2) and (4.5) into (3.28).
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Next we compute ¢. To simplify the form of « and p so we can solve for z = z(p) and
y = y(p, q) explicitly, let us take

plz) = =1z (4.8)
and u(y, z) = Ay + ¢z (4.9)
where 7, { and A are constants. Then

z=—p/r and y=gq/Ar. (4.10)

Substitution into (4.4) gives

Thus, using
sio.0) = o [ @/ Ko+ Fip), (4.12)
we find B9, 1) = gL E g o). (4.13)
The condition (3.48) becomes, via (4.6),
0<a<u/A?<a<w, (4.14)

which is valid if u,,, = A > 0 and u is positive in, for example, the domain 0 <a <y < b < ©
and 0 < ¢ < z < d. This is also ensured if {/A > 0, as one sees by directly calculating ¢,, from
(4.13). Namely, the quantity

_qe _&pe_y &
PaalPer o) = 53030 = 231 (4-15)

is positive for {/A > 0 in the above z-domain. Upon choosing F(p) = 0 in (4.13), equations
(3.41) become

YIpp(ioe, ge) = — (B—gr)/r*— (1k[2/72) [C (g2 +22) + ALy2z + 1A%4],
¥ a(Pes 9e) = y2/2r* + L2/ Ar?,
YIlﬂl(pe’ de) = _y§/72 (4.16)

and we find, at equilibrium,
u [ (gr 2 uz uy*
¥, o2 = 4 5[ (G) 42 |- CE (1 )21k a7
By (4.14) u/A is positive, so expression (4.17) will be positive (given « and the domain of y

and z), for sufficiently small, but non zero A, provided the square-bracketed coefficient in the
first term in (4.17) is positive. Looking at the definition of £% in (3.29) gives

r/&—1
k2 =5-—y/2§:;~+0(A). (4.18)
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Thus, to lowest order in A [i.e. O(A™!)], we have, from (4.17),

uf? | K12\ (gr

Consequently, for sufficiently small, but nonzero A, the stability conditions (3.32) will be
satisfied, provided
Ri=gr/3®> 1. (4.20)

We note that Ri > 1 is also the condition in this example for K,, < 0, i.e. for the Bernoulli
function to have negative curvature in p.

The stability inequality (4.20) confirms expectations that increase of buoyancy
r=—dp/dz > 0 is stabilizing, while increase of shear { = u, is destabilizing. Remarkably,
though, (4.19) suggests also that a decrease of horizontal profile curvature A = u,, > 0 is
another stabilizing influence. However, one must keep in mind that the norm (3.27) in which
one obtains stability depends on A. For this example, the coefficient ¢, = u/r?A in (3.27) blows
up for A = 0. In other words, as A— 0 the norm that measures deviations from the stationary
solution deteriorates and at A = 0 this norm actually becomes infinite.

Example 11

We generalize the previous example and give necessary and sufficient conditions for formal
stability in a certain approximation. We consider the stability of a parallel shear flow

Ve(X) = (u(y, 2),0,0) = (y(y) + U(2), 0, 0)

with density profile depending only on z

The linear stability of this arrangement in the planar case has been exhaustively studied when
v(y) = 0. In that case, it is a classic result due to Miles & Howard (see the discussion in Drazin
& Reid (1981)) that when the Richardson number,

. —gdp[(dUY
Ri = Pa dz/(dg) , (4.21)

is greater than, or equal to one-quarter, the fluid is neutrally stable (that is, the eigenvalues
of the linearized equation lie on the imaginary axis).

For the three-dimensional situation, we are not treating the case with y(y) identically zero,
since then g, = 0 and the equilibrium flows available as critical points of H, are static, i.e. then
v,(x) = 0. Furthermore, as we have seen, the corresponding two-dimensional problem has 0°H,
indefinite. To break this degenerate situation, as in example I, we allow a small, slow variation
in the y direction on a length scale L (in units of the domain size) larger than any other length
in the problem. To be specific, we imagine the flow to occur in a horizontally large box

—L <x<L, (4.22)
—Ly,<y<L, (4.23)
and —-D<z<0 (4.24)
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The length L is to be taken larger than L,, L, or D. The boundary conditions on v and p are
that v A = 0 on all sides of the box and p is constant on each side, but perhaps taking different
values on different sides. In addition, we require periodicity in x¥ and y, but imagine L; and
L, large enough not to interfere with the intended investigation of z-variations.

We consider the restricted example with

v(y) = Vo(1+y/L+3y*/L?) (4.25)

and have in mind the further restriction V; < |U(z)|, to assure the smallness of the variation
in y. The flow is then the usual parallel shear flow, for all physical intents and purposes. We
are also going to work in the Boussinesq approximation, setting p, = 1.

The analysis proceeds as in §3. We need to determine ¢ and p as a function of y and z, and
then invert these functions to calculate ¢(p, ¢) at p, and ¢,. From its definition

g = (curlv,) - Zp,. (4.26)
We take f= 0, so the v, above is a solution to the momentum equations. This gives
e = _pz(%/l‘)(l-*'y/l‘)? (4'27)
and from (3.22) we integrate (dropping the subscript ‘e’)
K(p, q) = p+pgz+i(u(z) +7(y))® (4.28)
to arrive at B(p: 9) = — (p+pgz+1U(2)) + Byqlp) 142+ O(g¥). (4.29)
The quantity ¢,, is given by
Uiz) 1
baq = vl + ) 2 (4.30)
Yyy Pz

and for small y(y) it is a function only of z (or equivalently p) to order 1/L2 Thus, for this
example, ¢(p, ¢) is essentially minus the Bernoulli function, plus corrections that are small.
To examine the necessary and sufficient conditions for formal stability, we need to express
(3.24) for 82H,, in terms of two independent components of dv and of 8p. We choose the two
independent components to be v, = dv- £ and w, = (curldv) - £. Then 82H, has the form

v 1 $ae Do [84
82H=Jd3{—+ (—~) +250- (Ve x V5 +6,8[‘1‘1 qp][ ,
C b X33 Vzl U3 T Wy V2 W v ( ¢q P) ( q P) ¢qp ¢pp 8p

(4.31)

where V3 = 0% +02 and V2 = 0} + V3. The inverse of V] can be expressed in terms of the Fourier
transform, for variations that are periodic in x and y. For our example,

89 = wyp,+U,0,8p—7,0,8p (4.32)

and on the basis of our assumptions on y, we now choose y,, so small that the last term in (4.32)
is negligible. Under these assumptions and with our ordering scheme for small variations in
y, the second variation (4.31) becomes

ve/ve 0 0 0
B = [Ex 0080 0 1V pUbuly ||on| @33)

0 — Pz Uz ¢qq ay ¢pp - Ug ¢qq 832/ 810
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In reaching this expression, we have dropped terms of higher order in 1/L, commensurate with
our approximations. In particular, the term dv- (V@, x V3p), which proved so troublesome in
the previous section, contributes only to the (w,, 8p) matrix element in (4.33), to leading order
in L. Further, its contribution is one order smaller than the term in ¢,, which we retain. The
potential source of instability which it represents is thus absent here. Our task now is to establish
the conditions under which the bilinear form (4.38) has definite sign. We do this by establishing
conditions for the three-by-three matrix operator in (4.33) to have positive eigenvalues.

If (4.33) is definite, its sign must be positive.. This can be seen by considering the variation
(vg, 0, 0). The operator V2/V2 is positive definite operating on v, with boundary conditions
v, = 0 at z =0, —D. The eigenfunctions of this operator with these boundary conditions are

(X = (x19))
£\(R, z) = £ ek # sin%g; n=1,2, ... (4.34)
and the eigenvalues are
A=mn2?/kAD%+1; n=1,2,3, .., (4.35)
which are clearly positive.

The functional 82H must be positive for an arbitrary variation (v,, w,, dp) and, in particular,
for the variation (0, w,, 6p). The necessary and sufficient condition for the positivity of 62H,
under this latter choice is that the two-by-two submatrix in (4.33) have only positive
eigenvalues. By Fourier transforming in k£ = (k,, k,) space we see this means that the matrix

[ l/ki+p§ ¢qq ik2pz Uz ¢qq ]
—1k2 Pz Uz ¢qq ¢pp +k§ U: ¢qq

must have only positive eigenvalues for all values of £, and £,. The conditions for this are

¢qq = u/uyy(pz)2 >0 (437)

— k2 U?
and $,, > max —%q—sﬂ.
(e, ke L HELPE Boq

The first of these is the usual Rayleigh stability condition on the y variation of the velocity profile,

(4.36)

(4.38)

and we assume it is satisfied. Its appearance here is expected, since there is no stratification
in the y direction. The quantity ¢,, may be expressed as

_NG@) L& e (i)
Pop = ot 35p U(z)2+0 1) (4.39)
g %
where the buoyancy frequency N(z) = —=- -~ (4.40)

Px Oz

has been introduced.
If (U?),, is positive, we can translate (4.38) and (4.39) into a condition on the local Richardson
number defined by

Ri(z) = N*(2)/p3(U*/2),,; (4.41)

: —k*k U ¢ 1
namel Ri(z)—1 > max —— 2 = 0. 4.42
Y B e F+0id, (UY/2),, (4.42)

Ri(z) agrees with the usual Richardson number if U and p are replaced by their linearizations
at z. The result (4.42) is complementary to the Miles-Howard condition; R > 1 for linear
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stability. One also has nonlinear stability, as in example I. When mink, # 0 and the
disturbance is three-dimensional, we have the analogue of the Squire Theorem (see Drazin &
Howard 1981) which says here that two-dimensional disturbances are stable for a smaller range

of Ri(z) (only Ri(z) > 1) than three-dimensional perturbations.
Up to small corrections commensurate with the present approximations, the stability

condition (4.38) that ¢,, > 0 can be expressed, by using (4.29), as

K, ~ GU+pgz/px+p/px),, <O (4.43)

at equilibrium. Thus, for stability the Bernoulli function at equilibrium should have negative
curvature as a function of p. This approximate stability condition is consistent with the first
example, as mentioned after (4.18). We observe from (4.39) that when (3U?), is sufficiently
negative, an equilibrium flow can be stable even with p, > 0, i.e. even when the stratification
would be statically unstable. This stabilizing effect of negative curvature does not show up in
the first example, since U and p are linear in z at equilibrium. The essence of this section has
appeared in Abarbanel et al. (1984).

Inclusion of rotation

If we work in a rotating frame, taking f'= f(x, y) Z, then the corresponding changes in the
foregoing examples are minor. With ¢ = (curlv+f) - Vp we have by (3.13) and (3.16),

K(pe) qe) = %lvep +Pe/P*+PegZ/P*> (4'44)
Ky(pe> 4e) _ 0o Vpe x Vg

—_a\"e e/ _ Te e e 4.4

¢qq(l)e’ de) 7 IVpo x Vgl ’ (4.45)
e Ve Voo x Ve

=22 (Q,Vq,)-e—FeZ e 44

Ky (per ge) = == (ReVee) (7 (4.46)
For the equilibrium flow given by (4.1) and (4.2), we have

Q.=U, 9+ (f~u,) %, (4.47)
e = (f_ uy) Pz (4'48)

and the stability condition (4.6) becomes

—Uu

0<asx< ¢qq(pe7 qe) = (f )2 <@ (4'49>

y—uyy)(pz

Thus one of the stability conditions is that the expression f, —u,, does not change sign in the

domain considered. This is a slight generalization of the result of Kuo (1949), who showed that

a necessary condition for linear instability of planar, incompressible, parallel flow in a rotating

frame, with f = f, + By for constant f,, 8, is that f—u,,, = 0 somewhere in the domain of flow.
This modification of example I to include rotation involves taking

f=f+By, plz)=—1z, u(y,z) =+, (4.50)

where f,, f, 7, {, and A are constants, so that

z=—p/r, y= ——-——q//\rj?.

Retracing the steps in example I with these modifications produces two stability conditions,
analogous to (4.14) and (4.20), but more complicated in form (especially the second condition).
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The first condition, 0 < a < wr~2/(A—f), simply reflects the Kuo (1949) correction to include
rotation, while the second condition shows that the Richardson number criterion gr/£* > 1 for
stability found in the previous examples is not essentially modified by the presence of rotation.

5. TWO-DIMENSIONAL INVISCID INCOMPRESSIBLE STRATIFIED FLOW

We now release the Boussinesq approximation and study the stability of stratified, inviscid
flow in two spatial dimensions as described by the Euler equations,

0v/0t = —Vp/p—gZ+vxa—Viv (5.1)

In solving these equations, p is determined from conservation of the incompressibility condition,
divo =0, (5.2)

with p satisfying dp/0t+v-Vp =0, (5.3)

in a fixed, bounded domain D in the xz plane, subject to the boundary conditions v-# = 0.
The vorticity equation for @ = y-curl® = V%) reads

dw/dt+v Vo = (1/p*) (VpxVp)-p

= (1/p") 0,90, p—2,$2, ) (5.4)
Denoting {f, g} = 0,/0,¢—0, /0, g, equations (5.5) and (5.3) become

dw/0t = {w, Y} +1{p, 1/p} (5.5)

dp/ot = {p, Yr}. (5.6)

The sense in which (5.5) and (5.6) form a Hamiltonian system is explained in §7.

From the continuity equation (5.6) we see that for a stationary solution (w,, p), the vectors
Vi, and Vp, are collinear in the plane; since p,, ¥, must be functionally related for the bracket
{Pe> Yo} to vanish. Sufficient for this collinearity are the functional relationships

Ve =Y(pe), pe=pWe) (5.7)

The Long equation is a condition equivalent to the vanishing of the right-hand side of (5.6).
This equation characterizes stationary solutions and is derived as follows. Multiply equation
(5.1) in the case of stationary solutions by p, and take its curl to obtain

curl (P e X 0o ) = Voo x V (ol +g2). (5.7
Now,
curl (pe Ve X 0o P) = [_pe(ve'v) wey_wey div (pev,) + (W P°V) pe Vet P Ve div (0, )]
= -pe(ve'v) we P;

the last two terms in the square brackets are obviously zero and the second one vanishes for
stationary solutions. By using (5.7), the dot product of (5.7”) with P yields

0 =0, Vo, + (1/pe){pes dvel* + g2}
1 dpe

= ve‘Va)e-i'l—D“dw
e A¥e
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(Ve V) (lvel* +42), (5.8)
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Since v,* Vi, = 0 and v, Vp, = 0, (5.8) becomes

1 dp

v 'V[a) +——% (v I2+gz]=0, (5.9)
e e Pe dlﬁe (2 e )

i.e. the quantity under the gradient is constant on streamlines. One can also reach the conclusion

(5.9) rather more directly from (5.5). Just substitute Vp, using (5.1) in the case of stationary

solutions into the right-hand side of (5.5) and use (5.7). Thus the quantities

1d
Ve and [ogho e ogtren)|
€ €

are functionally related: we assume that

We +—1— dpe

pe dire

This is known as the Long equation (Long (1953), Turner (1973), Yih (1980)).
The total energy, which is conserved, has the expression

(Glvel®+g2) = L(te)- (5.10)

H(v, p) = L)dx dz (3plv|®+pgz). (5.11)

Itis easy to see that when Fand G are any real-valued functions of a real variable, p, the quantity
Cp. ¢ A(0,p) =J- dx dz(wF(p)+G(p))+)l§ v-dl (5.12)
D oD

is also conserved, provided we assume p is constant on each connected component of the

boundary, i.e. the boundary is ‘isopychnal’. If this condition holds at ¢ = 0, it holds for all ¢

since p is conserved. The geometrical significance of the functional in (5.12) will be explained

in §7. Here we mention, though, that Cp 4 , is also conserved if  is replaced by §-curl po.
According to the methodology of Appendix A, we form the sum

He(v, p) = H(v, p) +Cp, ¢, 2(0, p)
=f dxdz [Yplv|*+pgz+wF(p)+G(p)]+AP v-dl (5.13)
D oD

and study its first variation 8 H, = DH(v, p) - (8v, dp) where DH (v, p) - (dv, 8p) denotes the
derivative of H at (v, p) in the direction (dv, 8p). We find

8H0=f dx dz{pv-dv+ F(p) y- curl dv
D
+[%|v|2+gz+wF’(p)+G’(p)]5p}+/\4; dv-dl (5.14)
oD

=f dx dz{8v-§ x (Vi — VF(p))
D

+ [0+ gz+wF' (p)+G'(p)] 8p}+§)aD (F(p)+A)dv-dl. (5 .15)
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This variational derivative vanishes for a stationary flow (v, p.) satisfying (5.1), (5.2), and
(5.3), provided F(p,), G(p,), and A are determined as follows,

Pe¥'(pe) = F'(pe), (5.16)
el + g2+ 0 F'(pe) +G'(pe) = 0, (5.17)
A+F(pe)lop = 0. (5.18)

In the last equality we recall that p, is constant on the boundary. Comparing (5.17) with the
Long equation (5.10) and using (5.16) determines G(p,) as

G'(pe) = —pe ¥’ (Pe) LY (pe))- (5.19)

Thus, a stationary solution of the two-dimensional stratified fluid equations is an extremum of H., the sum
of the energy H in (5.11) and the conserved quantity Cp ¢ , in (5.12).
The second variation 8*H, = D*H(v,, p,) * (0v, 8p)? is given by

0*H, = fDdx dz{p.ldv |2+ 200" [v,0p+ V(F'(p,) Op) x ]
HOoF (p) +Cp)] (o)l =2 Fp) Spdo-dl (5.20)
= [ dxdz{pdVEpE+2V80- 39V~ V(P () B0)]

+[0e F"(pe) +G7(p)1(89)3 —2F (p)op ffaDSp Sv-dl. (5.21)

Completing the square gives

2 2
—Pe

V(&/J—M sp)

O*H = f dx dz {pe
D Pe

(e

+[we F(pe) + G"(pe)] <6p>2}—2F'<pe>|aD fﬁaDSp Sv-dl. (5.22)

The boundary integral in (5.22) vanishes when 8p|,, = const. for variations that preserve the
circulation on the boundary.

If 8p =0, then 8°H, is positive. If, however, 8¢ = F'(p,) dp/pe, VOY is zero on the
boundary, and 8p has small variations, but with very steep gradient, the sum of the last two
terms in the first integral can be negative. This shows that 6>H,, is indefinite and, as in §2,
we are led to the following.

Conjecture. Nonlinear stability can be lost for stationary, two-dimensional solutions with isopychnal
boundary conditions of incompressible stratified flow via the creation of density variations at high wavenumber.

As in §2, we conjecture that Arnold diffusion will occur at large wavenumber and cause
instability because of nonlinear coupling. In fact, unless systems are completely integrable, this
is always expected to occur (see Arnold 1978, Appendix 8; Lichtenberg & Lieberman 1983;
Holmes & Marsden 1983).

The range of stable wavenumbers for a given equilibrium solution can be estimated, as

30-2
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follows. Using (5.16), we rewrite (5.22) as

8H¢ = JDdx dz{pelV (89— (pe) 8p)I* = pel V(¥ (pe) 8p) I + A(8p)*, (5.23)

where A:=w  F"(p,)+G"(pe)- (5.24)

Let us define a quantity 7 with dimensions of time by setting

IV (pe) 8p)I* = (g7/pe)* (3p)*; (5.25)
compare with (2.41). Note that 62H in (5.23) will be positive definite, provided
A> (g1)*/pe, (5.26)

where 4 is given in (5.24). The interpretation of 4 in (5.24) is obtained from (5.10), (5.16)
and (5.19) as

4 =0 F'(pe) +G"(pe)
= [we— LY (pe)) 1 F"(pe) = F'(pe) L'(W(pe)) ¥'(pe)

= —Pe 'ﬁ/(pe) (dwe/dpe) - (d/dpe) (%lvel2 +4z). (5.27)

For a stratified Euler shear flow, with p, = p(z), v, =0(z) X, =y’(z)X, we have
we = W(z) = ¥'(z) and N*:= —(g/p(z)) p’(z), so that

4=—p(z) 72 72 5 (0(2) v'(2) +8)
- «L/N’Z(Z) [1 +§ i(2) 7 (2) ‘7\172“ i(2) 17”(2)}- (5.28)

Thus the stability condition (5.26) becomes a quadratic inequality in the buoyancy frequency
A
TH(NB) 2 —[14g%(z) v'(2) ] N> +9(2) v"(z) < O; (5.29)

compare with (2.44). For positive discriminant, this quadratic has two real roots; so there is
a range of stable values of N2, including negative values when (z) 9"(z) < 0. Now, in terms
of the buoyancy frequency and other equilibrium quantities, we may express the stable range
of density-variation gradients as

2  [1+80(2) 7'(2)] N*—i(z2) 0"(2)
7% < e ,

(5.30)

where, by the definition of 7 in (5.25), we have

v(“222)) i (5.31)

compare with (2.50). So long as inequality (5.30) is satisfied, the stratified Euler flow p, = p(z),
v, = 9(z) X will remain linearized Liapunov stable in two dimensions, with conserved stability
norm given by 8*H in (5.23).

=22
4
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Nonlinear stability for the two-dimensional Euler equations is determined by examining the
conserved quantity

HC(Av7 Ap) = HC(ve+Av’ pe+Ap) _HC(ve’ pe) _DHC(ve’ pe) ’ (Av’ Ap) (5.32)
- f dr dz{}(pe +Ap)|AT] + Apv, - Av+ [C(Ap) +w, F(Ap)] +Aw AF(p,)},
D
(5.33)

where the operations A and " are defined as in (2.53) and (2.54), respectively. Integration of
the last term in (5.33) by parts and use of the boundary conditions Aply, = const. and
fop Av-dl = 0 gives, upon substituting v, = $ X Vi, and Av = p x VAy,
Ho(bo, 89) = [ dx dz {(po+Ap)AVY
D
+VAY - [ApVife = V(AF(pe) 1 +[G(Ap) + w F(Ap)]}.  (5.34)

Relation (5.16) implies

L APV —V(AF(py))] = ~VF(pg) —

1
———— VF(p +A
petAp Pe petAp (Pet4p)

=~ A VF(p) | = = AW (p0) = ~VAF(p). (535
Hence,
Holdo, 89) = [ dx dz(4(pe+ A0V (AY — AFpo)

~1(pe+ D) VAT (o) 2+ [C(Ap) + 0, F(Ap)T}.  (5.36)
Next, we: '

(i) define a quantity ¥ with dimensions of time by setting, as in (2.58),

V(AP (pe))I* = (g7/px)* (Ap)*; (5.37)
(ii) assume the following convexity condition on the Casimir functions F and G,
0 < (/2)(Ap)* < [C(Ap) +w, F(Ap)] < (&/2)(Ap)? < o0; (5.38)
(iii) observe that since p is conserved, we have
0 < Pmin S Pet+Ap < Prax < © (5.39)

for all time, if this is satisfied initially (which we assume). Consequently, provided

&> Proax (87/Px)? (5.40)

we have H,(Av, Ap) > ||(Av, Ap)|?, (5.41)

where

180, A1 = | d (i 80+ VAT (o)) X I+ il pra67/p0) (A0 (5.42)
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defines a norm in the space of pairs (Av, Ap) upon inserting (5.37) into (5.42) and using the
lower bound on 7, (5.40). Given the upper bounds in (5.38) and (5.39), we also have

H(Av, Ap) < fDdx dz{PmaxlAv+ V(A (pe)) X PI*+ (@ = ppmin(e?/px)?) (Ap)?}.  (5.43)

Therefore, H, >0 as (Av, Ap) >0, and we may put
He < Qll(Av, Ap) |3, (5.44)

for some positive constant Q.

If the hypotheses (5.38-5.40) hold and solutions exist for all time, then the equilibrium state
(Ve, pe) Will be nonlinearly stable in the norm (5.42). Indeed, the estimates (5.41) and (5.44)
provide bounds on the growth of disturbances (Av,Ap) at time ¢ in terms of disturbances
(Av,, Ap,) at time 0, using the conservation of H, under the nonlinear evolution. Namely, we
have

|(Av, Ap)|* < He(Av, Ap) = He(Avy, Ap,) < QI (Avy, Apy) 1%, (5.45)

so long as (5.40) holds, with 7 defined in (5.37). We have proved the following.

THEOREM. Given an equilibrium flow (v, p,) with constant density on each component of the boundary;
if (5.38-5.40) hold, then (v, p,) is nonlinearly stable in the norm (5.42), as long as (5.40) holds, with
T defined in (5.37).

Remarks. (A) In Long (1953), (5.10) emerges from another variational principle, in which
density variations are taken to be functionally related to variations of the stream function by
the equilibrium relation p, = p(r,), so that 8p = p’({,) 8. This restriction is consistent with
the equilibrium flow being a critical point of the energy functional chosen in Long (1953), but
it precludes establishing a proper stability condition by taking a second variation, since only
this special direction in (3p, 8Y) space is being tested.

(B) In §8 we shall examine how imposition on the two-dimensional Boussinesq equations
of a maximum spatial wavenumber (so-called ‘filtering’) leads to formal, and rigorous
nonlinear stability. A similar analysis of “filtered” Euler equations could also be performed. The
‘filtered’ two-dimensional Boussinesq equations in §8 remove the high wavenumbers from the
stream function ¥ entirely and prevent their development, thereby leading to stability criteria
for these modified equations. In contrast to ‘filtering’, in which the equations are altered in
§8, the rest of this paper treats the unmodified Boussinesq and Euler equations, and determines
the stable range in wavenumber or gradient modulus of the density variations for a given initial
equilibrium solution. ‘Monitoring’ the magnitudes of the gradients of the density variations
would determine whether a certain disturbance remains stable for a given equilibrium solution.

6. THREE-DIMENSIONAL INVISCID INCOMPRESSIBLE STRATIFIED FLOW

The motion of an incompressible, inhomogeneous, rotating fluid under gravity is given by
solutions to

/0t =—p~Vp—V({iv|*+gz) + v x 2, (6.1)
op/ot+v:Vp =0, (6.2)
div (v) = 0, (6.3)
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where 2 = curlv+f, and f = f(x, y) £ is twice the time independent angular velocity about
the z-axis, with unit vector £ in the opposite direction than that of gravity. At the boundary
v A = 0 where fi is the outward unit normal on the boundary of the domain D for the fluid.
It is easy to check that the potential vorticity,

¢=2-Vp, (6.4)

is conserved along fluid trajectories, i.e. ¢ satisfies (6.2) with p replaced by ¢g. Consequently,
the functional

Ce = [ aFip,q (6.5)

is conserved for an arbitrary function F(p, ¢). The energy

H(w, p) = [_a% plol+pgz) (6.6)

is also conserved. The sense in which (6.1), (6.2) and (6.3) form a Hamiltonian system with
energy (6.6) and Casimirs (6.5) will be discussed in the next section.

We form the functional H, = H+ Cj and vary v and p. The variation of v will be taken
in the space of ©’s with div (v) = 0. Also, we vary @ = curlv in the space of vector fields
that are curls; in particular 8@ = curl dv. We have

Ho(w, ) = [ dplol+pez-+ Fip, ) +Ad, (6.7)
so that the first variation for A = const. equals
0H, = fDd"’x [Glv]*+gz+ F,—R2-VF,)) 8p+ (pv—F,, Vp x Vq) - bv]
+£DdS(F,1+/\) [2-A%p— (Vp x dv)-A]. (6.8)
Since v, fi =0, ¢, and p, are constant on the boundary. Thus the boundary term in (6.8)

vanishes for (F,+A)l,p =0 and stationarity of Hq(v, p) at v,, p, is achieved, provided
F(pe, g.) satisfies

Pe Ve = Faq(Pes 9e) VPe X Ve (6.9)
and lve*+gz+F,—R,-VF, = 0. (6.10)
Since (6.1), (6.2) and (6.3) imply
0/0t(3plvl* +pgz) = —div (pv(3lvl* +p/p+g2)), (6.11)
stationary solutions must satisfy
v, Vp, =0, Vg, =v, VK, =0, (6.12)
where K, = Yo 2+ pe/pe+gz. (6.13)

This means that the three gradient vectors Vp,, Vg,, VK, are perpendicular to the streamlines.
Sufficient conditions for this are
v, = V(x) Vp,x Vgq,, (6.14)

%lvelz +pe/pPetgz = K(pe> 96) = Ko, (6.15)
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where V is some real valued function defined on the domain. A comparison of (6.14) with (6.9)
yields p, V(x) = F4(pe, 4,)- We now determine F in terms of K by inserting (6.9) in the Euler
equation for stationary solutions. Comparing coefficients of Vp, and Vg, leads us to

Pe Kq(pe’ qe)/qe = F;Jq(pe’ qe) (6'16)
and K(pe9 qe) +pe Kp(pe: qe) = %lvel2+gz_qu Qe'qu. <6'17)
We satisfy (6.16) with Pe K(pes 9e) = 9o Fy— F+E(po)s (6.18)

where { is an arbitrary function of p, only. Inserting (6.18) into (6.17) yields
e P +gz+ (F—),— 2, VF, = 0. (6.19)

Renaming the difference F(p, g) —&(p) as F(p, ¢) turns (6.19) into (6.10). Consequently, the
new function F is related to K by

PK(p, q) = qFy(p, 9) = F(p, 9). (6.20)

The second variation of H in (6.7) when evaluated at (v,, p,) yields

8%H,, =f d3x{pel50l2+28p dv-v,+ (8p, 6¢) [F;”’ qu] [Sp]+(Fq+A) qu} (6.21)
D Fy, Flldq

= f d3x {pelSv +ps 0, 0p+ps 'VE, x Vop|?
D

F_ F _1[6p
PP ap —p-1 2
+ (3p, 89) [qu qu] [Sq] pe v dp+VE, x Vop| } (6.22)

It is somewhat complicated to display the full set of conditions that are both necessary and
sufficient for 62H, to be positive definite. However, sufficient conditions for formal stability are
given by setting V8p = kdp in (6.22), so that

82H, = J d2x {pe|80 +pe v, 8p+ps 'VF, x Vip |
D

—n—1 2
+ (3p, Sq)[FPP pe v+ VI, x ki qu] (5”)}. (6.23)
g Ful \8q

Sufficient conditions for §2H in (6.23) to be positive definite are

Fy>0 (6.24a)
and [0+ VE, x k[2 > p[F, Fyy—F2,]1/Fyy > 0. (6.245)

In particular, (6.245) requires | k| < |v,|/|VF,(pe, go)l-
Nonlinear stability is determined by examining the conserved quantity,

H¢(Av, Ap) = Hi (Vo +Av, pe+Ap) — He (e, pe) —DHe (ve, pe) * (Av, Ap) (6.25)
= JDdax {%( Pet Ap) ( |ve|2 + 208 ‘Av+ |A'v|2) _%pelvelz —%lvelep TPeVe’ Av

+F<pe+Ap> qe+Aq) —F(pe’ qe) +AAq_Fp<pe’ qe) Ap
- [Fq(pe7 qe) +/\] (Aq—AQ ) VAP)} (626)
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= [ athlpu+ Bp)A0 L+ Bpoe Ao+ Flpet Ap, 4o+ 0) = Flpes g0

—F (pe9 qe) Ap (pe’ qe) Aq+ [F (pe’ Qe) +A] AQ- VA,D} (627)

(see Appendix A). Integrating the last term in (6.27) by parts and completing a square gives

Ho(80, 8p) = [ 3o+ Ap)[1 80-+ (0, 80+ VE, X VA9) /(o + B
— (0o Ap+VE, xVAp) [ (pe+Ap)2]+ F(Ap, Ag)}, (6.28)
where
F(Ap, Aq):= F(pe+Ap, go+Aq) —F(pe, 4e) —F,(Pes 9e) Ap—Fy(pes 9e) Ag. (6.29)

Then, defining

AM S= (pe+Ap)(ve+Av)_pe =Av+ e v Ap
petAp petAp petAp

(6.30)
gives

[|AM+VE,xVAp|*—|v,Ap+VEF, x VAp *] + F(Ap, Aq)}.
(6.31)

. 1
oo, ao = [ efy L
o(A0, Ap) = | A2 et A)

Since p is conserved, if p is bounded above and below throughout the domain initially, it will
remain so for all time. Thus, we can assume

0< Pmin < 1Y < pmax < 0. (6'32)

We then note, on replacing VAp by kAp as before, that by (6.31),

He(bo,80) > | a(IAM+VE, X VASE 201
D
— 00+ VE, X kI(Ap)*/2ppmin + F(Bp, Ag)}.  (6.33)

Next, we define

¥(p, q):= F(p, q) v+ VE, X k| 0*/2p 10, (6.34)
as in §3, compare with (3.40). Consequently,

pr(pe’ qe) - pp( qe)_lve+VFq><k|2/pmin

F;op(pe’ Qe) - (Ivel + |VFq”k| )2/pmin’
¥4a(Pes 4e) = Fyq(Pes 4e)
quq(pe’ qe) F;zq(pe: qe)a (6-35)

b

for the partial derivatives of ¥, and the H inequality (6.33) becomes
He(80, Ap) > [ AP {|AM-AVE, < VAP /20 s+ ¥(Bp, Ag), (6.36)

31 Vol. 318. A
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where ¥ is defined as in (6.29), upon replacing F by . If ¥ satisfies the convexity conditions

0<a<¥,(pe qe) < © (6.37)

Ap]t [7 ﬂ] [Ap] [APH'P (Per 4c)  yqlp q)HAp}
and 0<[ < ppilrer dC pgr e de < oo, (6.38
Al 1A aflAql ~LAGL LY ,4(Pes 9)  WoqlPes 4e)] LAG )

where «, 3, v are finite positive constants satisfying a > 0, ya—f? > 0, then we conclude

HC(A‘U()C, t), Ap(x: t)) = HC (Av(x, 0)’ Ap(xa 0))

1 y B Ap]} .
3 2
>Ld x{2 IAM +VE, x VAp|*+ (Ap, Aq)[ﬂ a] [Aq >0. (6.39

pmax

The second inequality in (6.38) determines the maximum value of |k| = |AVp|/|Ap]
from
F _F, —F,—(ya—pf?
(ool +VE, lIk| )2 < “eetea Fog=va=F"), (6.40)
qu/pmin

in terms of equilibrium state quantities. So long as (6.40) is satisfied, relation (6.39) will provide

a lower bound for H, in terms of a norm on the space of triples (AM, Ap, Ag) given by

1

1(AM, Ap, Ag)||2 = fDde{z |AM+VquVAp|2+(Ap,Aq>[7’ ﬂ [Ap]}. (6.41)

B Aq

Let us also assume that H, 0 as (AM, Ap, Aq) 0. For example, this is satisfied if

max

Y 0u(Pe> o) S & < 0, (6.42)
P a(Pes Ge) Pp(Pes o) — P2l Pes Ge) < &Y —f* < 0, (6.43)

for finite positive constants &, 3, and ¥. Then
He(Av, Ap) < QI (AM, Ap, Ag) I, (6.44)

for a positive constant Q. If the above hypotheses hold, then the equilibrium state (v,, p,) is
nonlinearly stable in the norm (6.41). Indeed, H,, satisfies

[(AM(x, t), Ap(x, t), Aq(x, 1)) |2 < Ho(Av(x, ), Ap(x, t))
Hy(Av(x, 0), Ap(x, 0))
QI (AM(x, 0), Ap(x, 0), Ag(x, 0))[|1>.  (6.45)

N

In summary, we have proved the following.

THEOREM: Given an equilibrium flow (v, p,) with constant density on each component of the boundary,
we form W in (6.34) by solving (6.20). If (6.37), (6.38), (6.42) and (6.43) hold, then (v, p,) is
nonlinearly stable in the norm (6.41), so long as (6.40) continues to hold.

7. HAMILTONIAN STRUCTURE AND CASIMIRS

As explained in Arnold (1978) (Appendix 2 and references therein) and Ebin & Marsden
(1970), the hydrodynamics of an incompressible, inviscid, constant density fluid can be
understood as motion along geodesics in the group of volume-preserving diffeomorphisms of
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the domain of fluid flow. The same situation for stratified incompressible flows was found in
Marsden (1976). (The metric used to define the geodesics in that case depends on the initial
density). The principle of least action in any of these cases implies that the motion of the fluid
is described by geodesics in the metric given by the kinetic energy. This geodesic motion is a
manifestation of the Hamiltonian structure of the fluid theory written in material (LLagrangian)
coordinates. Elimination, for example, via symmetry methods of the particle labels results in
the noncanonical Hamiltonian structure (or Poisson bracket structure) for ideal fluids in terms
of the velocity written in spatial (Eulerian) coordinates. In the case of spatially constant density
taken to be unity, the Euler equations are

0v/0t+ (v-V)v = —Vp,

div (v) = 0,
vA=0,
v(x, 0) = given function on D, (7.1)

where #i is the outward unit normal to the boundary 0D. The pressure is determined from v
by V2 = —div (v*Vv) and 0p/0n = —#- [(v' V) v]. Equations (7.1) are Hamiltonian, i.e. for
any real valued function of a real variable F, one has

0/01F(v) = {F, H} (v), (7.2)

with Poisson bracket (essentially due to Arnold (1966, 1967))

{F, G}(v) = JD v[(%—gV) %g—(ggV) %g] d3x, (7.3)

1
and Hamiltonian Hv) = -?:f |v|*>d3x, (7.4)
D
where the functional derivative 8F/dv, is the divergence-free vector field defined by

OF 5. [/OF
DF(v) Sv—fDS—; dvd x—.<§5,8*v> (7.5)
for all divergence-free vector-fields dv. Let Z'(D) denote the space of all vector fields on D and
Z 4iv(D) the divergence-free vector fields that are tangent to the boundary. Formula (7.5) uses
the weakly non-degenerate pairing

(32 &q5v(D) X Zgy(D) > R
{u,v):= fDu-vdg'x (7.6)

which identifies Zg;, (D) *, the dual of 4, (D) : = {ue Z (D) | div () = 0, u tangent to 0D} with
itself. Thus, the Eulerian velocity field v in (7.1) is thought of as an element of Z 4, (D)*. A
direct proof that the Euler equations (7.1) are Hamiltonian with respect to the Poisson bracket
(7.3) with Hamiltonian (7.4) proceeds as follows. If ¥ denotes 0v/0t, we get, on the one hand,

OF(v) [t = DF ()% = (0F/dv, b) (7.7)

31-2
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and on the other, since 8 H/dv = v,

OF(v) /3t = {F, H} (v) (7.8)
=f [v'(v'V)dF/dv—v- (8F/dv-V)v] d3x (7.9)

D
= f [~ (0 V) v-8F /80— (8F/v-V) (jl*)] d°. (7.10)

By the Helmholtz (or Hodge) decomposition theorem, any vector field can be uniquely written
as an L? orthogonal sum of a divergence-zero vector field parallel to the boundary and the
gradient of a function. Let P denote the projection of a vector field onto its divergence-free
part parallel to the boundary. Then the above integral becomes

fP((v'V) v)-8F/8v d%x, (7.11)

so we get from (7.7) and (7.11)
v=—P((v-V)v). (7.12)

Now writing, again by the Helmholtz decomposition, v = u—Vp, with div (&) = 0, u parallel
to 0D, we get
V= —div((v-V)v), 0p/on=—h (v'V)o, (7.13)

i.e. p is the pressure, since it satisfies the appropriate Neumann problem. Thus,

P((v-V)'v) = (v V)v+Vpand (7.12) becomes
0v/0t+ (v V)v =—Vp, (7.13")

which is Euler’s equation (7.1).

The Poisson bracket (7.3) is a special case of a general bracket, called the Lie-Poisson bracket,
which operates on real-valued functions defined on the dual of any Lie algebra. The general
construction will be reviewed in Appendix B. It is natural to hope that Lie-Poisson brackets
and the Lie group theory underlying it can be extended to other fluid theories, as additional
physical effects are taken into account, such as stratification, compressibility, magnetic fields,
and so forth. Indeed this is possible, and the Hamiltonian structures for a variety of fluid theories
have been systematically uncovered and associated with Lie algebras and Lie groups; see, for
example, Holm & Kupershmidt (1983), Marsden & Weinstein (1983), Marsden ef al. (1983),
and Marsden et al. (19844, b), for examples and earlier references. We hope that
understanding the Lie algebraic nature of these Poisson brackets will lead to new perspectives
and analytic tools for the investigation of ideal fluid dynamics, as in the study of stability.

The purpose of this section is to explain the Hamiltonian structure of stratified Boussinesq
and Euler flow in two and three dimensions. First, we shall just quote the Poisson bracket for
three-dimensional stratified Boussinesq flow. We then study the Hamiltonian structure of
three-dimensional stratified Euler flow in a systematic manner. This explanation takes quite
a bit of space, but we have included all the details needed to facilitate understanding. As in
the case of homogeneous flow, this approach is based on the map from Lagrangian to Eulerian
quantities. The explanation of the crucial properties of the Lagrangian to Eulerian map is
provided in a short summary in Appendix B.

The Poisson brackets for two-dimensional Boussinesq and Euler flow will first be deduced
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from the three-dimensional brackets by restriction to a plane, and then discussed from an
alternative viewpoint using the more traditional method of Clebsch variables.

To help the reader interested primarily in the results, we mention that all the brackets in
terms of velocity and density are the same for the systems we consider and are given in (7.15)
and (7.62). For the two-dimensional systems, there is also a bracket (7.69) in terms of vorticity
and density. In each case, the Hamiltonian equations of motion have the form F = {F, H}, where
F is a functional of the physical dynamical variables. Even though the stability results do not
explicitly require the Hamiltonian approach explained here, this geometrical structure
underlies the success of the energy-Casimir convexity method. To facilitate the presentation,
in the three-dimensional cases we set f = 0 (that is, no rotation), and in the Boussinesq cases
ps = 1. The brackets we present retain their form when velocity is measured relative to a
rotating frame and the Hamiltonian is appropriately altered. (One could also keep the same
Hamiltonian, but modify the brackets.)

(a) Three-dimensional stratified Boussinesq flow

We consider the equations of motion (3.1) with p, =1 and f= 0 and seek a bracket
analogous to (7.3) for which these equations are Hamiltonian, with Hamiltonian function given

H(w, p) = [ ax(iol+pe2). (7.14)

The Poisson bracket for which (7.1) is Hamiltonian has the following expression

_ 3G \OF (dF _\dG] . 3G _ OF OF _ 3G
{F’G“"”’)‘f 1Gorv) 5 (5 ¥) 5o o+ f 50 V50 Y 5
(7.15)
where the functional derivative with respect to p is defined using the L*-pairing, i.e. if D, F

denotes the partial Fréchet derivative of F:Zy;,(D) x # (D) >R, then 8F/8pe % (D) is the
unique function on D satisfying

OF OF
DpF(p)‘8p=JD§-8pd3x— <8 ,8p> (7.16)

for any dp€ F (D). The proof that the equations (3.1) are equivalent to F = {F, H} follows
the steps indicated before. First, by taking the divergence of (3.1) and the dot product with
fi, we get the Neumann problem

V2 = —div ((v-V)v) —gdp/0z, (7.17)
Oop/on =—h-((v-V)v)—gph-Vz, (7.18)

which determines p up to a constant. Second, since 8 H/dv = v and 8H/dp = gz, the Poisson
hracket of F and H becomes

{F, H}=JD0'[('U oF ( ) ]d3x+f [v Vgllj——g—f ng] d3x (7.19)

=JD[(0-V) 8F( ) )g—z_gi pgvz]d?»x (7.20)

=f[—P(( ‘V)v+gpVz): gF (v-V, )gl] ddx, (7.21)
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where, as before, P is the projection of a vector field onto its divergence-free part tangent to
the boundary as given by the Helmholtz—Hodge decomposition. Third, applying the definitions
of the pairings (7.6) and (7.16) we arrive at

a%F('v,p) =D, F(v, p)0+D, F(v, p)-p (7.22)
OF . OF
= <§5, v>+<$,p>. (7.23)
Thus the Hamilton equations become, by comparing (7.21) with (7.23)
V+P((v-V)v+gpVz) =0 (7.24)
p+v-Vp=0. (7.25)

Equation (7.25) is already identical to the density advection equation, whereas equation (7.24)
will become the momentum equation. For this, we write again by the Helmholtz decomposition

(v V)v+gpVz =u—Vp. (7.26)

Taking the divergence and the dot product with # of this relation, yields the Neumann problem
(7.17) and (7.18) and, thus, p is the pressure. Moreover, by (7.26),

u=P((vV)v+gpVz) = (v'V)v+gpV2z4Vp, (7.27)

so equation (7.24) becomes the momentum equation in (3.1).

Remark. Formula (7.15) is the Lie—Poisson bracket on the dual of the semidirect product
Lie algebra Z4;, (D) ® & (D), where % (D) denotes the smooth functions on D, and the action
of the first factor on the second is minus the Lie derivative. (See Appendix B).

(b) Three-dimensional stratified Euler flow

Let D be a region in Euclidean three space with smooth boundary 0D, filled with an inviscid
incompressible inhomogeneous fluid, moving under the influence of gravity. We assume that
the motion of the fluid is such that the velocity field and density are, at least once, continuously
differentiable. We shall denote by capital letters V, X, ..., quantities written in the material (or
Lagrangian) picture.

The configuration space of the fluid motion is determined in the following way. A given fluid
particle that was at the point X at a time ¢ = 0 will occupy a position 3,(X) = x(X, ¢) at time
t, called the spatial, or Eulerian position. Since no two distinct fluid elements can occupy the
same position and since cavitation is excluded, the map #,: DD is required to be one-to-one
and onto. We shall also require certain differentiability hypotheses on #, and its inverse 5; !
to ensure that the Eulerian velocity is, at least once, continuously differentiable; we refer the
reader to Marsden (1976) for the correct choice of Sobolev, or Holder differentiability classes.
Thus, the motion of the fluid is completely characterized by the set of diffeomorphisms #,. Since
the fluid is assumed to be incompressible, the diffeomorphisms 3, cannot alter the volume
element d*X of D, i.e. 9ff(d*X) = d®X, or J, = 1, where #* denotes the pull-back operation
and J, is the determinant of the Jacobian matrix dx/dX of 9,. Since diffeomorphisms preserve
boundaries, we have ,(0D) = dD.

Given the mass density p,(X) in Lagrangian coordinates, the conservation of mass equation
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(5.3) is equivalent to
p(x, £) = po(X) or ¥(p,(x) d%) = po(X) dX, (7.28)

where p,(x, t) = p,(x) is the density in Eulerian coordinates at time ¢ and p,(X) the density
in Lagrangian coordinates. Relations (7.7) imply that once the Lagrangian density py(X) is
given (an initial condition), its subsequent change in Eulerian coordinates is completely
determined by the motion. Hence, the configuration space of incompressible inhomogeneous fluid flow
with a given mass density in the reference configuration is the group of volume preserving diffeomorphisms
Diff, (D) of D. Consequently, we choose the phase space to be the cotangent bundle T*(Diff,, (D)).
To fix notation, let us recall the definitions of Lagrangian and Eulerian velocity. For a motion

x(X, t) = 5,(X), the quantity
VX, t):=V,(X):=0(X, t)/0t (7.29)
is the material or Lagrangian velocity, whereas
v(x, t):=v,(x):= V(X, ¢ (7.30)
is the spatial, or Eulerian velocity. Note that the relation between V and v is given by
v,on, =V, (7.31)

and that both V, and v, are tangential to D at x = 9,(X). This means that v, is a standard,
time-dependent, vector field on D, whereas V, is a vector field over 5, on D. This concept is quite
common and shows up in the geometric structure of Diff,
(D) is made into a Lie group in two inequivalent ways:

(D) to which we turn next.
If D is compact, the group Diff,,
by taking the C® Fréchet space topology (Leslie (1967)), or by taking inverse limits of Sobolev,
or Holder class topologies (Ebin & Marsden (1970)). For the purposes of this paper, it suffices
to know that Diff,,(D) is a Lie group in the sense that the usual Lie group operations are
allowed.

We first determine the tangent space T, (Diffy,; (D)) at 9. Let ¢+, be a smooth curve with
7o = 9. Then (d#,/dt)|,_, is, by definition, a tangent vector at 3 to Diff,, (D). If Xe€ D, then
t—5,(X) is a smooth curve in D through #(X) and, thus,

(d%(X>/d5)|t=0€T,7(X) D; (732)

where T, 4, D is the tangent space to D at y(X). Moreover, if XedD, then (dy,(X)/df)l,—,
is tangent to 0D at y(X), since 7, preserves 0D. Consequently, we have a map
XeDw (dy,(X)/dt)|,— o€ T, x) D, i.e. (dy,/d?)],_, is a vector field over 9 tangent to 0D. We
can now define ¥V, to be a vector field over 9, if V, is a smooth map from D to the tangent bundle
TD such that V,(X) is a tangent vector at 9(X). Thus, in particular, if 9 = ¢ = identity,
T (Diff,,, (D)) consists of vector fields on D which are tangent to 0D. However, each of our
diffeomorphisms #, is volume preserving, so that if £+ 7%, is a curve through the identity, by
the relation between Lie derivatives and flows, we have

0 =d/dt],_p*(d*X) = L(d*X) = div (V) d*X, (7.33)

where V = (d»,/d?)|,_,, Ly is the Lie derivative and div (V) is the divergence of ¥ with respect
to the volume element d®X. Thus, T (Diff,,;(D)):= & 4;,(D) := {V:D—-TD|Vis a vector field
on D tangent to 0D and div (V) = 0}. Now, if ¢+, is a curve such that », =, applying
the prior reasoning to 7,09~! and letting V, = (dy,/dt)|,_,, we get T, (Diffy,(D)):=
{V,:D > TD|V,(X)€eT, 5 D, V, is tangential to &D and div (V,0n~*) = 0}.
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In coordinates, if x = (X), then
V,(X) = V;(a/ax’) (7.34)

Since Diff,,(D) is a Lie group, its tangent space at the identity Z;,(D) is its Lie algebra.
It turns out that the Lie algebra bracket of & y;, (D) is minus the usual Lie bracket for vector
fields, which in components is [U, V]* = U (0V!/0X?) — V(U /0X7), where U, Ve X 4;,(D).

To determine the dual of Z4;,(D) and the cotangent bundle T*(Diff, (D)), we take a
geometric point of view. Instead of considering the functional-analytic dual of all linear
continuous functionals on Z;, (D), we will be content to find another vector space % 4;,(D)*

and a weakly non-degenerate pairing
D i giv(D)* X Z i (D) > R; (7.35)

this means that {, ) is a bilinear mapping, such that, if (M, V) = 0 for all Ve Z;,(D), then
M =0,and if (M, V) = 0 for all MeZ4;,(D)*, then V = 0. Clearly, Z;,(D)* is a subspace
of the functional-analytic dual. In order to make the exposition simpler, we will search for the
‘geometric’ dual only among smooth objects. Thus, for example, we will exclude point vortices
or vortex patches. They can be dealt with in a similar manner by relaxing our point of view;
see Marsden & Weinstein (1983). There is an obvious pairing between Zy;, (D) and itself as
we saw at the beginning of this section, namely the L? pairing

KU, V) = J U-VdX. (7.36)
D

This pairing is weakly nondegenerate, and, thus, we identify Zy;,(D)* with %y, (D).

Consequently, we have
TH(Diffy (D)) : = T, (Diff, (D). (7.37)
Certain operations on Diff,, (D) will be useful later. Left and right translations are defined

by

L?/: Diffy, (D) - Diff;, (D), L?](¢) =1nog, (7.38)
R, : Diffy,,(D) - Diffy,, (D), R,(¢) =¢on, (7.39)

for 5, ¢ € Diff, (D). Both are diffeomorphisms of the Lie group Diff, (D). By considering
curves of diffeomorphisms, their derivatives have the following expressions

T, L,: Ty(Diffy, (D)) - T, ,(Diffy,, (D)), (7.40)

T,L,(Vy) =TyoV, (7.41)

and T, R,: Ty(Diffy, (D)) Ty, (Diffy0, (D)), (7.42)
T,R,(V,) = Vo, (7.43)

for V;eT,(Diff(D)). The physical interpretation of these formulae is the following. Think of
¢ as a relabelling, or rearrangement of the particles in D, and think of % as a motion. Then
(7.43) says that the material derivative of the motion , followed by the relabelling ¢, equals
Tyo V. In local coordinates, if ¢(X) = ¥ and 7(Y) =y, then V;(X) = Vi(X)(0/0Y*) and

(Tyo Vy)'(X) = (3'/0Y))(Y) V(X)) (3/y"). (7.44)
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On the other hand, (7.32) says that the material derivative of the relabelling ¢ followed by
the motion 7 equals ¥ ;0. In local coordinates, if

n(X)=x, $(x)=y then V,(X)=TVi(X)@0/0Y) (7.45)
and (V,01) (X) = (Vo) (X)(0/0y"). (7.46)

Note that by (7.19) the material velocity V, is the right translate of the spatial velocity v, by ,.
If VeXZ 4, (D), adiffeomorphism 5 € Diff (D) acts on ¥ by the adjoint action, the analogue
of conjugation for matrices. Its definition, combined with (7.40-7.43) gives

Ad, V:=T(L,oR,) (V)
= T, L,(T.R," (V)
=ThyoVoy ! (7.47)
=1V, (7.48)
i.e. the adjoint action of # on V¥ is the push-forward of vector fields:
Ad, V=1,V. (7.49)

Using the pairing (7.36), a change-of-variables argument shows that the coadjoint action Ad ¥,
of n on Ue Zy;y(D)* = Zy;y (D), defined by

(AU, V) =<U, Ad,~ V>, (7.50)
has the expression Ads U= (Ty)*oUoy™, (7.51)

where (T%™1)* denotes the adjoint of the linear map T %! with respect to the dot product
for every XeD.

Having studied the phase space, we must express the total energy, the Hamiltonian of the
stratified fluid motion on T*(Diff,,, (D)) = T(Diff,, (D)), in Lagrangian coordinates. We have,

after performing the change of variables x = #,(X) and taking into account (7.17) and (7.24),

1 243 3
o= [ piotoipatsre [ pxzan (7.5
=3 | IV, 1axrg [ gy 00 (7.53)
2 D D

where 7{(X) is the ith component of #,(X), ¢ = 1, 2, 3. The first term, the kinetic energy, is
the quadratic norm of the following weak Riemannian metric on Diff,;(D):

QU ¥ = [ p 00,30 ¥,03) x, (7.54)

where - denotes the dot product in R®. This metric induces a bundle metric on

T* (Diff,

vo1(D)) = T(Diffy4, (D)),
via the pairing (7.36), which coincides with (7.54), where
Uv;’ VneT:(Diﬁvol(D)) = T7<Diffvol(D))'
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Thus, the Hamiltonian (6.6) has the following expression on T*(Diff,

VOI(D)) =
T(Diff;, (D))

H,(V) =XV, V>4 [ pX a0 aox. (7.55)

We study the invariance properties of A under right translations; i.e. we replace by 70 ¢
and right translate the argument of H by ¢. Since operations on the cotangent bundle are
defined by duality, it suffices to work with (7.54) And apply (7.42) and (7.43). The right
translated Hamiltonian has the expression

1
2| px@arexee [ pmopr nax (7.56)
1
— 3] psmnav,rerg [ pipimyem ey, (7.5
after changing variables ¥ = ¢(X). It is apparent now that H, satisfies
H, =H, , . 0T*R, (7.58)
and is invariant under the subgroup
Dlﬁvol( - {¢ED1 VO]( )|p0°¢ = Po} (7'59)
The cotangent bundle T*(lefvol(D)) has the canonical Poisson bracket which can be ex-
plicitly written in a chart. Consider the Lagrangian to Eulerian map (explained in Appendix B)
J:T*(Diffyy (D)) X # (D) > Z3, (D) © F (D)) * = L3 (D) x # (D) (7.60)

J(V,, p0) = (V,0n7 % p), p=peon~,

where & (D) denotes functions on D. With respect to the L? pairing,

Gig) = j X0 g(X) (7.61)

Z (D) is its own dual; so v and p denote the Eulerian velocity and density.
With these notations, the canonical bracket of /" and G in T* (Diff,

vo1(D)), becomes, via the

map J,

: - 8G \3F (8F _\8G] ., 3G 8F 8F _ 3G
610,01 = | o (0) Lo (20) et [ o[2v S-S, r

which coincides with the formula (7.15), i.e. the Boussinesq approximation and the full Euler
equations have the same Poisson bracket, but different Hamiltonians. The fact that the map J
sends canonical Poisson brackets in Lagrangian coordinates to Lie-Poisson brackets in the dual
of the semidirect product Lie algebra &4, (D) ® # (D) (action is by minus the Lie derivative)
in Eulerian coordinates is a special case of a general theorem discussed in Appendix B. As in
7A it can be checked directly (if one wishes to do so) that the Hamilton equations F = {F, H}
with the Hamiltonian given by (6.6) and the bracket given by (7.6) yield the equations of motion
(6.1), (6.2) and (6.3).

It can also be checked directly that the functions Cj given by (6.5) commute with any other
function on (Zg;, (D) ® F (D))* = Z4;,(D) x # (D) in the Poisson bracket (7.62). Such
functions characterizing the degeneracy of the Poisson bracket are called Casimir functions. We
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shall give a different criterion for checking whether a given function is a Casimir in Appendix B,
using the coadjoint action in (7.44).

One can also impose the condition p = constant on 0D in the foregoing discussion, with only
minor modifications.

(¢) Two-dimensional stratified Boussinesq flow

The Poisson bracket in this case remains (7.15) and the Hamiltonian is (7.14) in terms of
density and velocity, with the following provisions: all vector fields have identically zero
component in the y-direction and all functions and vector fields are independent of y. Under
the additional restrictions that the domain of flow in the (x, ) plane is simply connected, and
the stream function vanishes on the boundary, a Hamiltonian structure expressible in terms
of density and vorticity can be derived either as above, or by using the Clebsch procedure (See,
for example, Seliger & Whitham (1968); Henyey (1982); Morrison (1982); Holm &
Kupershmidt (1983); Marsden & Weinstein (1983) and Benjamin (1984) for other discussions
of these procedures).

For density p(x, z, #) and vorticity ® = Jw(x, z, t), the Boussinesq equations describing a
two-dimensional stratified flow in a region of the (x, z) plane are

dw/0t = {w, Y} +{gz/p*, p}, (7.63)

op/ot ={p, ¥}, (7.64)
whereyy = (V2)~! wis thestream function, and {4, k}:= 0, 40, g— 0, 40, g. The Clebsch procedure
for deriving the Hamiltonian structure of these equations is based on the following proposition.

ProrositioN. Equations (7.63) and (7.64) result from a constrained action principle 8S = 0 with
S= de dz diff 3o (V)" o —pgz/p* +a(Op/0t+{(V*) ' o, p}) + v, (30 /3t +{(V*) 1 w, [})].
(7.65)

Here «,7y; are Lagrange multipliers that impose, respectively, the constraints of mass
conservation, and preservation of ‘particle identity.” The maps /’(x, ¢) are the components of
7; !, the inverse of the map 7, in the previous subsection. Summation on repeated spatial indices
¢ is implied.

The proof of the proposition given here is by direct computation. Independent variations
of (7.65) give the following relations,

Sw: w—{p, a}—{ll, y;} =0,

dp: gz/py+0a/Ot+{y, a} =0,

da: Op/At+{y, p} =0,

Oy, Ol jot+{y, It} =0,

8l: dy,Jot+{, ;) = 0, (7.66)

where boundary integrals have been set equal to zero when integrating by parts. From (7.66),
the vorticity equation (7.63) may be reconstructed as

upon using the Jacobi identity. This proves the proposition.

~
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Since the action principle for the Lagrangian (7.65) contains time derivatives only linearly,
the Clebsch representation for the vorticity in (7.66) can be expressed as

=3¢ 1)) (7.68)

where (¢%, p,) are conjugate pairs (p, a),([%, ;) with respect to the canonical Poisson bracket.
Under the Clebsch map (7.68), the canonical Poisson bracket induces, by direct computation
(see Holm & Kupershmidt (1983) for discussions of this type of calculation)

OF OG OF 8G OF 0G
(£,61 (0,) = [axaz]o 30, 22040 {30, SCh40 (20 )] (7.69)
as the Poisson bracket on the space of functionals of vorticity and density. In this expression,

0F/dw must be interpreted with care, see Marsden & Weinstein (1983) and Lewis et al. (1985).
The corresponding Hamiltonian for Boussinesq flow is

H(w, p) = — f dx dz [10(V3)~ 0 —pgz/p*]. (7.70)

As can be verified easily using the Poisson bracket (7.69), the functionals

Cr. ol p) = [ drdzloF(p) +G(p)] (2.15)

commute with all other functionals of (w, p), provided F satisfies [, (0p/0x) F(p) dx dz = 0.
These functionals play an important role in the stability analysis of §2.

(d) Two-dimensional stratified Euler flow

The Poisson bracket is given by (7.62) and the Hamiltonian by (6.6), upon restriction to
planar (x, z) dependence only. It can be verified again as in the Boussinesq case that Cp ¢ in
(2.15) commutes, using the bracket (7.62) restricted to the plane, with all other functionals,
provided F(p) in C,  satisfies | p0p/0x F(p) dx dz = 0. For simply connected domains, the
Poisson bracket in terms of vorticity and density is again given by (7.69).

8. Hick FREQUENCY CUT-OFF FOR TWO-DIMENSIONAL BOUSSINESQ FLOW

In this section, we study stability of two-dimensional stationary solutions for a modified
inviscid model which ‘cuts off” the wavenumbers £ at a maximum value, k). The modification
is obtained by replacing the Laplacian in the Hamiltonian by a bounded operator whose
spectrum truncates that of the Laplacian.

One motivation for this model is the fact that inviscid models governed by the Euler equations
have a range of validity limited to flows whose wave number (or gradients) are small enough
so that dissipation is negligible compared to inertial accelerations. In the flow of any physical
fluid, the requirement that the velocity vanish at undriven boundaries induces boundary layers
in which gradients of v(x, ¢) are important and viscosity essential. As described in great detail
by Pedlosky (1979) for oceanic and atmospheric applications, it is through these boundary
layers that the motion in the effectively inviscid interior is determined. It is natural then to
clarify our sense of what constitutes an inviscid flow by allowing only dynamics with
wavenumbers bounded by a maximum value; call it &y.
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For illustration, consider the Ekman layer created in a fluid rotating at angular velocity £,
with effective viscosity 4, in the vertical direction. The Ekman depth (4,/Q)? gives a scale

to ky
ky = (R2/4,):

For an ocean rotating at the inertial frequency & 107*/s and 4, ~ 1072 m?/s we would have
ky & 0.1/m. Restricting our attention to oceanic scales 2 10 m would then define the realm
in which we work.

As in section 7C we shall assume that the domain D is simply connected and, thus, any
divergence free velocity field tangent to the boundary admits a stream function vanishing on
OD. In this case the Hamiltonian of stratified Boussinesq fluid flow has the expression

Hio,p) == [ 4o(V) 0= (p/pa) g2 dr 2. (8.1)

The dynamic variables can be taken as @ and p, and the equation of motion are

8%

w+v-Vo = PRETE

(8.2a)

op+v-Vp=0. (8.20)

These equations are Hamiltonian with respect to the Lie-Poisson bracket (7.69), namely

on the dual of the semidirect product of functions on D vanishing on 0D and functions on D;
the action is by the minus (z, x)-Poisson bracket, {,}. The Hamiltonian function is given by
(8.1). Using the stream function ¢ = (V?)7! w (with zero boundary conditions) the system (8.2)
becomes

Oy = {w, Y} —{p, gz/ps}) (8.4)
00 =2 ¥, J

which can also be easily verified using the Lie—Poisson bracket (8.5), since 8H/8w = — and
3H/8p = gz/ps.

We turn to a modification of the planar stratified Boussinesq flow. Define the cutoff Laplace
operator V% as follows. If we are in a bounded domain, consider the eigenvalue problem for
the Laplacian V? with the eigenfunctions ¢,(¥) (¥ = («, z)) required to vanish on the domain
boundaries. Thus, we get a set of eigenfunctions with eigenvalues ¢* solving

V2P (X) = — g*Py(X). (8.5)

If w has the orthonormal expansion

w(F) = %} Cybo(%), (8.6)
then Vio(%) = — 3 ¢2C, B, (%). (8.7)
q

Now set, for fixed &y, Mo(X) =—2 min (¢* k%) C, d,(X). (8.8)
q
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For inviscid Boussinesq flow we modify the Hamiltonian (8.1) to a new Hamiltonian function
HM | given by

(v, p) = f(—%w(V%«)‘lw+ (p/px) g2) dx dz (8.9)

defined on all (scalar curls) w and p. The Poisson structure, however, is unaltered, so the Casimir
functions available to us remain unchanged. The evolution equations associated with H via
the bracket (8.3) are given as follows:
Ow g 0
E'l‘vM Vo = p—*ap,}
Op/dt+vyVp =0,

(8.10)

where vy = (0 /0z, Yy /02), Yy = (Vi) o (8.11)

Note that ¢y = (V31) 71 V2, so 3y is obtained from ¢ by a modification of the identity that
‘cuts off” the high wavenumbers in .
By construction we have

de dz Aw(—VE) 1 Aw = (1/K%) fdx dz (Aw)?, (8.12)
where Aw is a finite perturbation of w. Let
HY :HM-i—fdx dz[wF(p)+G(p)] (8.13)
and thus 82HY is definite when
1/k3 > fdx dz (F’(pe)z/A)(Aw)z/fdx dz (Aw)? (8.14)

and then formal stability holds.
To establish nonlinear stability for those cut-off flows that are formally stable, we form the
quantity

HY (A, Ap) = HY (Yro+ AY, pe+ Ap) — HY (Yo, pe) = DHY (e, po) (A, Ap), (8.15)

where Ayr and Ap are finite deviations from ¥, and p,. Conservation of
HY(Aw, Ap) = HY (we+ Aw, p+Ap) — HY (0, pe) —DHe (0, pe)  (Aw, Ap)  (8.16)

follows directly from conservation of HY (w, p), as before. Noting that the maximum allowed
wavenumber in Ay is &y, we have

HM(Alﬁa Ap) > fdx dz [¢((‘)e+Awa pe+Ap) _¢(we, pe) _ap ¢<pe: we) Ap—am ¢(pe’ we) Aw]a

(8.17)
where P(w, p) = 30? [k +0F(p) +G(p) +pgz (8.18)
and v, = V..
If we now require
02 dw, OF 0z
= =2 ——g—=:4>a 8.19
3 (p) . 3. %3p, (8.19)
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9@@_(@%’5) A s af
and 30 3 \3pow i F'(pe)? > afp—y2 >0, (8.20)
for finite «, f, and 7, then we may conclude that
HM (Aw, Ap) > f dx dz (Aw, Ap) [” ﬂ] [ ] (8.21)
B Ap

Conservation of H(Aw, Ap) means HM (Aw(%, t), Ap(%, t)) = HM(Aw(X, 0), Ap(%, 0)). So
HM (Aw(%, 0), Ap(%, 0)) bounds the size of the excursions Aw(X, ), Ap(%, ¢) for all time by virtue
of (8.21). For Aw(%, 0), Ap(%, 0) giving finite H, we conclude that meeting the conditions
(8.10) and (8.20), as well as the corresponding upper bounds guarantees stability since Aw and
Ap are bounded in the norm provided by (8.21).

As an example of stabilization by applying this wavenumber cut-off, we consider equilibrium
solutions for which the Long equation (2.13)

V2¢e+% 7 (o) = L) (8.22)

is linear. In particular, take L({,) = —k*J, and p(¢,) = (pxa®)/2g .. Then calculation of
F(r,) by (2.22) and G(p,) by (2.26) gives

— 2 i
Fip) = Fip = (25 pe) (8.23)
k%g
G(pe) = | 3= ) pe + constant. (8.24)
a"Px
Consequently, by (2.29)
A=w F"(py)+6G"(pe) = (K +a22) ﬁ pst > 0. (8.25)

Completing the square in (2.28) for the second variation gives

82H,, = dex dz [l Sv |2—W (aw)2+A((6p+5%@— 8w))2] . (8.26)

Now, imposing the wavenumber cut-off and substituting (8.23) and (8.25) leads to

. (5 puCE a*pe/2g)t 5&))2] _

1 2
2 M 2 2 2 g
O HY ZJ dx dz[( azz) (Bw)?+ (K2 +a Z)p*a2

R, k24 k*+a*z
(8.27)
Thus 82HY is definite and formal stability occurs when
1 2(dw)?
B> f dx dz k2<+“;>zz / J dwdz (8u)? (8.28)

in agreement with (8.14). In particular, this holds if the domain is such that we can sensibly
choose throughout

k3 < 3(k®+a%2). (8.29)
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9. CONCLUSIONS

In this paper, we have used a constrained energy method for the investigation of nonlinear
stability of stationary solutions of stratified, incompressible, ideal flows. Specific stability criteria
involving a Richardson number are developed in examples of parallel shear flow.

The method, initiated by Arnold around 1965 and developed by others since, relies on the
Hamiltonian structure of the ideal fluid equations augmented by a convexity analysis of the
energy, H, plus a conserved quantity, C, of a special type called Casimir. The Hamiltonian
structure is fully explained in the main body of the paper, as is the convexity analysis of
H.=H+C.

The first step in the method is to find C such that the first variation of H,, vanishes at the
equilibrium flow in question. For two-dimensional flows, the Long equation results from this
step, and in three dimensions the generalization of the Long equation emerges. The second
step is to examine the second variation of H, at the equilibrium to determine whether it is
of definite sign for all variations. If the flow passes this test successfully, we call it formally stable.
Indeed, formal stability allows us to conclude the Liapunov stability of the linearized equations
of motion at the equilibrium state. Appendix C is devoted to a discussion of this issue.

Formal stability is prerequisite to the use of convexity estimates on H, to establish the full
nonlinear stability of the flow. For unstratified shear flow, this leads to the classical Rayleigh
criterion, as shown by Arnold. For stratified flows in two and three dimensions we demonstrate
both under the Boussinesq approximation and for the full Euler equations that Liapunov
stability is not achieved, in general. However, the ingredient causing the failure is the
development of density perturbations with high wavenumber, and we determine the range of
nonlinearly stable wavenumbers in terms of equilibrium-state quantities for each of these
incompressible fluid models. The development of wavenumber controls on the streamfunction
instead of the density variations and an instructive example in two dimensions are discussed
in §8.

The failure of nonlinear stability is just as interesting as its success. It suggests that the full
nonlinear problem is actually unstable. If the linearized flow is spectrally stable (no normal
modes are unstable), we expect the nonlinear problem to have a slowly developing (algebraic)
instability when formal stability fails. In the two-dimensional context, this remark would apply
especially to flows with Richardson number exceeding one-quarter according to the usual
criterion. A discussion of the Hamiltonian nature of the linearized equations and of the
two-dimensional Taylor-Goldstein equations is given in Appendix C.

Three-dimensional stratified flow is a richer field of inquiry and has a richer class of available
Casimirs than in two dimensions. We give both sufficient, and necessary and sufficient
conditions for the formal stability of these flows, in the stable range of density-variation
gradients for given equilibrium. We then proceed to use the needed convexity arguments to
establish criteria for nonlinear stability (provided density-variation gradients stay in the stable
range). In a key example treated in §4, we show that for parallel shear flows u, = (u(y, z), 0, 0),
Pe = p(z) with a small variation of velocity in the y dimension, nonlinear stability is achieved,
provided the Richardson number for variations across density surfaces exceeds unity. In
addition, our stability criterion in this case indicates that statically unstable configurations, namely
p, > 0, can be stabilized by appropriate shears.
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APPENDIX A. THE ENERGY-CASIMIR CONVEXITY METHOD

In this Appendix, we summarize the general steps one follows in proving stability as
formulated in Holm et al. (1985). We include it here for the convenience of the reader. This
method, illustrated concisely in Arnold (1969), is followed in the main text. The method is given
here for the reader’s convenience and to link the ideas with the more recent literature.

In the introduction, we defined the terms ‘nonlinear stability’, ‘formal stability’, ‘linearized
stability’ and ‘spectral stability’. These concepts and the convexity method are logically
interrelated as in the diagram, where each arrow means ‘implies’.

ENERGY-

CASIMIR

CONVEXITY ——— NONLINEAR

METHOD STABILITY

FORMAL LINEARIZED SPECTRAL
STABILITY » STABILITY » STABILITY

The algorithm that is used in each of the examples proceeds in a step by step manner with
certain optional, but sometimes useful, steps discussed under the heading of ‘Remarks’.

The stability algorithm

A. Egquations of motion and Hamiltonian

Choose a (Banach) space P of fields u and write the equation of motion in first order form as
= X(u) (A1)

JSor a (nonlinear) operator X mapping a domain in P to P. Find a conserved function H for (1); that is,
a map H:P—>R such that (d/dt) H(u) = 0 for any C* solution u of (1). (Usually, H is the energy
of the system.)

Remark A. Often P is a Poisson space, i.e. a linear space (or more generally a manifold)
admitting a Poisson bracket operation {,} on the space of real valued functions on P which
makes them into a Lie algebra and which is a derivation in each variable. There are systematic
procedures for obtaining such brackets; these procedures are reviewed in Appendix B. The
equations (A 1) are often Hamiltonian for such a bracket structure:

F = {F, H} (A 2)

where H is the energy, F is any function of u€P, and F is its time derivative through the
dependence of « on ¢.
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B. Constants of motion

Find a_family of constants of the motion for (A 1). That is, find a collection of functions C on P such
that d/dt C(u) = O for any C* solution u of (A 1).

Remark B. Unless a sufficiently large family of constants of motion is found, the ensuing step
(C) may not be possible. A good way to find such functions is to use the Hamiltonian formalism
in Remark A to find F’s such that {F, H} = 0 and to find Casimir functions for the Poisson
structure; that is, C’s such that {C, G} = 0 for all G.

C. First variation

Relate an equilibrium solution u, of (A 1) i.e. X(u,) = 0 (so that d/dtu, = 0) and a constant of the
motion C by requiring that Ho:= H+ C has a critical point at u,. Note: C may or may not be uniquely
determined at this stage. Keep C as general as possible, as any freedom may be useful in step
(D).

Remark C. If Remarks A and B are followed, then, in principle, such a C always exists, at least
locally. Indeed, level sets of the Cs define the ‘symplectic leaves’ of the Poisson structure {,}
and equilibrium solutions are critical points of H restricted to such leaves. Thus, by the
Lagrange multiplier theorem, H+C has a critical point at u, for an appropriate Casimir
function C. (Because of technical problems, one cannot guarantee that Casimirs can be explicitly
found in all cases).

D. Convexity estimates

Find quadratic forms Q, and Q, on P such that

Q,(Auw) < H(ug+Au)— H(uy) —DH(u,) - Au (A3)
and Q,(Au) < C(ug+ Au) — C(u,) —DC(ug)  Au (A 4)
Sfor all Au in P. Require that Q,(Au) + Qy(Au) > 0 (A 5)

Jor all Au in P, Au # 0.

Remark D. Formal stability-second variation. As a prelude to checking (A 3), (A 4), and (A 5)
it is often convenient to see whether the second variation D*H(«,) - (Au)?, is definite, or when
feasible, whether D2H(u,) restricted to the symplectic leaf through u, is definite. This is a
prerequisite for step (D) to work, but it is not sufficient (see also remark 2 below).

E. A priori estimates

If steps (A) to (D) have been carried out, then for any solution u of (A 1) we have the following

estimate on Au = u—u,:
Q1(Au(t)) + @, (Au(?)) < He(u(0)) — He(u) (A6)
(This is proved below.)

F. Nonlinear stability
Suppose steps (A) to (D) have been carried out. Then if we set

lo]I* = @,(v) + @,(v) > 0 (forv # 0), (A7)
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so || v|| defines a norm on P, and if H is continuous in this norm at u, and provided solutions to (A 1)
extst, then ug is nonlinearly stable. Should solutions to (A 1) be unknown to exist for all time, we still have
“conditional stability:’ stability while C* solutions exist. A sufficient condition for continuity of H is the
existence of positive constants C; and C, such that

H(u, +Au) — H(u,) — DH(u,) - Au < C, | Au|? (A8)
C(ug+ Au) — C(u,) —DC(ug) - Au < C, || Aull. (A9)

In this case, one gets the stability estimate
1Au(®)[[*:= Q,(Au(t)) + Qx(Au(t)) < €, @1 (Au(0)) +C, @,(Au(0)) (A 10)

< (G +Gy) [ Au(0) 2.

(These assertions are proved below.)
Proof of a priori estimate (A 6). Adding (A 8) and (A 9) gives

Q1 (Au) + Qy(Au) < He(ue+ Au) — He(ue) —DHe (up) - Au (A11)
= HC(ue+Au)_HC(ue)

since DH(u,) = 0 by step (C). Because H, is a constant of the motion, H(ue+ Au) — H(u,)
equals its value at ¢t = 0, which is (A 6). [
~ Proof of the assertion in step (F). We prove nonlinear (Liapunov) stability of u, as follows. Given
€ > 0, find a 8 such that |Ju—u,| < & implies |Hy(u) —He(u,)| < €. Thus, if |4(0) —u| < J,
then (E) gives

lu(t) —ue | < |Hc(u(0)) = He(ue)l <e. (A 12)

Thus, u(¢) never leaves the e-ball about «, if it starts in the d-ball, so u, is nonlinearly stable.
To see that (A 8) and (A 9) suffice for continuity of H at u, add them to give, as in the proof
of (A 6),

|Ho (e +Au) = He (u)| < (Cr+Gy) || Aul® (A 13)

which implies that H is continuous at u,. [J

Remark

(1) In many examples, @, and @, are each positive (so H and C are individually convex).
Then (A 5) is automatic. However, as already noted by Arnold (1969), there are some
interesting examples where @, is positive, @, is negative, and yet @, ‘beats’ @, and (A 5) is
valid. If @, ‘beats’ @, so @, + @, is negative, then one can apply analogous procedures with
H+C replaced by —(H+C).

(2) Ithasbeen presumed that P carries a Banach space topology (although one could merely
assume P is Fréchet space) relative to which the symbols ¢ and DH(u,) are defined, and the
conditions (A), (B), and (C) are verified. The norm ||| found in step (F) is usually not
complete, and relative to it, the functions H and F need to be differentiable. (This fact is related
to the difficulty one encounters when trying to prove nonlinear stability from formal stability).
A sufficient condition for (A 8) is that

Q,(v) < D*H(u) " (v, v) (A 14)
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holds for all # and » in P. The sufficiency of (A 14) follows from the mean value theorem. There
are similar assertions for C and H,. Note that ||v|> < D2H(u)(v, v) is considerably stronger
than formal stability: D2H(u,) (v, v) = 0. Indeed, it is a global convexity condition which
reflects the additional hypothesis involved in step (D).

(3) Inexamples where solutions form shocks, the solutions leave the space P and the stability
algorithm may apply only up to the first shock time. Shocks may form, for example, in
compressible flow; see Holm et al. (1983), (19835), for discussion of conditional stability for cases
in which shocks may form.

(4) More delicate analytic techniques than those employed in the examples here are
sometimes needed to obtain the convexity estimates. This occurs in the stability of the circular
vortex patch in two-dimensional incompressible flow that was proved by Wan & Pulverenti
(1984).

(5) Asalready noted, in systems with a finite number of degrees of freedom, formal stability
implies nonlinear stability. This fact was used by Arnold (1966) to reproduce the well known
results on stability of rigid body motion. See Marsden & Weinstein (1974) for the relationship
of the formal stability ideas to the stability of relative equilibria and reduction.

(6) For Hamiltonian systems with additional symmetries, there will be additional constants
of the motion besides Casimirs. These are to be incorporated into C in step B. This is needed
in fluid examples with a translational symmetry, for example, and in the stability analysis of
a heavy top. (See Holm et al. (1985).)

(7) For two-dimensional incompressible flow, the appropriate Casimir function is the
generalized enstrophy. This suggests, as mentioned in Bretherton & Haidvogel (1976), that
the Casimir functions may play a role in the ‘selective decay hypothesis’ when dissipation is
added.

(8) As already noted in the main body of the paper, it is often necessary to define the norm
on more variables than the original dynamical ones. For example, the expressions (3.34) and
(6.34) define norms on (AM, Ap, Ag), while the same expressions regarded only as functions
of AM and Ap do not define a norm.

APPENDIX B. SEMIDIRECT PRODUCTS AND THE LAGRANGE-TO-EULER MAP

Having seen how the examples in § 7 are connected to semidirect products, we shall present
here a brief summary of the theory in Ratiu (1982), Marsden ¢t al. (1983), Marsden ef al.
(19844,b), and Holm & Kupershmidt (1983) and Holm, Kupershmidt & Levermore (1983).

Let there be given a Lie group G and a representation ¢ of G on a vector space V, i.e. ¢
is a smooth group homomorphism from G to the automorphism group of V. In our
three-dimensional examples, G was Diff, (D), V was & (D), and the representation of G on
V was given by push-forward. In the two-dimensional examples, G was the group of
diffeomorphisms of D and the representation is again push-forward. Let ¢ denote the left Lie
algebra of G. As we remarked in §7, the left Lie algebra of Diff, (D) is Z;,(D) endowed with
minus the usual Lie bracket of vector fields. In the two-dimensional examples, ¢ is # (D) with
minus the (z, x)-Poisson bracket. Taking derivatives, ¢ induces a Lie algebra representation on
V, i.e. a bracket-preserving linear map ¢’ from g to the space of all linear maps on V. In the
three-dimensional examples, ¢’ is given by minus the Lie derivative and in the two-dimensional
ones by minus the (z, x)-Poisson bracket with the argument on the left.
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Now we form the semidirect product group G ® V defined as the Lie group with the
underlying manifold G X V and composition law

(&1 1) (Z2s ) = (&1 &o> Uy +P(81) o), (B 1)
for g, g,€G, u,, u,€V. The identity element and inverse are given by (1, 0) and
&)™ = ("=l (B2)

The Lie algebra of G® V is the semidirect product Lie algebra g ® V with underlying
vector space ¢ X V and Lie bracket

[(&15 v1)5 (8o5 v5)] = ([€y5 &l D7(8)) va—7(&5) ). (B 3)

In our examples, the relevant Lie brackets are (7.15) and (7.69).
The dual £* of any Lie algebra # has a Poisson bracket, called the Lie—Poisson bracket, defined
by
{F, H}(u) = {p, [8F/dp, 3H/Bp]) (B 4)

where € 4*, F, H: #* >R and the functional derivative is just the usual derivative (Jacobian
matrix) of F regarded as an element of # rather than 4% i.e.

(3F/8du, 8y := DF () -8y, (B 5)

where the increment 8u € £* and {, ) denotes the pairing between 4* and 4. Explicit pairings
are given by (7.6) and (7.16). (As is explained in, for example, Marsden et al. (1983), the
Lie—Poisson bracket comes from the canonical bracket on T*G by reduction.) The underlying
vector space of ¢ ® V is just g X V, whose dual is g* x V* which has the Lie-Poisson bracket

given by
A A

where pueg*, aeV*, 8F/8u and 8H/Sue g, and 8F/8a, 6H/8aeV. An inspection of the
brackets (7.15), (7.69) shows that they are Lie—Poisson on the duals of the indicated semidirect
products. It should also be noted that the Lie—Poisson bracket is degenerate, i.e. there exist
functions C, called Casimir functions which commute with all other functions.

A useful criterion for checking whether a given function is a Casimir, is its invariance under
the coadjoint action of the Lie group on the dual of its Lie algebra. The general formula for
the coadjoint action in (g ® V)* = g* x V* is

AdG, wy (v, @) = (AdGav+(8,)*(P(g ™) *a), d(g")*a), (B7)

where g€G, ueV, veg*, ae V¥, Adf- is the usual coadjoint action of G on ¢*, the upper
star on maps denotes the dual maps induced between the dual vector spaces, and ¢/,: g >V
is the map given by ¢;,({) = ¢"({) «, for {€ g. Explicitly, the coadjoint action on Zy;,(D) ®-
F (D))* = Z4;,(D) x # (D) is given by (see 7.30)

Ad¥ (v, p) = (T~ YT ovon~+P(ny pVf), 14 p), (B 8)

where P denotes projection of a vector field into its component with zero divergence, tangent
to the boundary, in the Helmholtz-Hodge decomposition, and ' denotes adjoint.
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With the aid of (B 8) one can easily verify that Cpp  and Cp given respectively by (2.15)
and (3.7) are invariant under the coadjoint action and hence are Casimir functions.

Remark. Since the underlying vector space for Z4;,(D) ® & (D) is Zg4;,(D) X # (D) and
Z4iv(D)* is identified with & 4;,(D) by (7.6) and % (D)* with # (D) by the L? pairing (see
(7.16)), it follows that (Z4;,(D) ® £ (D))* is identified with Z;, (D) X # (D).

Returning to the general case, consider the map

J:T*G x V* > (g ® V)*,
J(ag, a) = (TE Ry(2g), ¢(g7")*a), (B9)

g’

where T, R,: T, G = g > T, G denotes the derivative of the right translation R, : G -G, defined
by R,(h) = hg, and T¥ R,: T¥ G- g* is its dual; T, G and T, G are the tangent and cotangent
spaces of G at g€ G. A crucial general fact is that J is canonical, i.e. preserves Poisson brackets, where
T*G x V* has the canonical Poisson bracket on the T*G partand (g ® V)* has the Lie-Poisson
bracket. This map transforms Lagrangian variables, i.e. variables in T*G X V* (for example,
material velocity and material density function) to Eulerian variables (for example, v, p; see
formula (7.60)). The canonical nature of the map J is proved in two different ways. First,
it can be shown that J is the momentum map of a natural action of the semidirect product
G® V on T*G x V*, Second, the map J is obtained via reduction by the subgroup V of
G@® V of the momentum map of right translation of G® V on its cotangent bundle
T*(G® V) = T*G x V x V*. We mention that in some applications the V variable, while
cyclic, is useful as, for example, in Schutz (1970). The canonical nature of J is proved in
Marsden et al. (1984 6) as a consequence of the results of Marsden et al. (19844). This canonical
nature is shown explicitly for several, more general cases (including superfluids and nonabelian
Yang—Mills plasmas) by Holm, Kupershmidt & Levermore (1983). The Hamiltonian H(a,, a)
in Lagrangian variables («,, a) induces a Hamiltonian Hy(u, a) in Eulerian variables (u, a),
provided that H,(e,):= H(e,, a) is compatible with the G-action, i.e.

g’
H¢(g)*a0T*Rg—l = Ha, (B 10)

for all geG, aeV*. Thus, in particular, H(a, a) is invariant under the stabilizer
G, ={geG|¢p(g)*a = a} (for example, see (7.55)). The relation between H and Hp is given
by

H(ay, a) = Hy(Tg Ry(ay), ¢(g7")*a). (B 11)

g’
The equations of motion ¥ = {F, H} in Lagrangian coordinates imply those for Eulerian
coordinates: F = {F, Hg}iie poisson. LThis follows from the invariance of Hy under G, and
general principles.

We conclude this Appendix with some general remarks. In many examples, one is given the
phase space T*G, but it is not obvious a priori what V and ¢ should be. The phase space T*G
is interpreted as ‘material’ or ‘Lagrangian’ coordinates. This means that the Hamiltonian
might be given directly on a space of the form g* X V¥, where the evolution of the V* variable
is by ‘dragging along’ or ‘Lie transport,”’ i.e. it is of the form ¢+ ¢ (g(¢)™")*a, where ae V and
g(t) is the solution curve in the configuration space G. This evolution determines the
representation ¢. The parameter a€ V* often appears in the form of an initial condition on
some physical variable of the given problem. In our examples, the role of the parameter, a,
is played by the initial density configuration, or equivalently, by the Lagrangian mass density.
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ArrPENDIX C. THE HAMILTONIAN STRUCTURE OF THE LINEARIZED EQUATIONS
AND THE TAYLOR-GOLDSTEIN EQUATION

In this Appendix, we will show that the equations linearized about an equilibrium solution
of a Lie-Poisson system (such as the ideal fluid equations) are Hamiltonian with respect to a
‘constant coefficient’ Lie—Poisson bracket. The Hamiltonian for these linearized equations is
30°H e, the quadratic functional obtained by taking one-half of the second variation of the
Hamiltonian plus conserved quantities and evaluating it at the equilibrium solution where the
first variation 8H vanishes. An immediate consequence is that the linearized dynamics
preserves 8°He . We will also show that formal stability of the stationary solution implies its
linear (Liapunov) stability. Finally, the Taylor-Goldstein equation will be derived using this
Hamiltonian formalism. This equation concerns the spectrum of the linearized equations. It
will be compared to the condition for the positivity of the second variation.

For a Lie algebra g, the Lie-Poisson bracket is defined on g*, the dual of ¢ with respect
to a weakly non-degenerate pairing {, ) between ¢* and ¢ by

{F, Gy(n) = <, [8F/dp, 8G/dp]) (C1)
where 8F/du € ¢ is determined by
DF(u)-dp = {8, 8F/dpp, (C2)

when such an element 8F/du exists, for any u, u € g*. The equations of motion are easily seen
to be
dp/dt = —ad (0H/du)*u (C 3)

where H:g* >R is the Hamiltonian, ad(§): ¢ —>¢ is the adjoint action, ad(§) -y = [£, 3] for
£,meg and ad(£)*: g* > g* is its dual. Let u, € ¢* be an equilibrium solution of (C 3). The
linearized equations of (C 3) at u, are obtained by expanding all quantities in a Taylor
expansion with small parameter ¢ and taking d/de|,_, of the resulting equations. For
4 = po+edu, using the Taylor theorem gives

SH _8H

5_8—/‘;+6D(%)(ﬂe)-8ﬂ+0(62), (C4)

where {6H/0u,, duy:= DH(u,) du, and the derivative D(8H/8u) (1) - is easily seen to

equal the linear functional

veg* > D H(u,)- (8, v) €R (C 5)

by using the definition (C 2). Since 82H:= D2H(u,,) - (du, dp), it follows that the functional (C5)
equals 38(862H)/8(8u). Consequently, (C 4) becomes

3H _ 8H
S By

5(82H)
3 (8p)

+1e + 0(€?) (C 6)

and the Lie—Poisson equations (C 3) yield

TR B L) PN FOT .72 IO 7
TR T ad Sy, e —3€|ad 5(50) Me—ad 5, Ou [+ O(e?).
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Thus, the linearized equations are

d(jf” = —lad (Sé?gg))* s, —ad (;’7]1)* Su. (€7
Now, if H is replaced by H.:= H+C, with the function C satisfying 8H./du, = 0, we get
ad (0H./dp.)*p. = 0, and so
A - - (5 e ©8)
This equation is Hamiltonian with respect to the Poisson bracket
{F, G} () = pes [8F/p, 8G/8p]). (C9)

That this bracket satisfies the Jacobi identity is proved in Guillemin & Sternberg (1981), Ratiu
(1982) and Weinstein (1984); the second paper also interprets it in terms of a Lie—Poisson
structure of a loop extension of g. The Poisson bracket (C 9) differs from the Lie—Poisson bracket
(C 1) in that it is constant in g. With respect to the Poisson bracket (C 9), Hamilton’s equations
given by 82H,, are (C 8), as an easy verification shows. Note that the critical points of 82H
are stationary solutions of the linearized equation (C 8), i.e. they are neutral modes for (C 8).
Finally, note that if 62H, is definite, then either 82H, or —82H,, is positive definite and,
hence, defines a norm on the space of perturbations §u (which is g*). Being twice the
Hamiltonian function for (C 8), 82H, is conserved. So, any solution of (C 8) starting on an
energy surface of 82H,, (i.e. on a sphere in this norm) stays on it and, hence, the zero solution
of (C 8) is (Liapunov) stable. Thus, formal stability, (i.e. 8*H, definite) implies linearized stability.
It should be noted, however, that the conditions for definiteness of 82H,, are entirely different
from the conditions for ‘normal mode stability,” i.e. that the operator acting on du given by
(C 8) have purely imaginary spectrum. In particular, having purely imaginary spectrum for
the linearized equation does not produce Liapunov stability of the linearized equations. The
difference between 62H, and the operator in (C 8) can be made explicit, as follows. Assume
that the pairing ¢, ) identifies the dual g* with g itself, i.e. there is a weak invariant metric

«,» on g. Then

for L:g—>g4 a linear operator, symmetric with respect to the metric <,)), i.e.

Ka, LpY) = KLa, ) for all &, € g. Then the linear operator in (C 8) becomes
S [Ldu, pe) (C11)

which of course, differs from L, in general. However, note that the kernel of L is included in
the kernel of the linear operator (C 11), i.e. the zero eigenvalues of L give rise to ‘ neutral modes’
in the spectral analysis of (C 11). There is remarkable coincidence of the zero-eigenvalue
equations for these operators in fluid mechanics: for the Rayleigh equation describing
plane-parallel shear flow in an inviscid homogeneous fluid, taking normal modes makes the
zero-eigenvalue equations corresponding to L and to (C 11) coincide (see Holm et al. (1985)).

We shall devote the rest of this Appendix to the derivation of the Taylor—-Goldstein equation
for the two-dimensional stratified Boussinesq flow. In order to simplify certain computations,
it is convenient to set ¥ |,;, = 0 and to use, for such flows, the Hamiltonian formulation in terms
of w and p, with w = V2. The condition {|,;, = 0 can always be achieved for plane parallel
flows, in a channel invariant under translation in the x-direction, by moving to a frame in which
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the total mass flux across a vertical line is zero. (In this case, we are dealing with travelling
wave solutions that are steady in a certain frame.) It is shown in §7 C that if ¥|;p, = O the
vorticity equations for stratified Boussinesq flow

0w/t = {w, Y} +{gz/px, p} (C12)
dp/ot ={p, ¥},

where {f, ¢} =0,/0,¢—0,/0,¢g, are Hamiltonian (see section 3 C) with Lie-Poisson bracket
given by equation (7.69) on the dual of the semidirect product of functions on D vanishing
on 0D with functions on D

OF oG OF 8G 6G OF
{F, G} (0, p) = JD [w{%, a—w}"‘/){%, %}—P{gﬁ, g}] dxdz (C13)

and Hamiltonian
Ho,p) = [ 41Vpasdzt [(p/pa) gz e . (C14)
D
The Casimir functions are,

Cr,ol0,p) = [ _(@F(p)+6(p) dx d, (€ 15)

as discussed before, in equation (2.15). The equilibrium conditions imply vanishing of the first
variation of Hy:= H+Cp, ¢+tA[pwdx dz at a stationary solution (w,, p,). These conditions

are
F(pe) = ¥, (C 16)
gZ/P*'H‘)eF'(Pe) +Gl<pe) =0, (C 17)
A+ Flpo)lp = 0. (C 18)

With respect to the linearized Poisson bracket

OF 8G OF dG 3G d
{F,G}(v,0) = j[a)e{?;,—s;}+pe{8;,g}—~pe{$,6—v ]dx dz, (C19)

the Hamilton equations for the linearized motion at w,, p,, are

/ot = {8h/8v, w,} +{8k/dc, pe},} G 20
00 /3t = {8h/dv, pe}, ( !

where (v, o) = 10°H = 1D*H(w,, p,) (v, )% Since ¥ |,p, = 0 and v = dw, we conclude that
3y = (V2)~v and 8¢|p = 0. Thus,

dh/dy = — (V2 Lwv+F'(p)o:=—d+F(p,) o, (C21)
8h/80 = F/(pe) v+ [0 F”(pe) + G'(pe)] o (C 22)
Equations (C 20) become

) dw, 0 —~ 0p, 0
5= =S (F(po) 0= @) =22 = [F(pe) v+ (0 F(pe) + G(pe)) o, (C 23)

0 0p, © -
T =2 (Flp) o= ). (C24)

34 Vol. 318. A



406 H. D. I. ABARBANEL AND OTHERS

Setting
%(x’ z) — Cia(x—ct)¢(z),}
O'(x, Z) — eia(x—-ct)X(z),
gives v = V2 = (¢"(z) —al) ele(@eb),

Now solving for y in (C 23) leads to

_ 0pe/0z
X @pe/02) F(pe) —c

@.

By (C 15), we have

Pe ppo) = & (Flpo) = e = Uz),

(C 25)

(C 26)

(C 27)

since v, = (—0)r,/0z, O, /0x) according to the definition of the stream function. Thus
e e e g

_ | pe/02
[ = e
Equation (G 22) becomes

([8(2) ()] = 2t (F(pe) x—(2)) + L8 F'(p,) (#(2) —ab(2)

a ” 4
+22 (0 F(pe) + C'(po) X,

e 0= (Ul =) (§7(2)~a%) — 2 (2)+] 228 F(po) + L2 (0, () + 6" po) | 1

Since w,(z) = U'(z), dw,/0z = U"(z), and by (C 17)

0
|2 700+ L2 (009 +G(p0) |1 = X35 [00F (9) +6 (p0)]

_d gz
B Xdz( P*)

&
b

we get from the prior relation (C 30) that

4 4 a az
0 = (U(2)—0) (§()—ap(2) — U"(2) (z) — LLaL LS )
Denoting the Brunt-Viisila frequency by
__ 8%
N2(Z) - Px dz ’
(C 32) becomes the Taylor—Goldstein equation

N2(z)

(U(z) =) (¢"(2) — (2 ))—U”(Z)¢+U(Z)_c¢=0;

(C 28)

(C 29)

(C 30)

(C 31)

(C 32)

(C 33)

(C 34)



NONLINEAR STABILITY OF STRATIFIED FLOW 407
see, for example, equation (44.10) in Drazin & Reid (1981), p. 324. Note that
N} (2)/U’(2)* = Ru

is the local Richardson number. The standard eigenvalue analysis of equation (C 34), as
presented in Miles (1961) and Howard (1961), states that a necessary condition for the phase
velocity ¢ to have non-zero imaginary part is that R: < }; somewhere in the field of flow. This
criterion, involving the spectrum of the linearized equation, is a necessary condition for
linearized instability. However, the opposite inequality R: > 1 everywhere in the field of flow
does not imply Liapunov stability of the zero solution of the linearized equation. Indeed, the
nonlinear analysis in the example of §4 finds Ri > 1 as a sufficient condition for non-linear
stability. In the ‘no-man’s land’ Rie [}, 1] we conjecture that nonlinear instability occurs.

Let us compare the linearized equations (C 20) with the eigenvalue equation of the operator
L given by 82H, via (C 10). A short calculation shows that L is the operator matrix

[ =V Via(z)
“[a(zwz ﬁ’(Z)]’ (G35)
where a(z) = F(p) = U(z)/U(z),
N FIRACY )
ple) == £+ TE

In the same notation, the linearized equations (C 20) corresponding to (C 8) are

P Y e e [

According to (C 8) and (C 11), zero-eigenvectors of L in (C 35) are neutral modes, i.e.
stationary states of (C 35). The converse, of course, is not necessarily true: not all neutral modes
need be zero-eigenvectors of L.
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With use of a method of Arnol’d, we derive the necessary and sufficient conditions for the
formal stability of a parallel shear flow in a three-dimensional stratified fluid. When the local
Richardson number defined with respect to density variations is everywhere greater than uni-
ty, the equilibrium is formally stable under nonlinear pertrubations. The essential physical
content of the nonlinear stability result is that the total energy acts as a ‘‘potential well’’ for
deformations of the fluid across constant density surfaces; this well is required to have defin-
ite curvature to assure stability under these deformations.

PACS numbers: 47.20.+m, 03.40.Gc, 92.10.Dh

With use of a method of Arnol’d! and others,>?
we have investigated the nonlinear stability of two-
and three-dimensional incompressible flows of an
inviscid stratified fluid treated as a Hamiltonian sys-
tem. In this note, we report on the application of
this technique to the important case of a shear flow
with velocity profile U (z), and density profile p(z).
We do not present the full set of conditions for
nonlinear stability of this flow, but do exhibit the
necessary and sufficient conditions for the formal
stability of the flow. Formal stability means that a
certain functional of the flow fields is definite in
sign. Given formal stability, nonlinear stability re-
quires additional convexity estimates to be satisfied.
These do not alter the physical implications of the
conditions derived here.?

The two-dimensional analysis* of the stratified
fluid equations linearized about a planar shear flow
U (2), p(z), shows that neutral stability (purely im-
aginary spectrum) occurs provided the Richardson
number is everywhere greater than 71‘ Here we
derive the analogous criterion for formal stability
for three-dimensional nonlinear deformations of

the flow. Our criterion is that the local Richardson
number defined with respect to variations across
constant-density surfaces must be greater than 1.
This focuses attention on the realm between + and
1 for intensive theoretical and experimental investi-
gation.

We treat stability in the Boussinesq approxima-
tion* for incompressible flow. See Ref. 2 for the
treatment of nonlinear stability for compressible
flows, and Ref. 3. for incompressible, stratified,
non-Boussinesq flows. We address solutions of the
momentum equation

—i?—tﬁ’+(ﬁ’-V)ﬁ’=—Vp—pgf, (1)
along with

9 - -

Ep+U'Vp=0 and V-u=0, 2

in a domain on whose boundary the normal com-
ponent of the velocity U must vanish and the densi-
ty p must be constant. In (1) and (2), p is the pres-
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sure and g is the constant gravitational acceleration
in the — Z direction. The constant reference density
multiplying the acceleration in (1) has been set
equal to unity.

Solutions to these equations conserve the energy

J&x 131817+ pgz . 3)
Both p and the potential vorticity
g=(Vx1u)-Vp 4)

are conserved along fluid particle trajectories.

Thus, for an arbitrary function G (g, p),
A(T,p)
=fd3x[%|ﬁ|2+pgz+G(q,p)+>\q] (5)

is conserved. The term Ag in (5) is separated to
cancel some boundary terms which arise below.
The role of the function G (g, p) is that of a famil-
iar Lagrange multiplier expressing the constraints
on the flow imposed by conservation of ¢ and p.

We now examine the first variation of 4 (T, p)
and relate its critical points to stationary solutions
U,. The first variation is

84 (U, po) = [dPx (8T [T, ~ G Vp, X Va1 +8plgz +G,(V xT,) - VG,

+ (A +G, [dsi (8p V x T~ Vp, XV T}, (6)

where G,=0G/9p evaluated at g,.p,, etc., S is the
boundary surface of the domain of the flow, and n
is the outward unit normal vector on S.

34 in (6) vanishes at U,, p, satisfying

U, =Gy Vp.xVg,, (7)

gz +G,=(Vx1u,) VG, (8)
in the interior, and

A=—G, 9

on the boundary. Flows satisfying (7) and (8) can
be verified to be stationary solutions of (1) and (2).
Expression (7) implies the requirements U,
*Vp.=1,'Vq,=0 for stationary flows; (8) is the
three-dimensional analog of Long’s equation.’

We use (7) and (8) to determine G(q,,p,.) in
terms of the Bernoulli function

K (e, pe) =Pe +pegz + 311,12 (10)
via

G (aep) =00 [ 5K (xp) +a7(p), (1)

where y (p,) is an arbitrary function of p,.

An equilibrium flow is said to be formally stable if
the second variation of 4 (U, p) at the critical point
U,, p. is definite in sign. Formal stability implies®
linearized stability since definiteness of 824 gives a
preserved norm for the linearized solutions. As
noted, nonlinear stability requires both formal sta-
bility and some convexity conditions on the func-
tion G (g, p). For the present case, we find

}~ (12)

5’4 (l—ier pe)

Gy qu][ﬁq
Gop Gppll0p

=fd3x[|8ﬁ'|2+(8q, ap)[

From this we see that a sufficient condition for
formal stability is that the eigenvalues of the two-
by-two matrix in (12) are positive; namely,

Gy >0, (13)
and

GgqGpp— Ggp? > 0. (14)

We can sharpen these sufficient conditions, howev-
er, by noting that divV -8U =0, so there are only
two independent components of U, which along
with 8p allow us to cast the definiteness of 824 into
a linear three-by-three operator eigenvalue condi-
tion, whose eigenvalues must then be either all pos-
itive or all negative. This condition is made explicit
in the example we now discuss.
Our example is the parallel equilibrium flow

T, (%) = (u(,2),0,0), (15)
0.(X) =p(2). 16)

This is a standard configuration and application of
the Arnol’d method to it provides insight into the
value of the technique. The validity of the linear-
ized results on this flow have been examined in
laboratory and geophysical situations. Our non-
linear result will thus provide impetus for further
experimental study of these important flows. We
separate the y and z dependences in u (y,z) into a
small, slowly varying y dependence plus a general z
dependence U (z). Thus, we write

u(y,z)=ry)+U(2). amn

The role of f(y) is to break the g, =0 degeneracy
of the two-dimensional f=0 flow, which is the
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conventional setup. The physical situation we wish
to describe is a shear flow U(z) with a smooth,
small f(y) imposed upon it to give the three-
dimensionality needed for ¢, # 0. We wish to
parametrize f(y) by a velocity scale, f which is
much less than U (z), and by a length scale L which
is large compared to any other lengths in the prob-
lem. We choose

fFO) =rfoy/L)%  fo<< U(2); (18)

and restrict the domain of y to be |y| << L. In
what follows, we expand all quantities in L ~!, cap-
turing the essence of the stability problem in the
leading orders of L which are retained for L very
large.

From the Bernoulli function, (10), we find
(dropping the subscript e henceforth)

G(q,p)
= —[p+pgz + 3 U +3Gpq’+0(g", (19)

with

u_ _ LU (2)
uyyp22 fon2

l+f(y)

qu= U(Z)

, (20)

and we drop the last term commensurate with our
assumptions on f(y). G, is now a function of z
(or p) alone. g in our flow is

qg=o/L)(y/L)(—p,). 21

Since ¢ is small for |y| << L, the neglect of
higher-order terms in ¢, wherever they occur, is an
excellent approximation.

Now we choose the two independent components
of 38U in (12) from the vertical velocity
v3(X,0)=58T-Z and the vorticity w3(X,r)
= (V x3U) -z This choice is motivated by the ob-
servation that the only essential dependence on the
equilibrium flow is on the vertical coordinate z.% To
leading order in L~! a calculation shows that
824 (U,, p.) is given by

vYvi 0 0 v3
- 1
824 (Te pe) = [dx (v3,03,80)| 0 ——=+p2Gp  pUsGpedy, || a5 |, 22)
1
0 =p:U:Gody  Gpp— UGl dy pd,
with V1=92+9? and V2=V?1+9:2 Precise

meaning to (V2)~!is given by imposing periodic
boundary conditions in x and y for each of v;, w;,
and 3p. A term f,0,8p has been neglected relative
to U,0,8p, which is retained. This ordering means
our choice of L must be large enough to overcome
any very large vertical wave numbers in, 8p. The ar-
bitrary function y (p,) in (11) is set to zero.

For formal stability, we demand that 824 be of
definite sign for all independent variations in
(v3, w3, 8p) space. That sign must be positive, as
we see by looking in the direction (v3,0,0). Then
by looking in the direction (0, w;, 8p) we learn that
the necessary and sufficient conditions for formal
stability are that the two-by-two submatrix operator
in (22) have only positive eigenvalues. This re-
quirement is most easily expressed by Fourier
transforming in x and y to wave numbers k; and k,.
The two-by-two submatrix becomes algebraic, and
positivity of its eigenvalues occurs if and only if

1/k? +plGy >0, (23)
and
Gopll+kip2G, ) +k3U2G,, >0,

2354

(24)

with k2 =k? + k3.

Since we allow arbitrary variations of vs;, w;, and
dp, each of k; and k, can be as large as we like.
This means that we must have

p2Gy=u/u,, >0, (25)
and
k}U2G
G,, > max —ZTZZL =0. 26)
(kl'k2) 1 + k.L pz qu

The first of these is the usual Rayleigh criterion for
stability of shear flows in y. Its presence here is ex-
pected since we have no stratification in the hor-
izontal direction. Condition (26) is the desired

Richardson-number criterion. Note that
Goo=—28082/8p— 35U (2)1/9p> 7

When (U?),, is positive, we may define the gen-
eralization of the usual Richardson number to be

NRi(2) =N (2) {p23’[+ U%(2)1/9p3, (28)

with N2(z) = — gdp/dz the Briint-Viisila frequency
in Boussinesq approximation. [Ng; defined by (28)
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agrees locally with the standard gradient definition,
if one uses the linearization of U and p (e.g., Ref.
3)]1. The necessary and sufficient condition for for-
mal stability then becomes

Ngi(z) > 1 (29)

everwhere in the flow. This is our central result.

In addition, there are situations where p, positive
(a statically unstable configuration) may be stabi-
lized by the shear flow. To exhibit this stabiliza-
tion, we assume p, # 0 and define the ‘‘inverse
Richardson number”’

a(2) =[5 UX(2)1/3pH (—pz/2). (30)

When p, < 0, that is for statically stable stratifica-
tion, all flows with a(z) <1 are formally stable.
When p, > 0, that is for statically unstable stratifica-
tion, all flows with a(z) > 1 are formally stable.
The first case is usually understood by saying that
the kinetic energy acquired by a parcel of fluid
crossing density surfaces is not sufficient to over-
come the potential energy required to move the
parcel. The second case is less familiar and is only
possible if second derivatives of U are relatively
large. In this case, the potential energy that would
be gained by a fluid parcel in crossing density sur-
faces is not sufficient to overcome Kinetic energy
lost in the same traverse.

The essence of our argument in this note is that
the negative of the Bernoulli function (10) acts as a
““potential well’’ for stratified flow. This is seen in
(19) where G is, for this heuristic discussion,
—(p+pgz+51T|». Our requirement that
G,, > 0 tells us that this potential well has positive
curvature for crossing density surfaces, when the

flow is formally stable. This note provides detailed
demonstration of this notion, which itself was dis-
cussed as long ago as 1931 by Prandtl.”
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