FORMAL STABILITY OF LIQUID DROPS WITH SURFACE TENSION

D. Lewis', J. Marsden!* and T. Ratiu*

Abstract

A planecircular liquid drop with radius r, surface tension 7 and rotating with angular
frequency 0 is shown to be formally stable, in the sense of a positive definite second
variation of a combination of conserved quantities, if %I— > (%)2. The proof is based
on the Energy-Casimir method and the Hamiltonian structure of dynamic free boundary
problems. :

0. Introduction

Since the pioneering work of Arnold [1966a,b,c] on the Hamiltonian formulation of
incompressible fluid dynamics and nonlinear stability of certain equilibrium planar flows,
the Energy-Casimir method has been applied to a number of fluid and plasma stability
problems. This method generalizes the classical §W method primarily in its ability to deal
with non-static flows; this is accomplished by the -use of conserved quantities other than
energy, such as angular momentum and generalized enstrophy. The reader is referred to the
articles in Marsden [1984], Holm, Marsden, Ratiu and Weinstein [1985], Abarbanel, Holm,
Marsden and Ratiu [1985], Holm, Marsden and Ratiu [1985], and Wan and Pulvirente
[1985] for recent applications and additional references.

The general method, called the Energy-Casimir method, proceeds as follows: First
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we find a conserved quantity C such that H + C, where H is the energy, has a critical

point at the equilibrium to be studied. Then the second variation §2(H + C) is calculated
and tested for definiteness at the equilibrium. If it is definite, one refers to the equilib-
rium as being formally stable. Formal stability implies linearized stability; although
many authors have claimed that it also implies nonlinear stability, it is known by example
(Bal! and Marsden {1984]) that additional estimates are required to justify this assertion.
These are often provided by convexity estimates, as given in the aforementioned references,
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or by Sobolev type estimates, which can suffice for some semilinear equations (Marsden
and Hughes [1983]) or in some one-dimensional problems such as KdV soliton stability
(Benjamin [1972], Bona [1975]).

" In this paper we find conditions which insure formal stability of a planar circular liquid
drop of radius r, with surface tension 7 and rotating with angular velocity {1. The surface
of the drop is a free boundary. The consérved quantities used are angular momentum and
generalized enstrophy. The second variation is shown to be positive definite if 25 > (%)2.
In particular, one has linearized stability in the H! norm on fluid variations and the H!
norm on boundary variations under these circumstances. (In future work the questions of
global existence of smooth solutions near this equilibrium solution and (rigorous) nonlinear
stability will be addressed.) Formal stability for the spherical drop in three dimensions
and circular shear fiow in an annulus are also discussed.

The paper is organized as follows. In section one the Hamiltonian structure for our free
boundary problem (see equations 1.7) is recalled. The Poisson brackets are derived by the
usual procedure of reduction, as in Marsden and Weinstein [1982,1983] and Marsden, Ratiu
and Weinstein [1984a,b]. These results are reviewed from Lewis, Marsden, Montgomery
and Ratiu [1985]. While they are not absolutely necessary for the stability results, they
provide a useful setting. In the second section the first and second variation calculations
are carried out and formal stability is deduced.

The two-dimensional results presented here are closely related to those given in Se-
denko and Iudovich [1978], although we obtain a less restrictive condition relating the
surface tension coefficient and the angular velocity than the one given in their paper.
(We cannot check their calculations since many steps are obscure or omitted; our final
answers differ.) We feel, however, that our approach has the advantage of fitting into the
general framework of stability analysis outlined in Holm, Marsden, Ratiu and Weinstein
[1985]. Sedenko and Iudovich, following work of Arnold [1965] for fixed boundary fluids,
consider relative equilibrium restricted to the “Helmholtz layer” of equivorticial flows;
these layers are essentially the symplectic leaves of the Poisson manifold N defined below.
In our argument, rather than explicitly restricting our variations to a specific layer or leaf,
we introduce the generalized enstrophy functions and angular momentum as Lagrange
multipliers and allow our variations to range over all tangent vectors to the space N.
Formal stability of two dimensional free boundary problems have also been considered by
Artale and Salusti [1984], who consider rotational gravity waves without surface tension.

Acknowledgements. Conversations with Henry Abarbanel and Darryl Holm were very"
helpful in obtaining the results reported here.

1. Poisson Bracket and Equations of Motion

The dynamic variables we consider are the free boundary £ and the spatial velocity
field v, a divergence free vector field on the region Dy bounded by £. The surface &
is an element of the set § of closed curves (respectively surfaces) in R? (respectively
R?3) diffeomorphic to the bourdary of a reference region D and enclosing the same area
(respectively volume) as D. We let & denote the space of all such pairs (Z,v).
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The Poisson bracket will be defined for functions F,G : ¥ — R which possess fane-
tional derivatives, defined as follows:

i) %f is a divergence free vector field on Dg such that
D F(T,v) - 6v = / (8E,6v)dA, (1)

where the (Fréchet) derivative Dy F is computed with X fixed.

u) is the function on ¥ with zero integral given by

=G0 (1.2)

where v is the unit normal to X. (The symbol ¢ represents the potential for the gradient
part of v in the Helmholtz, or Hodge, decomposition.)

iii) 4£ is a function on T determined up to an additive constant as follows. A variation
5% of ¥ is identified with a function on I representing the infinitesmal variation of ¥ in
its normal direction. It follows from the incompressibility assumption that §T has zero
integral. The zero integral condition is dual (with respect to the L, pairing on'E) to the
additive constant ambiguity of %. We can smoothly extend v to a neighborhood of L,
making it possible to fix v while varying ¥. Thus we can defipe the partial derivative
Dg F(X,v), which may be shown to be mdependent of the extension of v as long as F is
C! as v varies in the C! topology. We then let £ be the function determined up to an
additive constant by

/E ¢L6% ds = DpF(Z,v) - 6. (1.3)

As an example, we compute the functional derivative with respect to I of a function
of the form F(X) = [ f(E) ds for some smooth function f of x defined in a neighborhood
of a given L. Let X, be a curve in § with tangent vector T at I and let 5. be a
curve in Emb(8D,R?), the manifold of embeddings of 8D into R?, such that £|.—on. =
[(6Z)v] o no. Let fc : 8D — R be glven by f{X) == f(n(X)) for X € D and let
ds, := nc*ds. Define DpF(E) - 6L = d€|(—o faD f<ds.. The functional derivative £E 62, if
it exists, is the function modulo constants such that f}: 8F . §T ds = DgF(Z) - §T. We
calculate

DsF(E) - 6% = %k:o /8 JAX)ds.
= [ 15 10(X0) - S (X)) dso + (FREE)mo( X))o
= / (%5 + fr)(x) - 6X(x)ds

which follows from the change of variables formula and the formula for the first variation
of arc length. Thus, in this case, :
8L = 8L 4 «f. (1.4)
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We now define the Poisson bracket on N as follows. For functions F and & mapping
N to R and possessing functional derivatives as defined above, set

I7 !
{F,G}=/ (w, 8E x 6v)dA+/‘(2—§%§—ﬁ—g%§)da, (15)

where w.= curl v. For irrotational (potential) flow w = 0, and so this bracket reduces to
the canonical bracket found by Zakharov [1968].

This Poisson bracket on N is derived from the canonical cotangent bracket on T*C,
where, in the two-dimensional case, ¢ =. Embyoi(D,R?) is the*manifold of volume-
preserving embeddings of a two-dimensionsl-feference manifold D into R2, by reduction
by the group § = Diff, (D), the group of voline-preserving diffeomorphisms of D (i.e.
the group of particle relabelling transformations). Elements of T*C are pairs {n, z) where
n : D — R? is an element of € and g, the momentum density, is a divergence free one
form over 0 ; i.e. to each reference point X € D, p assigns a one form on R? based at the
spatial point z = n(X). We map T*C onto N by the map Iy : T*C — N which takes
(n, ) to (L, v) such that ¥ = 8(n(D)) and {v(z),w(z)} = p(X) w(z), for all vector fields
w on Dz, where z = 5(X) and (, ) is the Euclidean inner product. The map Iy is
jnvariant under the right action of § and so induces a bijection Iy : T*C/§ — N which
is a diffeomorphism in the appropriate topologies. Thus X inherits a Poisson structure
determined by the relation /

{F,G)oTly ={FoTly,Golly}rec.
One computes the resulting bracket tq’ﬁe (1.5).

Remark. In some cases it may be necessary to use a more general Poisson bracket than
that described above. While considerably more complicated, the generalized bracket has
the advantage that it is defined for a larger class of functions. Of concern to us at present
are the generalized enstrophy functions C(Z,v) = [, pp B(w)dA, where w is the vorticity,
which we will use in the following stability analysis. These functions do not have functional
derivatives of the form previously described.

We say that a function F on N has generalised functional derivatives if there
exist

i) g—g(E,v) a function on T determined up to a constant,
ii) ¢ b2 (E v) | a divergence free vector field on Dg, and

iii) £ (E v) a vector field on ¥
such that

DF(Z,v) - (5T, 6v)—f (4E,6v) dA+/ (85 6+ (&,6v)) ds

for all variations (6T, 6v). The functional derivatives & 6— and ” are determined only up to

the addition of a harmonic function, as may be seen by applymg the divergence theorem.
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The generalized bracket on N is
{FG} / w, 8 x §8) da
[ ) (19)
+ (6_;;: 6_G> (Vpi', &v > - <2_QV1 fs'_:,:> <Vst r >)d3:
where pr, a pressure assocxated thh , is the solution:of the Dirichlet problem: Apy =

-—dlv((Vv) 2 ,orlE=2E — ((Vv) - &£ ,u) and (Vv & 6—5 is determined by the relation

(v, (Vv) - 4£) = ((u- V)v, ) for all vector fields u on D;_-, Due to the non-umqueness

of the functxonal denvatwes the generalized bracketis-not well-defined for all palrs F,G

with functional derivatives as given above; if, however, we require that elther or 2‘3

equals zero, then {F, G} is uniquely defined. One can check that the generalized enstrophy
functions have functional derivatives .

%% = ®(w),
%—- = curl (' (w)§)
and %'7 &' (w)é x v

and that they are Casimirs in the sense that {C,F} = 0 for any function F on N with

functional derivatives such that %% = 0. ( We will not use the generalized bracket for any
further calculations in this paper.)

We now consider the equations of motion for a planar liquid drop consisting of an
incompressible, inviscid fluid with a free boundary and forces of surface tension on the
boundary and show that for the appropriate Hamiltonian H and the Poisson bracket (1.5)
defined above, these equations are equivalent to the relation F' = {F, H} for all functions
F on N possessing functional derivatives. The equations of motion for an ideal fluid with
a free boundary ¥ are

S +(v - Viv=-Vp,
%’E (v,v}, ‘ (1.7)
divv=0 and p|E = 7,

where « is the mean curvature of the surface £ and 7 is the surface tension coefficient,
which is a numerical constant. Using notation for the two dimensional case, we take our

Hamiltonian to be
H(Z,v) =/ 3lv / ds. (1.8)
Dg E

The functional derivatives of H are computed to be

o =(Fv) =), (1.9)
and, using (1.4), £ = Lv|? + rx,
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where & 62 is taken modulo constants. Thus for arbltrary F possessing functional deriva-
tives, (1.5) gives

(F,H} = / (w, 8E xv)dA+/(mv,u)—[§|v1°+m]g—’)ds
= (Evxe-v QA+ [ e~ (B d
/ (&, —(v-V)v)da+ / (28 (v, v) — (3E, rav)) ds.
If (1.7) holds, then we find
Fef (g naas [ 455
=/ 6v,—(v~V)v—Vp)+/;g—£(v,v)ds
= [ (8~ 9wy aa+ [ (G o) - (857w e,

so F' = {F, H}. Conversely, I = {F H } 1mphes (1.7) by this same calculation. If F has
only generalized functional derivatives, F' = {F, H} is still equivalent to (1.7), but now we
use the bracket (1.8). ;

2. Stability of Two-dimensional Circular Flow

We consider the stability of the planar incompressible fluid flow such that the boundary
I, is a circle of radius r and the fluid is rigidly rotating with angular velocity ). For this
equilibrium solution of the equations of motion, we shall find a conserved quantity C such
that He := H+C has acritical point at the equilibrium and then test for definiteness of its
second variation. In infinite-dimensional systems, such as fluid flow, we have already noted
that definiteness of the second variation is not sufficient to guarantee nonlinear stability,
but it does imply stability under the linearized dynamics.

One class of conserved quantities consists of the Casimirs of the Poisson manifold N,
i.e. functions C on N satisfying {C,F} = 0 for all functions F for which the bracket is °
defined. We will make use of Casimirs of the form C;(Z,v) = |, by B(w)dA, where & is
a C? function on R? and w = (curl v,§). We will also include the angular momentum
Ca(E,v) = pe(V X X,8)dA. C; is the momentum map associated to the left action of
the rotation group SO(2) on N. The conservation of C; is a consequence of the invariance
of the Hamiltonian H under the SO(2) action, which implies C; = {C3, H} = 0. The
inclusion of C; in the modified Hamiltonian H¢ allows us, roughly speaking, to view the
fluid from a rotating frame with arbitrary angular velocity. Mathematically, C; enables us
to cancel an otherwise troublesome cross term in the second variation of H. In the course
of the calculation we shall also fix a translational frame.
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Thus, we take our total conserved quantxty to be
Ho(Z,v) = / AV 4 <vx 2,8 > +8(w))dA + 7 / ds, 2.1)

where p js a constant, as yet undetermined. Using elementary vector identities, we can
rewrite (2.1) as

He(B,v) = /D (AP - 34%1x| + B(w))dA + 'r_/;: ds, (2.2)

where ¥ = v — pf% X x. This rephrasing corresponds to viewing the fluid from a frame
rotating with constant angular velocity u; ¥ is the fluid velocity in the rotating frame.
The first variation of He is computed to be

DHc(E,v) - (5Z,6v) (2.3)
= / ((¥,8v) + &' (w) - {curl 6v,&))dA + / (4917 - 3p?x[? + 7& + ®B(w)) 6T ds.
Dy b

We now consider the case where I, is a circle of radius r and v, = %i xx for some constant

1, i.e. the equilibrium flow is rigid rotation with angular velocity 1. The circle , has
constant mean curvature £ = % We require DH¢ to vanish at this equilibrium. Since

= {curl v, &) = Q, DH¢ depends on & only through the constants &(Q1) and &’(f). If
we set pu = “ correspondmg to choosing a frame moving with the rigidly rotating fluid,
then v, = 0 80

DHc(B.,v.) - (6L, 6v)

2 .
= /DE 3'(n) (curl év,8) dA+ (—% (g) 2+ £+ Q(ﬂ)) ./;52 ds
= / '(0) - (curl bv, &) dA,
Dgp

since 6T satisfies [ 6T ds = 0. Thus DH¢(Z.,v.) = 0 iff &'(£) = 0. For convenience we

choose @ to be such that ®(01) = 0, &'(Q2) = 0 and "(1) = 1. (We choose a non-zero

value for ®"(Q) since it will improve our a priori estimates, as will be discussed below.)
The second variation of Hc at a general point (E,v) is calculated to be

D*Hg(Z,v) - (5T, 6v)2 = f (16v[? + ®"(w) - |curl 6v|2) dA
Dy .
+ /n [2((%,6%) + #'(w) - {curl 6v,4)) 63 (2.9

+ (391 — Luix]? + 7& + B(w)) (825 + x65?)
+ 2 (L] - Lpx]? + B(w)) 652 — 1(AST)6E — m=5>32]ds,
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where A is the Laplacian on L and 62X is the variation of §T with respect to T (see the
earlier comments on the computation of functional derivatives with respect to L). ‘The
presence of the terms involving §2E is due to the constraints on the variations of £ arising

“from the fact that the manifold § of boundary curves is not a linear space; for fixed T
the space of v’s on I is linear, so no such §2v term arises. The only non-obvious term in
the second variation (2.4) is the derivative with respect to X of the boundary term of the
first variation. This derivative is computed in the following manner. Write the last term
of (2.3) as follows:

j’: (L9[? - Lu?IxP® + 78 + B(w)) 65 ds
=/ GBoP? - L2 + <I>‘(w)) 5T ds + 1/ k6T ds.
Using equation (1.4) and the definition given in the general computation of 4 for F(X) of

the form [, f(Z,x)ds, we see that the first term of the preceeding expression has derivative
with respect to I given by

[ (554 (91 = w21? + 0(u)) 622 + 4 (91 - w71 + 8(0) 675

+4 (P - #2if? + 8(w)) £6E|ds.

The ¥ variation of the second integral is clearly the second variation of the arc length of
¥ with respect to §T, which may be computed to be

7 f [~(AST)SE + x62L)ds.
z

Adding these two terms and regrouping gives expression (2.4).
For the circular flow described above the second variation reduces to

D?Hc(S.,v.) - (85,6v) = [,,_ (16v|? + [curl §v|?) dA

o\? L7 n\? T
1 2 2 2\ 2 2
+/[(—2 (2) r +-r) (6 E+x6)3)—(2) r6Z —1(A62)6E—-—r262 ]d\s

’ 2
= / (6v]? + |curl 6v|?) dA — / [(9) r§Z? — 1(AST)6T — %62’]d3, (2.5)
Dg st\2 ; r

since the integral fs (62}3 + &622) ds is the variation with respect to 6X of f,: 6L ds,

which is identically zero due to our restriction to area preserving variations. It follows
that D?H; (2., v,) is positive-definite iff

r[z (——6)32 - (A&E)&E) ds > ( ) / §52%ds (2.6)
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for all area preserving variations §E.

We can simplify the expression of this condition by estimating —(ASL)8T using eigen-
values of the negative of the Laplacian on the circle of radius r. The eigenfunctions are
6Zk,6(0) = cos k(9-—¢) with eigenvalues Ay 4 = (f)2 for all positive integers k and ¢ €
[0,2r). It is clear that the left side of (2.6) equals zero when 5% = 8Z1,4 = cos(6—¢). This
eigenfunction corresponds to an infinitesmal translation in the ¢ direction, as cos(§ — ¢) is

the linearization of the normal perturbation AL, 4 = €cos(f — @) +1/r? — e2sin®(§ — ¢)—r
associated to a displacement of length ¢ in the ¢ direction. If we wish to consider our system
modulo position, regarding two configurations as equivalent if one can be obtained from
the other by a Euclidean motion, then we can simply ignore the perturbations generated
by the lowest eigenfunctions §T; 4 and test for the definiteness of D?Hc only with respect
to perturbations which actually distort the drop shape. In this case, taking Ay ¢ = ;‘; as
the lowest admissible eigenvalue, it follows from (2.6) that D?H is positive-definite iff

(3
r3 2) -

Remarks. 1. This procedure of ignoring Euclidean motions is equivalent to evaluating the
definiteness of the second variation on the quotient space of fields (X, v) modulo Euclidean
motions; in other words, it is precisely establishing formal stability of our solution viewed
as a relative equilibrinm in the sense of Poincaré; see Marsden and Weinstein (1974] or
Abraham and Marsden [1978] for the abstract theory.

2.The interior integral in the second variation (2.5) is equivalent $o the square of the H!
norm of §v; had we chosen ®”(w) = O rather than ®”(w) = 1 this term would have
equaled the square of the L? norm of év instead. We expect that, as in the proof of
global existence of two dimensional flows (Kato [1967]), this term will be useful in our
investigation of nonlinear stability. A key difficulty will be to determine if the stability
estimates are sufficient to prevent the breaking of small surface waves. For the somewhat
related problem of vortex patches (without surface tension) it is known that surface waves
can break; nevertheless one still has stability (Wan and Pulvirente [1985]).

8. The formal stability analysis outlined above for a circular liquid drop in R? may
also be applied to a spherical drop in R? rotating about, for example, the & axis. The
generalized enstrophy functions $(w) are not conserved in the three-dimensional case and
are therefore dropped from the Hamiltonian H; otherwise, the analysis procedes as in the
two-dimensional case, with the following numerical differences: our curvature conventions
are such that the mean curvature & of the sphere equals %, the second variation of area is
given by 7 [[-(ASL)6X + £62E}ds and the first and second eigenvalues of the Laplacian
on the sphere are, respectively, & and &. Thus, in the case of the two-sphere, D?H is

positive-definite iff
o (a)’
r 2/’
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4. The stability criteria found by Sedenko and Iudovich [1978] for circular shear flow in an
annulus may be obtained by the methods described above; in fact, we find a less restrictive
relationship between 7 and w, than is given in their paper. We consider the equilibrium

© flow v, = wellxllg o x in the annulus ro < |x| < rz with fixed inner boundary L, of
radius ro and free outer boundary ¥ of radius rg; w, : {ro,rg] — R is a C! function
with no critical points. We add the conserved quantity A onv - dl, where X is an as yet
undetermined constant, to the modified Hamiltonian (2.1). Taking the first variation of
Hg as in (2.3) and integrating the &'(w) term by parts, we find that

DH¢(E,v)- (6%, 6v)
=/ (¥ + curl(®’'(w)8), 6v) dA — / &' (w)bv - dl — / ' (w)bv - dl + /\/ §v-di
/ (L9 - Lp®1x? + 76 + B(w)) ST ds.
Using the techniques outlined in Holm, Marsden, Ratiu and Weinstein [1985], we find a
function ® of w such that ¥, = curl(®'(w.)2) and & (w.(rg)) = 0 (it is essential for this

step that w, have no critical points). Letting A = ®'(w.(r)) and # = M'—”l we obtain
DH:(Z,,v.) = 0. The condition ¥, = curl{®’'(w.)&) implies .

iy el — wers)
e W B

The second variation at the equilibrium point is computed to be
D2H(Z.,v.) (65,6v)?

2 : .
= / (|6v]? + ®"(w,) - |curl 6v|?)dA + / [(‘%) |x|682+1(A52)62+W622]d
Ds ) z

It follows that the flow is formally stable iff

bl (we (1) = welr))
() 20 (21)

2
and %> (@) . (2.8)

Condition (2:7) is equivalent to the interior vorticity condition given by Sedenko and
Tudovich; condition (2.8) differs from the analogous surface tension condition in Sedenko
and Iudovich by a factor of three. (The derivation of this inequality from the variation
of the mean curvature is not éxplained in their paper, 8o, as before, we were unable to
determine the source of the difference.)
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" If we consider the annulus re < |x} < ro with fixed outer ring and free inner ring,
moving with velocity v, as before, then the flow is formally stable iff condition (2.7) holds.

The analogue of (2.8) is
wra))*, 3,
2 R

The case of a rigidly rotating annulus, i.e. constant w,, is analogous to that of a rigidly
rotating circle; in this case we take A = ®'(w.) =0 and u = ﬂ;—‘l = %. The resulting
stability condition for an annulus with fixed inner boundary and free outer boundary is
(2.8), with we(rg) replaced by the constant w,. The rigidly rotating annulus with free
inner boundary and fixed outer boundary is always stable.
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