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ABSTRACT

Ideal continuum models (fluids, plasmas, elasticity, etc.)
can be studied using a variety of represent;tions, each of which
bhas a Hamiltonian structure. This paper shows how groups
(typified by the group of particle relabelling symmetries) and
the inversion operator which swaps the reference and curreat
particle positions generate maps between the representations.
These maps, derived using the theory of momentum maps and
reduction, are all Poissoa (or canmomical) maps which carry the
brackets in onme representation to those in another. The results
are developed abstractly in the framework of reduction of a pair
of principal bundles by left and right group actions. Examples
are given treating the motion of aan incompressible fluid with
surface tension, the heavy top, and 1ideal compressible

(barotropic) flow.



1. INTRODUCTION

A Hamiltonian formulation of conservative continuum mechanics, such as
fluid dynamics and elasticity, can be given in the material (sometimes
called Lagrangian) representation using canonically conjugate variables.
This certainly has been well known for a long time, going back in one form
or another to the mid 1800's (see for example, Truesdell and Toupin [1960],
pages 594 ff for an account and historical references). For an exposition
of these ideas in the modern language of symplectic geometry, see Marsden
and Hughes [1983], Chapter 5. We shall follow the latter's notatiom as far
as possible.

The spatial (or Eulerian) represeantation of continuum mechanics also
admits a Hamiltonian structure. A group theoretigal framework for this and
its relationship to the material formulation is given in Armold [1966). Of
course, there have been many other contributions; however, we shall not
attempt to review them systematically here. Those contributions directly
relevant to our aims are, as follows. Marsden and Weinstein [1982, 1983]
and Marsden et al. [1983] show that Arnold's idea of symmetry reduction
from canomical material representation to nom-canomnical spatial
representation holds for plasma physics. Holm and Kupershmidt [1983]
derive Hamiltonian structures for a variety of continuum models using
Clebsch representations and observe that these continuum mechanics brackets
are of Lie-Poisson type for semidirect-product Lie algebras. Holm,

Kupershmidt, and Levermore [1983], Marsden et al. [1983), and Marsden,



Ratiu, and Weinstein [198%a,b] derive these semidirect-product structures
by reduction from material to spatial representation. Marsdea and Morrison
(1984] derive the Poisson bracket for the RMHD (reduced magnetohydro-
dynamic) tokamak equations by materi;l to spatial reduction. Moatgomery,
Marsden, and Ratiu [1984] abstract maay of the previous works in terms of
reduction of cotangeat bundles of principal bundles, and Lewis et al.
(1986] derive the Hamiltomian structure for the free-boundary problem of
rotating fluid drops with surface teasion by building on the preceding
ideas.

There are a noumber of motivations for considering Hamiltoaian
strﬁctu:es, such as their use in finding nonlinear stability conditions for
fluid equilibria. See, for example, Holm [1986] in this volume for the
stability amalysis of three-dimensional ideal incompressible and barotropic
compressible fluid equilibria. See also Holm et al. [1985], AAbarbanel
et al. [1986], Abarbanel and Holm [1986]), and references therein for
additional applications of Hamiltonian stability ;nalysisﬂ This paper is
concerned only with the theory of Hamiltonian structures. One of our main
goals is to relate the material and spatial representations to two others:
the inverse material, and coanvective represeantatioas. The motivatioan for
this investigation came primarily from the work of Holm [1985]) in which
these latter two represeatationas are used for the study of general
relativistic adiabatic fluids. The inverse material represeatatioa is
;alled the augmented Eulerian represeantation in Holm {1986]; since it
consists of the usual Eulerian (or spatial) representation, augmented by
the dynamics of the Lagrangian coordinate functions, or fluid labels. We

note that the iaverse material representation also appears ia Ball's



existence theory in elasticity (Ball ({1977a,b]), that the spatial versus
convective representations relate the Hamiltonian treatments of elasticity
given by Holm and Kupershmidt [1983] and Marsden, Ratiu, and Weinstein
[1984a] respectively, and that SO(3) reduction (treated in Section 5) puts
the observations about Hamiltomian structures for elasticity given in
Kupershmidt and Ratiu ([1983] into a unified scheme. We hope that the
present contribution will unify and deepen the understanding of the
preceding works. It should also provide a setting in which other
situations can be understood such as that of Simo and Marsden [1984]
regarding the rotated stress tensor and the Doyle-Ericksen formula. We
also note that the convective representation is useful in the stabili;y
analysis of the coupled rigid body-beam and plate models of Krishnaprasad
and Marsden [1986] and Krishnaprasad, Marsden and Simo [1986].

To mocivaie some of the constructions in the body of the paper, we now
make a few relevant general remarks before discussing briefly one of the
key examples, an incompressible fluid with a free boundary, described in
the material, spatial and convective representatioas.

Let P be a Poisson manifold and Ha be a family of Hamiltonians
parameterized by a variable a € V¥, where V is a vector space with dual
space V¥. For instance, if ome is describing a rigid body, the parameter a
could be the inertia temsor; or if ome is describing an inhomogeneous fluid
in the Lagrangian (material) representation, the parameter a could be the
reference demsity distribution. Let G be a group acting on the right oa P

and by a right representation oan V. Thus, G also acts on V* on the right.



Consider two coaditions:
Ha(rg) = Ha(x) ) (c,)
and

B, (x0g) = £,(x) (€y)

for all a €V, x € P, g € G. In both cases, extead Ha to P X T*V = P x V x
V* by

H(X,V,a) = Ha(x) )

so v € V is a cyclic variable. Now the direct product group
G x V (V ragarded as an abelian group)

acts on P X T*V on the right by
(x,v,a) * (g,u) = (x-g, Q&4 +v, a)

and (Cl) implies H is invariant under the action of G X V. The semidirect

product

cEV

with multiplication

(81’u1) * (gzsuz) = (81821 uz + ulgz)
acts oo P X T*V as well by

(x,v,a) + (g,u) = (x+g, -u +v-g, ag) ,
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and condition (CZ) implies that H is invariant under the action of V.
Similar statements hold for left actions (using the left semidirect
product).

Under coandition (Cl) we can reduce the Poisson manifold P x T*V by
G x V (see Marsden and Ratiu ([1986] for the general theory of Poisson
reduction). Assuming the G action on P is regular so that P/G is a

)

manifold, we get a Poisson isomorphism (denoted
(P x T*V)/(G x V) = (P/G) x V*

where (P/G) x V* bas the bracket structure of P/G alome, V* having the
trivial structure. Thus, under condition (Cl) the quantity a acts truly as
a parameter with trivial dynamics oan the reduced space.

Under condition (Cz),'however, the manifold

mn

(P x T*V)/(G@ V) = P/G x W*

has nontrivial structure. In fact, the equivalent manifolds

(B X T*V)/ (GO V)

mn

(P x T*V/V)/G

in

(P x V*)/G

n

(P/G) x V¥

have, in general, fairly complicated Poisson structures. For P = T*B with
B a G-bundle, the structure is worked out in Montgomery, Marsden, and Ratiu
(1984] and for P = T*G, it is worked out in Krishnaprasad and Marsden

(1986].
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We will be comsidering the following general set up. We will start

with our Hamiltonian H defined on material phase space P. The Hamiltomian

will depend on parameters which will be linked with the group to be used
for reduction. For example, for compressible flow we can regard H as
depending on the material density aand on the metric teasor oam Eulerian
space (the metric is used to form the kinetic enerxrgy from the velocity
field). To pass to the spatial representation, we rasduce by the group of
diffeomorphisms of the fluid coatainer; this group acts oan the deasity by
pull-back (i.e. composition and multiplication by the Jacobian determinant
in this case)* but acts trivially on the metric teasor. Thus, if a is the
density, the situatiom (Cz) holds, while if a is the metric tensor, (Cl)
holds. To pass to the convective representation, we reduce by the group of
spatial diffeomorphisms; these act trivially on the material deasity, and

by pull-back on the spatial ametrics, so aow (Cl) and (C hold,

)
respectively, and the situation is reversed. The inclusion of the metric
is crucial to obtain a covariant theory, just as it is in the fundameatal
aspects of elasticity (Marsdea and Hughes [1983) and Simo and Marsden
(1984]).

Since the body of the paper proceeds from the abstract to the
specific, we will motivate the abstract theory by giving some more details
about one of the main examples, namely incompressible free boundary

problems for fluids (see Lewis, Marsdem, Montgomery, and Ratiu [1986] and

Lewis, Marsden, and Ratiu [1986]).

* See Abraham and Marsden [1978] and Abraham, Marsden, aad Ratiu (1983}

for details about pull-backs and other geometric coacepts used here.
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Let BCIR3 denote a reference coufiguration, whose points are denoted
X € B, with coordinates XA, A =1,2,3.* The basic configuration space C
consists of maps

¢: B+ IR |

which map B diffeomorphically onto its image ¢(B) and which are volume
preserving. We write X = ¢(X) for the spatial point and its contravariant
coordinates are denoted x2. The cotangent bundle T*C, consisting of the
maps ¢ and their conjugate momenta T, comprises the basic phase space for
the material represeatation. In Section 2, the space denoted by B is an
abstraction of C.

For the spatial represeantation, one uses the spatial momentum density

M , or velocity field v?® (which is chosen to be divergence free) and the

a’
boundary I = ¢(38). In Section 2 the space denoted by M is the space of
all 2's and the group G is the group of volume preserving diffeomorphisms

of B to itself, denoted Diffvol(B)' This grbup is also called the

rearrangement, or particle relabelling group. Note that Diffvol(B) acts on

C on the right by
$*n=¢,n ,

vhere ¢ , N denotes composition of maps ¢ € € and n € Diffvol(B). As in

Lewis, Marsden, Montgomery and Ratiu [1986], M is the quotient space B/G,
* -

while T B/G is identified with space of pairs (Ha,Z) which is a gauged

Lie-Poisson bundle over M (in the senmse of Montgomery, Marsden, and Ratiu

* denoted by qA in Holm [1985].
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(1984]) and which inherits a Poisson bracket structure from the canonical
bracket on T*B, the phase space in material representation.

In terms of v- and I, the bracket onme obtaias by this procedure is

(F,G} = f .g.(g—zx-g%)m\»g(g—%g—g-g%%)ds , BN

5
where I bouads By = ¢(B), w =V X v is the vorticity and y = w + V¢ where w
is divergence free and parallel to Z (so V$ is the potential part of the
flow). For w = 0, the bracket reduces to that of Zakharov [1968] (see
Lewis, Marsden, Moatgomery and Ratiu [1386] for details of the bracket
derivation).

If we were treating inhomogeneous incompressible flow, the space C

would be unchanged, but the Hamiltonian (kinetic energy plus surface
teasion emergy) would no longer be ianvariant under G. To accommodate this
situation, we must also include the material deamsity as a param&er; now
condition (Cz) holds, so the reductiom is by Diffvol(s)@(l-‘unctions on 8)

one gets (1.1) plus the semidirect product pieca

as in Abarbanel et al. {1986] for the fixed boundary case.

The inverse material description uses the space of maps ¢ which take
regions in IR3 diffeomorphically to B and which-are volume preserving. The
phase space in the inverse material represeatatioa is T*C, consisting of
maps 5 and their conjugate momenta n. In Sectionm 2, B is an abstraction of
C and the group G is Diffvo].(IR3) the group of volume-preserving diffeomor-

phisms of space. This group acts on B on the right by

14
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31
"
= J]
o
31

where 5 € C and ﬁ € Diffvol(IR3)' The Hamiltomian, however, is not
invariant under this action of G. To arrange this, we treat the metric g
on space as a parameter and transform it too. Thus, we enlarge B to B x V
where G* is the space of spatial metrics, so now the Hamiltomian satisfies
(CZ)' The quotient T*(ﬁ x \7)/(5 ® ‘7) can be identified with the product of

the space of convective momentum densities ¥ (or velocities V) and the

space of Cauchy-Green tensors C : = ¢*(g). One computes the bracket to be

&F 3 56 66 3 OF ..3
{F,G} = [ n,( - )d x
’ g AOMp B ON, My B OM,
5F 5G 3 '
* 1 Ges (eg Oup - 5, Tor Dapddx (1.2)
B AB 3? AB @

which is (up to boundary terms) a semidirect Lie-Poisson bracket for

divergence free vector fields on B with the space of temsors C Here L.C

AB’ v
denotes Lie differestiation with respect to the coavective velocity V.
The inversion map ¢ =+ 3 = ¢-1 from C to C induces a canonical map

& X
between T C and T C and hence (with the metrics included) betweea the

reduced spaces. In coordinates, the momenta are related by

M, (%) = - :7"': ", (X)

(Since this example is incompressible, we have dropped the volume

elements); cf. Holm [1985], Eq. (1.7).
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Two other group actioas are also important, for they generats momentum -
maps which are Poisson maps implementing the maps from material to spatial,
and from inverse material to coavective represeatation. These are: first,

Diffvol(a) acts on C on the left by

The inversioa map ¥ : C » E; ¢ - ¢-1 = 5 is compatible with these actioas;

e.g.,

W - m) =0t - w(e) . ™

These four actions of G and G on 8 and B and their intertwining by the map
¥ are abstracted in §2. Associated with these four actions, we have four
momentum maps (which are automatically Poisson maps, i.e., they preserve

the values of Poisson brackets) that we denote

* *
TC» LG, ,

B ox o ox ‘

I Tes L@,
G %= *

I TCLE),

% 1% . L ™
R} -

16



* * :
where L(G)_ (resp. L(G)_) is the dual of the Lie algebra of G with its +
(resp. -) Lie-Poisson structure (see, for example, Marsdem et al. [1983]
for an exposition of Lie-Poisson structures and momentum maps). For fluids

with a free boundary, we shall see that

G . . . . . . .
JR is an encoding of the basic conservatiom of circulation in

material representation, i.e., the conservation law associated to
particle relabelling (cf. Armold (1966), Abarbanel and Holm
[1986] and references therein);

Jg implements the material to spatial reduction;
Jg implements the inverse material to convective reduction;
Jg encodes the particle relabelling conservation law in the inverse

material representation.

The map ¥ then interrelates these four maps as described in detail in
Section 2.

The plan of the paper is as follows. Section 2 develops the abstract
picture of reduction on dual bundles, following earlier work by Moatgomery,
Marsden, and Ratiu [1984]. Section 3 treats Hamiltonian systems that
transform as semidirect products under the action of the symmetry group of
the configuration space. Section 4 defines the continuum mechanical
representations abstractly. Section 5 discusses an explicit example of the
type of Hamiltonian systems treated in Section 3, namely_the heavy top.
Section 6 discusses ideal compressible flow in the present Hamiltonian
set up for the material, inverse material, spatial, and convective

represeantations. A dictionary of nomenclature is given below.

17



Dictiomary

material point

spatial point

material representatioa

inverse material representation

spatial representation

convective represeatation

Acknowledgments

Lagrangian point; points X in reference
configuration D C IR3;

Eulerian point; points X in space;
Lagrangian represeatatioa; basic
configuration variables are maps

n:D » IR3; ne€c;

inverse Lagrangian representation; basic
configuration wvariables are maps

R: IR3 > D, 7€ C;

Eulerian representation; basic variables
include the spatial velocity v;

body represeatation; basic variables

include the convective velocity V.

We thank Debbie Lewis and Juan Simo for several valuable discussioas

of this material. Ian particular, the free boundary coanvective bracket

(Formula 1.2) was calculated by Debbie Lewis, building on an analogous

formula for coanvective elasticity due to Juan Simo.
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2. REDUCTION OF DUAL BUNDLES
We consider two manifolds B and B, and left and right actions of two

Lie groups G and G on B and B. Let the right actions be denotad by

b+g=6%b,g) and b - 5 = 3°(5,3),

so we have maps

G BXxXG-+B and 36:

L

(- -]}
X
(2]]
L4
[>-]]

Similarly the left actions are written

g b= ¢G(§,b) and g b = EG(g,S) ,

with maps

¢G: GxB+B and 36: GxB-+8

Assuming that the relevant quotients are manifolds, we obtain the

fiber bundles

nG: B+M:=8B/G , RG: B+H: = E/E .
W B>N:=GB , nC:B+N:=G\B

19



In addition, assume that there are diffeomorpbisms ¥: B - B and ¥: B - B

which are equivariant with respect to G and 5, i.a.,

gl owm) 2.1)

¥ - g)

- -1
¥(®) - g ) (2.2)

¥(g ¢ b)

for all b € B, g € G, and g € G. Differentiating conditions (2.1) aad

(2.2) with respect to g and g yields
I‘P°§B=-§§-‘?, (2.3)

™ - & (2.4)

1]

]
Tl

Wi
€

B

for all £ € L(G) and £ € L(G), where £ £ EB, Ei are the infinitesimal
‘generators of £ and E respectively on the subscripted spaces and L(G)
denotes the Lie algebra of G. )
For example, if G is a Lie group, and B = B=G= G, with the actions
given by group multiplication, thea ¥(g) = g-l and 'T'(g) = g-l satisfy (2.1)
and (2.2).

Recall that a right action ® of a Lie group K om a manifold N lifts

*
naturally to a right symplectic action on T N via

da

* % *
(yn, k) € Tn NXK = Tn-k ¢k_1 (Yn) € Tn'k N

Similarly, a left actiom of a Lie group H on a manifold Q induces a left

symplectic actiomn of H on the cotangent bundle T“Q. From Abraham and

20



Marsden (1978, p. 283], we know that the equivariant momentum map for the

Lifted right action of K on T N is the map J: T'N = LK) given by

for any Y, € T:N, { € L(K). (For left actionms, replace "-" by "+".) Here,
L(K)z denotes the dual of the Lie algebra of K with the + (resp., -)
Lie-Poisson structure; equivariance implies that J is a Poisson, or
canonical map (i.e., preserves Poisson brackets; see, for example, Marsden
et al. [1983] for a review of Lie-Poisson structures).

Applying these considerations to G, 5, T*B and T*ﬁ yields the

following momentum maps:

Lo’ (@), £ = <a, () (2.5)
R:TE-L®! , l@p, b= ag, G (2.6)
R & (@), B = <o, E.(b)> (2.7)
L’ » 0 9 (@), » &g ' '

SR 8 R TN <FGg), b = @z, 56> (2.8)

& - *a - -
for a, € TB, a; € TEB’ £ € L(G) and £ € L(G). We next observe that it is
sufficient to consider either right actions and right momentum maps, or
left actions and left momentum maps. The other combinations follow by

permutation of the symbols and bars.

21



Proposition 2.1. The Maps ¥ and ¥ induce Poissoa isomorphisas

4: TB/G » G\T B and §: G\T'B » T'B/G ,

where the position of the group in the degominator indicates whether the

action is on the right or left (as above, we assume the quotients are

manifolds).

L. 178

This proposition follows from the fact that the lifted maps Ty
- T*E and T*ﬁ-l: T*B »> T*ﬁ are symplectic diffeomorphisms which, from (2.1)
and (2.2), intertwine the right and left actions of G and G respectively.
Thus, they induce Poisson diffeomorphisms of the quotient spaces.

Remark on Dual Pairs. When the right G action on B commutes with the left

G action on B and the left G action on B commutes with the right G action

on B, then the momentum maps JG: jg, Jg and 3% induce Poisson maps on the

quotient spaces:

st QTR - L(G).
-G *= = *
g ¢ G\T B » L(G)_
c % - %

i : T'8/6 » L@
*- - *

Eg : T B/G » L(G),

The maps ¥ and ¥ intertwine the actions and hence also intertwine the
momeatum maps, giving the following commutative diagrams of Poisson maps

(the minus signs come from the mious signs in (2.3) and (2.4)):



T*8 c ~ T8
G
JR ﬂR EG
L
%
(I4)
and w-1
% TVY .
TB = T B
G - -
iTG
- ~identit R - % (18)
L(G), = z > L(G)
-G G
L £ R
1"8/G*— " G/T B

* *
where ngz TB~>T B/G is the projection.

In case B = B = G = G, these two diagrams collapse to:

T*G - inversion
* -
L(G) == ~\\‘~.. .
+*

- 176/G
-JL

N

* * ) . )
where JL(ug) = Te Rg(ag), JR(ag) = Te Lg(ag) and jp» Jg are the induced

-identicy

ﬁ¥§ Poisson diffeomorphisms on the indicated quotient spaces.

23



Let (S,Q) be a symplectic manifold (space S, symplectic form Q), P1

and P2 be Poisson manifolds, and

be Poisson maps. This diagram is called a dual pair if for (an open dease
set. of) s € S,

Q

ker TsJI = (ker TSJZ) ,

where the superscript Q denotes the Q-orthogonal complement. (See Marsden
and Weinstein [(1983] and Weinstein [1983] for further exposition om dual
pairs.) For example, if JL: S*i(G)i is an equivariant momentum map for a
left G actiomn on S, thea ker TsJL and TS(G's) are Q~orthogonal complements

(Abraham and Marsden (1978, p. 299]), so

G
L .
L(G)% G/S
is a dual pair (assuming G\S is a manifold). There is, of course, a

similar remark for right actions. Ia particular, in each of the diagrams

* - fm
(IA) and (IB) there are two dual pairs. The maps T ¥ ! and T°9 1 implement
isomorphisms between each of the sets of dual pairs. For example,

inversion implements the isomorphism between

24



ote o

TG TG
JF’(/// \\\\:L and nR \\\fo
AON G\T'G T°6/6 L(6)"

So there really is a single dual pair in this case:

e

TG
L ,////// \\\\\\;IR
L(G), L(G)

For the level of generality required in the examples considered in the
later sections, the maps ¥ and ¥ need not be the same and Eg etc., need not
be Poisson isomorphisms (as they are in the special case B = B = G = G).

We summarize by extracting the dual pairs in (JA) and (IB):

TB T
G G isomorphic =G =G
JR R by ¥ 3 I
(II1A)
* * L *
L) T B/G G\T B TON
T'B T8
G G isomorphic G G
i3 “//// \\\xrnn by ¥ ne I (I1IB)
L@ \T'B T'8/3 L&),

This ends our remark on dual pairs of Poisson maps.

25



Next we study dynamics. Let Hy: T B » IR be right G-imvariamc. By
the intertwining properties of ¥ with respect to G, EL = Hp o TY : T8 -
IR is left G-invariant. Likewise, given EL’ we can construct HR by the

same formula. The functions HR and ﬁL determine smooth Hamiltonian

functioas

* -
H.::TB/G-'IR and ﬁ: G\T'B » IR via

Bog ety ad LR =

On the respective quotieats, the relationship between Hg and ﬁg takes the

form of a functional compositioa,

=8 ., | @9
where, as above, yY: T*B/G - G\T*§ is the Poisson isomorphism induced by ¥.
Equation (2.9) implies that the Hamiltonian vector fields corresponding to
Hg on T*B/G and ﬁg on G\T*E are Y-related. ‘

Similarly, a right G-invariant Hamiltomian ﬁR: T*ﬁ + IR determines HL’

- % .
a left G invariant function on T B (and vice-versa) and these functions

induce

(2]]

s *e = - %
Eg: T B/G » IR and HL: G\T B+ IR ,

which are related by

HE = HR ° & . (2.10)

26
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We summarize, as follows.

Proposition 2.2. Under the hypotheses of Proposition 2.1, the Hamiltonian

vector fields corresponding to the pairs (HR HL) and (HR H ) are T W

and ¢-related and the Hamlltonlan vector fields corresponding to the pairs

(HL HR) and (HL HR) are T and ¢ related.

Thus, not only the Poisson geometry, but also the dynamics on T*B/G

and G\T B are equivalent. Likewise, Tnﬁ/a and a\T*B are equivalent in this
sense. Consequeatly, in view of Propesitions 2.1 and 2.2 we conclude that
it is enough to work with the right [or left] actions and the reduced
manifolds T B/G aad T B/G [or G/T B and G\T B], since the other Pair may be
recovered by isomorphisms.

Let P1 and P2 be Poisson manifolds and f : Pl - Pz be a Poisson map.

A Hamiltomian function Fl : P1 + IR is said to collectivize throu ugh f (see

Guillemin and Sternberg [1980] and Holmes and Marsden [1983]) if there

exists a function Fz : P2 * IR such that F2 o £ = Fl‘ Functions on P, of

1
the form F2 o £ for Fz : P2 »+ IR are called f-collective Hamiltonians. Two

functions F and H on a Poisson manifold are said to be in involution if
{F,H} = 0 on P. This 1s obviously equivalent to the fact that F is a
conserved quantity for the flow of XH or equivaleatly, H is a conserved
quantity for the flow of XF With these notions we can relate involutivity

on T B/G to iavolutivity on G\T B.

%
Propesition 2.3. Let Fl’ Fz be two functions in involution on T B.

If F Fz collectivize throu ugh both nﬁ T B » T B/G and the projection

1!
TB~» G\T B, then the induced functions are in involution on both T B/G and

G}T B. In particular, if fl’ f2 : T B/G » IR are in involution and f1 o My
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and £, are in involution and collectivize through the projection

* = -
TB~»G\TB, then the induced functions on G\T*B are in involution.

T A =
Similar statements hold for the pair (G\T B, T B/G) and the dual pairs ia

the diagrams (IIIA) and (IIIB).

The proof of this Proposition is immediate since Poisson maps preserve

iavolution.
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3.  SEMIDIRECT PRODUCTS AND HAMILTONIAN SYSTEMS WITH PARAMETERS

This Section treats Hamiltonian Systems with parameters that transform
in a special way under the actioan of the Symmetry group of the coanfigura-
tion space. We start by recalling some relevant facts about semidirect
products. In the coantinuum mechanical examples we shall treat later, all
actions and representations are naturally on the right. That is why we
adopt the conventions of right actions and right representations in this
Section. In an Appendix at the end of this Section, we summarize the
situation of a right principal bundle and a left representation. The
formulas in the Appendix are used only in the example of the bheavy rigid
body. The reader should be warned that relative signs do change in the
equations of motion when Compared to the convention in which all actions
are on the right.

3.1 Notation and Conventions Concerning Semidirect Products

Let G and K be Lie groups with the algebras L(G) aand L(K) respectively

and let ¢:G + Aut(K) be a smooth right Lie group action, i.e. the map:
(k,g) 6K XG>k g8 := ¢(g)(k) € K

is smooth and ¢ is a Lie group antihomomorphism with values in Aut (K), the

group of smooth automorphisms of K:

k * 818, = ¥(g,8,) (k) = (¥(g,) 4 *(g,))(k) = (k-g,)-g,

29



The semidirect product S = G(@)K of G with K is a Lie group with underlying

manifold G X K and multiplication law
(81:k,)(85,k5) = (8,84,ky(k; - g,)) . (3.1)

If e; and ey denote the identity elemeats in G and K respectively, the

-1, 71y

identity element of GG K is (e ) and (g,k)"" = (g-l,k g

G’ %K

Let Der(L(X)) denote the Lie algebra of derivations of L(X). The
antihomomorphism ¢: G » Aut(K) induces a Lie algebra antihomomorphism
¢:L(G) » Der(L(K)) in the following manmer. For every g € G, ¢(g): K » K
is a Lie group algebra automorphism 3(3) :=9(g) = ‘I'ed!(gJ:I.(K) » L(X).
In this way, one gets a Lie group antihomomorphism $:G » Aut(L(X)), where
Aut(L(K)) is the group of Lie algebra automorphisms of L(X). The induced
Lie algebra antihomomorphism is defined via ¢: = ° L(G) ~» Der(L(X)),
which in turn defipes the semidilrect product Lie algebra L(S) = L(G) @L(K)

as the Lie algebra with underlying vector space L(G) X L(K) and Lie algebra

bracket
[(§,.n7),(§;,0,)] = ([§,,8,1.0,°&, - n,°§; - [n,0,]1) (3.2)

where n - £ : = 9(£)(n), & € L(G), n; € L(K), i = 1,2.

Remark. In infinite dimensioas, the same definitions apply formally;
rigorously, one introduces function space topologies and works with ome of
the Sobolev, Holder or Ck spaces, or works in the ILB (inverse limit of
Banach) or certain Freéchet categories. In this paper, we ignore such

questions and apply the prior definitions and conventions to "Lie groups’”,
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such as the diffeomorphism groups of a compact manifold. See Ebin and
Marsden [1970] and Adams, Ratiu and Schmid [1986] for more information.

The Lie algebra of S = GEK is L(G)@L(K) and the adjoint actiom of
G®K on L(G)® L(K) is given by

- regRd
Ad (g k) (&in) = (ad £,8(g )[Adk_ln + re(r.k_1 o 9] (3.3)

where ¢k : G+ K is the map givea by ¢k(g) = k*g, where k € K and g € G.

Thus, the coadjoint action of S on L(S) equals

* % * - %
Ad _l(p,v) = (ad aH Te(L ate _1)¢(g) v o,
(g,k) g k-g k "-g

o

Ad;_l _1$(g)*o) , (3.4)
‘8

where y € L(G)*, v € L(K)*, and the upper stars on different linear maps
denote their duals with respect to natural pairings <,> : I.(G)J'r x L(G) =+ IR
and <,> : I.(K)*X L(K)) » IR. (In infinite dimensions, these pairings are
usually weakly nondegenerar.g and have to be specified.) The natural
pairings induce another pairing on L(S)* X L(S), also denoted <,>. In
finite dimensions, L(G)* and L(K)* are the duals of L(G) and L(K),
respectively, whereas in infinite dimensions they are vector spaces (with a
given topology) 'maturally" paired with L(G) and L(K). For example, if
L(G) = X(M), the vector fields of a given Sobolev differeatiability class
on a compact manifold M, we choose L(G)* =X(H)* to be the one-form
densities on M of the same differentiability class, and set <u,X> =

fnp - X, where p € X(M), X € X(M), and the density p * X 1is the
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contraction of y with X. The distributional dual X(M)' of X(M) is
considerably larger than X(M)* and consists of one-form densities oa M of
migus the Sobolev class of X(M). The pairing in both cases is the
Lz-pairing, but only in the second case is it strongly nondegenerate.
The * Lie-Poisson  bracket of two  functions F,H : L(S)i =

L(G)” x L(X) - IR equals, in veiw of (3.2),
{F,H},(u,v) =

- 8H. 6F - 6F 6H -
< H,{ga,gal >+ < V,?(ga)gg > %< ‘“.@(33)33 >+ <, (555l 2 0 (3.5)

where the partial functional derivatives belong to the following Lie

algebras:
SF SH 6F SH * *
m and i € L(G) , = and v € L(K) , for p € L(G) , v € L(K)

The Hamiltonian vector field of H : (L(G) s L(K)), » IR equals

Xg(u,v) = 3(ad(§g)*u + QZE”’ - ¢(g§)*v - ad(gg)*v) , (3.6)
v
where ¢n : L(G) » L(X) is given by ¢n(§) = ¢(€)n for £ € L(G) and n ? L(K).
Let us specialize the foregoing definitions and formulas to the case
that X = V, a vector space regarded as an abelian Lie group under addition,
and ¢ : G » Aut(V) is a right linear represeantation. Since the Lie algebra
of V is V itself, it follows that & = & and ¢ = ¢':G » End(V), where End(V)
denotes the algebra of automorphisms of V. The composition law in

S=GQ@EV is given by

(81,‘71)(82,"2) = (81821 vz + vl.gz) (3.7)
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[;%@\

and the Lie bracket on L(S) = L(G) ® V equals
[(glsvl)»(gztvz)] = ([gltgzl ’ V1'§2 - Vz'gl) . (38)

The adjoint and coadjoint actions become

Ad (69 = (Adk, 9(gTH( v+ ub) ) (3.9)
A ma) = ad e e, e (3.10)
(g,u) g u-g

and the Lie-Poisson bracket and Hamiltomian vector field have the

expressions
- &F oH, , ; 6F | 5H 8H, 6F
{F’H}t(p’a) - t < u) [autdp] >+ < a)¢(6u)aa > : < a)¢(6p)éa > (3' 11)

Xg(a) = ¥ (@D + 05, - 0@ (3.12)
o .

* % %
for p € L(G) , a €V, and F,H : (L(G)@V) + IR. These are the formulas
that apply to the fluid dynamics examples in Section §.

3.2 Semidirect Product Bundles

We turn next to the notion of a semidirect product bundle. As in

Section 2, let G act on the right on B producing a surjective submersion
n:B » M, where M = B/G. Suppose the Lie Group G also acts on the right on
another Lie group K via ¢:G » Aut(K). For example, n:B » M could be a
principal bundle, but in some of the ensuing examples we will want to relax
this condition to the prior hypotheses. Define an action of S = G(3)K on

B x K by
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(b,k) - (g,b) = (b-g, (k'g)h™') (3.13)

for b € B; k and h € K; and g € G. The right S-bundle of B x K with the

action (3.13) is called the semidirect product bundle of B with K.

Proposition 3.1. (i) If ¥ = B/G is a manifold and n:B > M is a surjective
S

submersion, then (B X K)/S is a manifold and n°:B X K » M, ns(b,k) = n(b),

is a surjective submersion. (ii) Let T B Xs L(K); denote the quotient of

T'B x L(K), by the right G-action. Then T B X, L(K)] is a manifold if and

only if (T B x T K)/S is a manifold. In this case, these two manifolds are

Poisson isomorphic and the following diagram commutes

% * *
TBXTK = T (BXK)

I s

* *
T B x L(K), R

e

T'B %, LK), = [T (B x K)]/S

_ % S . .
where p(ab,Bk) = (ab’TeLk(Bk))’ g, and T denote the three projectioans

associated to the reduction on the right by {e,} XK, G, aad S,

respectively.

Proof. (i) The map [(b,k] € (B X K)/S » n(b) € M is easily seen to be
well-defined and bijective, and so induces on (B X K)/S the differentiable

structure of M.
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* * * * ‘
(ii) The map ¢:[ab,v] €TB X5 L(K)+ > [ab,v] € (TB x T K)/S has as its
) -1, * % . % % %
inverse the map ¢ .[ab,Bk] € (T B xTK)/S [db,TeLk(Bk)] €ETB o L(K)+.
Therefore, if ome of these quotients is a manifold, so is the other and
vice-versa. The commutativity of the diagram is obvious and the Poisson
nature of all vertical maps implies that ¢ is a Poisson isomorphism.O

% *
The action of Son T B x T K is given by
(a,,8) - (8,b) = (o g, TR (B-g)) . (3.14)

* *
Hence, the right G-action on T B X L(K)+ has the following expression:

(ab,\)) g = (ab°g, veg) . (3.15)

Proposition 3.2. Let n:B + B/G b a surjective submersion.

(i) If K is another Lie group on which G acts on the right, then the

semidirect product S = GEK acts on B x K via (3.13). If (T'B x T'K)/S is

a manifold and H :T B x L(K): * IR is a smooth function which is G-

invariant, i.e.,

H(cb°g, veg) = H(ab,v) , (3.16)

for all g € G, then H induces a smooth function h : T B Xs L(K); - IR.

(ii) Let K be another Lie group. Then the direct product D = G X K acts

on B X K via

(b,k) * (g,h) = (b-g, K B) , (3.17)
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o that G acts on T B x L(K), via

(a.,9) *+ g = (a8, v) . (3.18)

If H : TB x L(i); » IR is a smooth function, which is G-invariant, i.e.,

H(ab-g,G) = H(ab,G) (3.19)

for all g € G, and if T B/G is a manifold, thes H induces a smooth function

h: (T'B/G) x LX) » IR.

3.3 Hamiltomians Depending on Parameters

In applications, ome is usually given a Hamiltonian H deéending on
- % - %
some parameters (v,v) € L(X) x L(K) . Thus, if the symmetry group G of

. . * - *
the counfiguration space B acts on L(K) X L(XK) wia:

(b,v,9) - g=(b-g, v-g V) , : (3.20)

and the Hamiltonian function H : T B x L(K) X L(f(')“ + IR is G-invariaant,

i.e.,

H(ay, * 8, v * g, v) = u(ab,u,G) , (3.21)

then H induces a Hamiltomian h:(T*B s L(K)i) X L(i)i + IR. The Poisson
manifold (T*B e L(K):) x L(i): is obtained by dividing T*(B x K x K) by~
(GOK) x K.

Summarizing, we have the surjective submersion TIG: B » M, where

8=BxKx IE, and the group G : = (G@K) x K acts on the right on 3 by
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(b,%,K) * (g,b,B) = (b - g, (k -gn”}, K H) . | (3.22)

It follows that M = B/G from (3.22). Repeating the same comstruction under
the same hypotheses for the triple (5,5,&) instead of (B,G,K) gives another

surjective submersion

Mm:B-»H , Wwhere M= E/a s B=BxKxK

with the group G = (G ® K) X K acting on the right on B via the analog of
(3.22). As before, it follows that M = B/G. Thus, we have half of the
hypotheses of Section 2. To get the other half, we define a left action of
G=(6@K) xKonB=BxKxK by

(3,B,b) + (b,k,K) = (3b, b k, (K B)-5 1)) (3.23)

(GEXK) x K on B xKxK by

dnd a left action of G

(g - b, KK, (kh) - g’ 1) . (3.24)

(g,h,h) - (b,k,k)

Then, the maps A,R: B + B defined by

A(b,k,E) = (¥(b),E *,k) (3.25)

A(b,k,K) = (F(v),E,x°1) , (3.26)

are G and é-equivariant respectively and so satisfy the hypotheses for ¥

and ¥ of Section 2. In particular, we have the dual pairs correspoanding to
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diagrams (IIIA), (IIIB) of Section 2 and the dynamic statement of
Proposition 2.2.

We close this subsection with explicit formulas for the case that
K=V and K = V are vector spaces regarded as abelian Lie groups. This is
the case most commonly encountered in practice, e.g., in Section 6 oa fluid

dynamics.

Formulas (3.13) - (3.15) become

(b,u)+(g,v) = (b-g, u'g -~ v) , : (3.27)
(ay,u,a)+(g,v) = (a8, u°g = v, a*g) , (3.28)
(a,3):g = (a8, a°g) , (3.29)

*

v'*
for g€ G, b€B, u,veEV, a€V andabET

remain unchanged after replacing v by a anad v by a. The right action of

B. Formulas (3.16) - (3.21)

o

G=(GEV) x VonB8=BxVxTVis given by the aﬁalog of (3.22). Namely,
(b,Ll,L-l) ¢ (3171;) = (b-g, u'g - v, u + ;)1 (3.30)

for b € B, u,v €V, and u, v € V. The right action of G = (5@\7) x V on
B=B x V x V is given by (3.30) with the obvious interchange of
over-barred letters with unmarked letters. Finally, formulas

(3.23) - (3.26) become

(3.31)

]
7~
0o

*

o
=

+

<
Py
(=]

+

4
N

.
Y
o’

(E,;,v) « (b,u,u)

(g,v,v) * (b,u,u) (3.32)

)
—~
0Q

o
=

+

<
—~

=

+

<
~—

L]
(1]
~
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A(b,u,u)

(w(b)) = Es u) ) (3.33)

A(b,u,u) = (F(b), u, - u) . (3.34)

3.4 Lie-Poisson Structures for Semidirect Products

A special situation occurs when K = V and K = V are vector spaces and,
in addition, G =G =B = B, i.e., when the configuration space is a group
and the parametefs of the Hamiltonian system are elements in the dual of a

vector space. In this case, we take Y =¥ : G+ G to be the inversion

. -1
mapping g > g .

We shall briefly review the main results of this theory
following Marsden, Ratiu, Weinstein [1984a], [1984b]. We note that this
specialization excludes free boundary problems for fluids (such as that
outlined in Section 1) but includes problems with fixed boundaries.

We start with the right and left actions .of the semidirect product

%
G =G@V on its cotangent bundle T S:

ole

(dk,v,a) * (y’u) = (T;ZRS-I(ak)’ u+ veg, a'g) ’ (3.35)
(g,u) + (qp,v,a) = (T:kLg,l(ak) + T:k -u-g-l(a)’ v + uk, a) ,(3.36)

where @ :G + V is defined by ¢w(g) = w'g. The momentum map J, : TS » L(s)"

R
of the right action (3.35) is given by

IR(eev.a) = k)7 - (@,v,2) = (T (@) + 02, 3) (3.37)
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and of the left action (3.36) by
I (a,v,a) = (a,v,a) + (kv) 7t = (TR (2), a-k™}) (3.38)

(see diagram (II) in Section 2). Since JR is invariant uander the left

action (3.36), it 1is also invariant under the induced left action
% * %

u-(ak,v,a) = (ak + Tk¢u(a), v + u‘k,a, of V on T S. C(Clearly T S/V is

* * * % k5
diffeomorphic to T G X V . We search for a projection P.:T S > T G X V

L
implementing this reduction, that in addition should have as its second

component the wmomeatum map of V om TkS, i.e., the second component of J

L
(see (3.38)). Such a projection is given by
P = +TL ¢ - k7t |
(P (ay,v,3) = (@) + T, k_1¢v(a) » 3 ) . (3.39)
The map PL is Poisson, as the following argument shows. The second

component of PL is, as we already know, a momentum map and, thus, (uk,v,a)

1

» a‘k ~ is a Poisson map. Since

(Tth‘l ] ¢V) (a) = df ‘l(h) ’

v-h

where fa(g) denotes the "matrix element" <a, u-'g>, we conclude that the map
u
ah d ah + (Tth"l Q ¢v)(a)

is fiber translation by an exact differeatial; so it too, is Poisson.
Therefore, the first componment PL is also Poisson and, comsequently, PL is

a Poisson map.
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It is easily seen that JR in (3.37) factors through PL’ thus defining

-~ % % *
the map Jp : TGx V = L(S)_, according to the commutative diagram,

/\

'rcxv L(S)

r
Explicitly,
Tplay,a) = (ToLy(a); ah) . (3.40)

The situation for JL in (3.38) is somewhat simpler. JL is right

invariant and thus is invariant under the right action (ah, v,a) * u=
% * %

(uh, utv, a) of Von T S. The projection PR : TS+TGX V implementing

this reduction is given by
PR(ah,v,a) = (ah,a) s (3.41)

and is, therefore, canmonical and has as second component the second

component of JR (see (3.37)). In addition, JL factors through PR. via

%
TS

T6x V' —— L)
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where

T (a,,v,2) = (TR (0,), a0l (3.42)

These observations are summarized as follows.

Theorem 3.3. The maps

~ . x * %
33 s TGxV s L), ,

defined by

Ty (a,,2) = (ToR (o), ab™)

Tolay,a) = (Tl (o), a'h)

are canoamical, since they are reductions of the momentum maps JL’ JR by the

actions of V on T'S. They are themselves momentum maps for the left and

*
right actions of Son T G X V,

The symplectic leaves of the quotieat of TG x v by the left and

right S-acﬁions are the coadjoint orbits of L(S)z and (T*G X V*)/G =
T'S/S = L(S), (and G\(T'G x V) = S\T's = L(s") ).

The last result is proved in Marsden, Ratiu and Weinstein [1984a].
The canonical nature of jL and jR is ooted in Holm, Kupershmidt, and
Levermore (1983] for a series of physical examples from coatinuum

mechanics.
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Remarks. Using the Cotangent Bundle Reduction Theorem due to Satzer and
Marsden (see Abraham and Marsden ([1978), p. 300, Theorem 4.3.3), Ratiu
(1982) obtains the following additional result which we will find useful in
our discussion of the heavy top in Section 5. Let a € V* and let the

*
isotropy group Ga = {g €G] arg = a} act on T G by the lift of right
a .
ofs ol R .
TG~ L(G);, J;(ag) = T;Lg(“g)'L(G)a’ vhere L(G), = {§ € L(G)| a-& = 0} is

translation. The corresponding equivariant momentum map is J

%
the isotropy Lie subalgebra of a € V , which is the Lie algebra of Ga. Let

* %
M, € L(G)a and Orb(pa) be the coadjoint orbit of Ga through M, in L(G)a.

Then the reduced phase space (J;)-ICOrb(pa))/Ga is a smooth manifold

symplectically diffeomorphic to the coadjoint orbit Orb(v,a) of the

*
semidirect product S = G@V on L(S)_, where L(S) = L(G)(®V, for any v €

*
L(G) whose restriction to I.(G)a equals M, i.e., vIL(G)a =M, (see also

Marsden, Ratiu, Weinstein [1984a]). Note that (J;)-I(Orb(pa))/ca is

symplectically diffeomorphic to (J;)-l(ua)/(G )

alu,’ where*(Ga)pa is thj
coadjoint isotropy subgroup of Ga at . Denote by Jp TG » L((Ga)p )"
4% a
the momentum map of the (Ga)p -action on T G, i.e., J“ is the restriction
a ., a *

of J; to L((G_), ). If p € L(G) 1is an arbitrary extension of y_ € L(G.) ,
a'p, a a

the one-form on G defined by dp (g) = p,Tng_l is G-left invariant aad

a

- - - * -

(Ga)Ha-tlght invariant. Moreover, JHa(apa(g)) = Tng(pngLg_l)I((L(Ga))pa_

”aIL((Ga)pa)’ i.e., a”a has values in J;:(“aIL((Ga)pa)' Under these:

hypotheses, the Cotangent Bundle Reduction Theorem guarantees that the

reduced manifold (J;)-I(Orb(pa))/ﬁa = (J;).1 (pa)/(Ga)p embeds symplec-

tically onto a vector subbundle over G/(Ga)

% a
in T (G/(Ga)p ) endowed with
a

A Ha
the svyvwplectic structure wy = Bu , Where Wy is the canonical symplectic
a . *
two-form on the cotangent bundle and B“ is the lift to T (G/(Ga)p ) of the

a a
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closed two-form 3”3 on G/(Ga)Ma given by n“Bua = da“aggs n:G - G/(Ga)pa'

This embedding is oanto iff L((Ga)'J ) = L(G,). In the case of the rigid
— a

body, all coanventions are on the left and in that case the definition of a

changes to apa(g) T M, TgRg-l'
Next, we turn our attention to dymamics in the semidirect product
* * .
context. Let H:T G XV + IR be a Hamiltonian satisfying the following
invariance property
%
H(Tthg_l(ah), a‘g) = H(ah,a) , (3.43)
for all g € G, ay € T;G, a € V“; i.e. B is invariant uander the right
* %
S-action on T G X V induced by (3.35) via Pp- Then, by right S-invariance
of J;, H induces a Hamiltonian Hp:L(S), » IR by Hy o J; = H, i.e.,
% L -1y _
HR(TeRg(ug), a*g ') = H(ag, a) . | (3.44)

Notice that the invariance property (3.43) implies that the Hamiltomian
Ha:T*G + IR given by Ha(ag) ='H(ag,a) is invariant under the lift of the
right Ga-action on T*G, where Ga = {g € G| a-g = a} is the isotropy group
of a € V*.

Let us investigate the evolution of a in L(S)i. Let ca(t) € ‘T*G
denote an integral curve of the Hamiltonian vector field corraesponding to
H_ and let ga(t) be its projection on G. Then t = (ca(c),a) is an integral
curve of the Hamiltonian vector fiald on T*G x V* defined by H, so that the
curve jn(ca(t),a) is an integral curve for the Hamiltomian vector field on
L(S)i defined by HR‘ Its second compeoment t » a - ga(t)-l describes the

evolution of a.
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* %
For left invariant Hamiltonians H:T G X V =+ IR, we assume that

* -1 . -
H(Tgth-l(uh)’ avg™h) = Hioy,a) (3.45)

for all g € G, i.e., H is invariant under the left S-action on T G X V.
induced from (3.36) via PL. Then H induces a Hamiltomian H :L(S): + IR by

H ER = H, i.e.,

L

%
HL(TeLg(as), asg) = H(dg,a) . (3.46)

o
In this case, the evolution of a in L(S)_ is given by the second compounent
of 3R(ca(t),a) which is t » a - ga(t). We summarize what we have proved in

the following.

* *
Theorem 3.4. (i) Let H:T G x V - IR satisfy (3.43), i.e.,

H(T:gng_l(ah), asg) = Higy,a)

* ~
for all g € G. Thean H induces a Hamiltomian Hp:L(S), + IR by Hy o J; = H,

i.e.,

He(T.R (@), avg™!) = H(a_,a)

*
The curve c_(t) € T G is a solution of the Hamiltonian vector field defiaged

by H:T G+ IR if and oanly if J,(c_(t),a) is a solution curve for the
-za ——.—_—Z_La — -

*
Hamiltonian vector field given by HR on L(S)+. In particular, the
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. . * . -1
evolution of a in L(S), is given by t » 3 - ga(t) y Whera ga(t) is the

projection of ca(t) onto G.
(ii) Let H:T G x V » IR satisfy (3.45), i.e.,

* -1
H(Tshl.g-l(ah), a'g ) = H(ay,a)

for all g € G. Then H induces 3 Hamiltonian i L(s). » IR by HLO~

JR = H,

i.e.,
B (T:Lg(ag), a'g) = H(a,, a)

The curve c_(t) € TG is an integral curve of the Hamiltonian vector field

defined by H:T G » IR if and only if Ja(e,(£),2) is a solution of the

Hamiltoniaa vector field given by HL on L(S):. In particular, the

. 1] * . - + .
evolution of a in L(S)_ is gives by t » a g,(t), where g, (t) is the

projection of ca(t) into G.
Finally, let us return to the set-up in part C of this Section. For
‘ * * *
the convective-spatial duality, we extead TS =T G X V X V to the space

TYGXVXW.RuulmuweuueG=@@V)x6md§=@Cﬁ)XV=

o

(GEV) x V. Hamiltonians are given on TG x V. x ¢, Thus, ome should

augment the preceding considerations by carrying along the trivial factors

% %

or V, as the case may be. Since the G(resp. 5) actions on T G X

<

o -

R - % - %
V xV do not affect V (resp., V ), the evolutioa of a € V (resp., a €
V') is simply by the equation da/dt = 0 (resp., da/dt = 0). In cthis way,

we get the following result.
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. * %
Theorem 3.5. (i) Let H:T G xV x V - IR satisfy

H(T;gRg_l(uh), a‘g, a) = H(ay,a,a) ,

for all g € G. Then H induces a Hamiltonian on [(g@® V) X V]i by

By (TR (@), g™, = H(a,,a,D)

- ko
The evolution of (a,a) € V x V for the dynamics defined by Hp is ¢ »

(a-ga;)(t)-l,;), where ga;(t) is the projection of the integral curve

* ) *
¢ ,3(t) € TG for the Hamiltonian H,z:T G » IR induced by H.

(ii) With the same notations, let H satisfy

“(T:th-1(“h)' ag™h D) = Hey,2,3)

. = *
for all g € G. Then H induces a Hamiltonmian H.L:[(g@V) x V]_ =+ IR by

B (TLy(a), a+8,3) = H(a,,a,3)

- % - -
The evolution of (a,a) € V X V is given by t » (a-ga(t), a).

There are, of course, dual results involving G = (6O ‘7) x V which can
be obtained by using Proposition 2.1 with (3.33) anmd (3.34) in chis
Theorem.

The rest of the paper is devotad to examples. We start with the
simplest and most common one, the heavy top. The conventions for the
representations that are the most useful in this case differs from the ones

used for fluids and plasmas in which we have worked so far. Namely, we
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need to consider the standard conventions for left group representatiocas
and right bundles. All relevant formulas with these alternative
conveations are summarized in the Appeadix to this section and used ia the
next section. All the other examples ia subsequent sections are infinite
dimensional coﬁ:inuum mechanical cases that use exclusively the coaventioas

of the present section.
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Appendix

In this Appendix we summarize the key formulas of Section 3 when the
actions of G on K and G on K are on the left. The correspondence is
denoted by adding L to the equation number. The first twelve formulas are
taken from Kupershmidt and Ratiu [1983] and (3.13L) from Montgomery,
Marsden, and Ratiu [1984].

We denote by $:G » Aut(K) and ¢:8 ~» Aur.(f(') left Lie group actioms, and
by g-k = #(g)k, g-k

¢(§)E, the associated maps G X K+ K, G X K - K. The

multiplication law in G@® K is in this case

"The identity is again formed by the pair (eG,eK) and (8;1:)'1 =
(g-l, g-l'k-l). The maps 3, p:=$' are homomorphisms and the Lie algebra
L(G) ® L(K) of GG)K has the Lie algebra bracket

[€&).n)s (§punp)1 = ([£;,4;], &0y = &5ony + [npun, 1) (3.2L)

Let L(Aut(K)) denote the Lie algebra of Aut(K). To ideantify elements
of L(Aut(X)), let c:(-£,e) -+ Aut(X) be a smooth curve with c(0) the

identity map of K. For any k € K,

d
-— c(t)(k) € T K ,

dt|,_, K

i.e., ¢'(0) defines a vector field oan K by k + ¢'(0)(k). Thus, if X(K)
denotes the space of smooth vector fields on K, L(Aut(K)) C x(X). If

®':L(G) » L(Aut(K)) is the Lie algebra homomorphism induced by ¢, we have
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$' (&) € X(K) for all § € L(G). With these notations, the adjoint action of
GE® K on L(G) @ L(K) is given by

= ® ! -1
Ad(g'k)(g,ﬂ) = (Adgg,(Adk o ®(g))(n) + rk_lLk([¢ (Adgg)](k )))  (3.3L)

where

EE€LG) , n€L(K) , g€G , kE€K ,
and

T_L : T_K-=L()
oLk !

1

is the derivative of the left translation Lk on K at ¥ = € K. To compute

the coadjoint action, some more notatiom is needed. For any Lie algebra

homomorphism F : L(G) » L(Aut(K)) and any k € K, let F (k) : L(G) » T,K be

¥

the linear map defined by F'(k)(£) = F(£)(k) and let F'(k)* : T,K » L(G)*
k

be the dual map. With this notation the coadjoint action is given by

ad” ) = (e (00 g ad D e hao T
(g,k) 8 8

S R SIS I RN 1 S0 ' S B (3.4L)
®(g )(k) #(g )(k ) d(g (k)

The Lie-Poisson bracket of F,H : (L(G)(® L(K)): -+ IR, becomes, with
the use of (3.2L)
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<, (&8

{F,H}(u,v) = &' 5y

H+

+1

w,0GghE>

where the partial functional

algebras:
&F SH oF
-ai and o € L(G) , 59

for

u €L and ve L

w,0(E)5

I+

6F SH
W, (55> (3.5L)

i+

derivatives belong to the following Lie

6H
and 3 € LK) ,

*
The Hamiltonian vector field of H:(L(G) ® L(K)), » IR is given by

Xg(h,) = ¥ @G b - ogg v . oG v s sy (3.6L)
&

% *
where p € L(G) , v € L(G) , and for n € L(K), ¢q : L(G) » L(K) is given by

¢q(§) = () * n.

Specializing the foregoing definitions and formulas to the case K = v,

3 vector space, we get

- the composition law in G@ V;

(8y,v,)(85,v,) = (8,85, V| + ®(gy)v,) , (3.7L)

- the bracket in L(G) ® V:

(8.9, (8yv)] = ([&1,E,), (& )Dv, = 0(Ev)) (3.8L)
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- the adjoint and coadjoint actionms:

Ad(g,u

ols

(g,u)

- the Lie-Poisson brackat:

{F,H}, (W,a) = £ <y, [

- the Hamiltonian vector field of H :

Xy(n,a) = 7 (aa(E"y -

¢5H a, ¢( ) 3)

da

where y € L(G) and a € V .

The right action of S =

(b,k) + (g,h) = (b-g,

and on T B x T K by

(ab,Bk) * (8)h) = (ab.

J(£,9) = (Ad 8, #()v - a(ad E)w)

> 4 <a,r1>(‘SF B3 0@

g le(kn)) -,

g,

87T R (B)

The right G-action oa T B X L(K); is

(0,,9) g = (a,°8 , 8

1.“)

]

% * = -1.% -1.%
Ad (ha) = (ad _po+ 0 9(g H¥ a, eg™Ha)
g

L(G) @V - IR

GG K on B x K is given by

’

GH) GF
éa

’

(3.9L)

(3.10L)

(3.11L)

(3.12L)

(3.13L)

(3.14L)

(3.15L)
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which is ideatical with (3.15). Therefore, formulas (3.16L).~ (3.24L),

coincide with the corresponding formulas for a right G-action oan X and so

Proposition 2.1 holds. Formulas (3.22) - (3.26) become:

(b,k,k) * (g,h,B) = (beg, g”!-(xn), KB) (3
(g,B,b) - (b,k,k) = (3-b, hk, B(Zg-k)) |, 3
(g,b,h) - (b,k,k) = (g-b, B k, h(g-k)) , (3.
ACb,k,K) = (¥(b), &5, k) (3.
Atb,k,E) = (F(b), B%, k1) . (3.

Note that unlike the situation of right semidirect products, the maps A

A are in this case identical. If K=V and K = V are vector spaces,

analogs of formulas (3.27) - (3.29) or (3.13L) - (3.15L) are

(b,u) - (g,v) = (b-g, 3-1'(u +v)) , (3.
(ab,u,a) ¢ (8"’) = (ab°31 8-1’(11 +v), 8-1'3) ’ (3.
(a,3) - g = (a8, g a) (3.

* %
where g € G, b € B, u and v € V, a € V and ay € TbB. Finally,

formulas corresponding to (3.30) - (3.34) or (3.22L) - (3.26L) take

\ forms:
(wm

.22L)

.23L)

24L)

25L)

26L)

and

the

27L)

28L)

29L)

the

the
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(b,u,u) - (g,vfs) = (bg, g “(u+tv),u+v) |, (3.30L)
(g,v,v) * (b,u,u) = (g°b, u + v, v+ gu) , (3.31L)
(2,v,9) - (b,u,u) = (gD, u+v, v+gu |, (3.32L)
A(b,u,u) = (¥(b), -u, ~u) , (3.33L)
A(b,u,u) = (F(b), -u, -u) . (3.364L)

Denoting by fz(g) the "matrix element” <a,g-u>, where a € V , u € V and g €

*
G, the right and left actions of S on T S have the expressioas

1 (bg), v + heu, a) , (3.35L)

‘a

(@,v,3) * (g,u) = (TZSR NCSERTS
g g
(g,u) - (@,,v,a) = (T:hng,l(ah), u+ g-v, gra) . (3.36L)

The momeatum maps J,, JR’ the projections PL, PR’ and the induced momentum

maps }L and 3R take the form:

Jplag,v,a) = (TR (a) + o, a) (3.37L)
= (T -1,

Jplag,v,a) = (T L (a), g "-a) (3.38L)

Brlag,v,a) = (a,,a) (3.39L)
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_ * * -1
PR(ag’v’a) = (ag + TSR ‘1¢V(a)’ 8 .a) ’

(3.41L)
4
EL(GS,V,R) = (T;Rg(ag), 8'3) ’ (3.42[.)
3 = (1 -1
RFag,v,a) = (TeLg(as), g -a) . (3.40L)

The conditions for right and left invariance of the Hamiltonians take the

form

u(r:ga (@), g7 la) = Hay,a) (3.43L)
g

H(T:th_l(uh), gra) = H(ay,a) (3.45L)

for all g € G and u € V. The induced Hamiltonians.ate given by

By : LS, » IR , H : LS. IR ,

defined by
BT (@), 700 = Hlag,a) (3.46L)
HR(T:Rg(ag), g'a) = H(ay,a) . (3.44L)

Finally, the evolution of (a,a) is given by

t -+ (ga(t)'l-a, a) for H; on L(S)_ (3.47L)
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and
¢+ (g,(t) - a, 3) for Hy on L(S); . (3.48L)

Of course, all the theorems from Section 3 have corresponding statements

for the coaventions in this Appendix.



4.  CONTINUUM MECHANICAL CONSIDERATIONS

We now recall some continuum mechanics notation in accordance with
Marsden and Hughes [1983], in preparation for the next sections.

The physical problem ;nder consideration is the description of the
motion of a body -- eitﬁer a fluid or a solid. It is useful to think of
the body abstractly as being separate from the position it occupies in

space. A reference configuration D of the body is the closure of an open
3

set in IR™ with piecewise smooth boundary. We think of D as the position
that the body occupies at some reference time and keep it separate from its

subsequent shape during the time evolution. A configuration is an

orientation-preserving embedding n: D -+ IR3 of a specific differeatiability
class. A motion of D is a time dependent family of configurations nt:D +
IR3, written as x = n(X,t) = 0, (X). We shall denote by X = (XI,XZ,X3)

points in D and call them material, or Lagrangian poiants; Xl, i=1,2,3 are

called material, or Lagrangian coordinates. Points in the target space of

a configuration are called spatial, or Eulerian points and are denoted by

lower-case letters x = (xl,xz,x3) € IR3; xl, i=1,2,3 are called spatial,
or Eulerian coordinates. The relationship between a spatial vector
quantity 2z and its corresponding material vector quantity Z is given by the

relation

2, 0N, =2, . (4.1)
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Let us iavestigate some consequences of relationship (4.1). The
diffeomorphism group Diff(D) of D acts on the space of configurations

€ ={n:D -~ IR3I N is an oriemtatioa-~preserving embedding } om the right via

(n,¢) € ¢ x Diff(D) » n, ¢ EC . (6.2)

Let us consider the material quantities Z and 2 45 ¢ and ask for the
relationship between the corresponding spatial quantities. By (4.1) it

follows that 2, 0N, o P= gt o 9 which says that 2z  is unchanged by the

L
particle relabeling group G = Diff(D). Therefore, the passage (4.1) from
material to spatial quantities factors through the projection nG:C -
C/Diff(D).

For example, the Lagrangian or material velocity is defined by

!(X,t) = 3§(§,t)/3t ’ (6.3)

where we have writtea x(X,t) for n(X,t), so that the correspoading spatial

or Eulerian velocity is given by

Z(E’t) = z(g’c) ’ i'e‘ ] zt Q rlt = Yt ’ (4'4)

and, thus, v is invariant under particle relabeling.
There is another group acting on C, namely the diffeomorphism group

Diff(IR3) = G of space. The action is on the left and is givea by
(A,n) €DifE(IR) x c+AonecC . (6.5)

Note that while (4.1) was a free action (no fixed points), (4.5) is not

free; one can alter the diffeomorphism A outside the range of n and obtain
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m

the same embedding A o n. What is invariant under Diff(IRB)? To answer
this question, we review three formulations of continuum mechanics. First,
one can follow each particle individually, this yields the Lagrangian or

material picture. Second, one can keep the material point fixed and

describe the evolutiom in space. Physically, in this case, one looks at
the body from a fixed coordinate system in space. As we just saw, this has
the effect of ignoring the particle relabelling group Diff(D). This is the

Eulerian, or spatial picture. For example, in this description (4.4) shows

that one takes derivatives with X fixed. The third way to describe the
motion is in terms of quantities involving X as functions of x. For

example, one defines the body or convective velocity by (Note minus sign,

which differs from the conveation in Holm [1986].)

vX,t) = - 3x(x,t)/3c . (4.6)

The relationship between V, v, and ¥ is obtained by the chain rule in

the following way. Since L(x,t) = n;1(§), we have

- -1 -1
Y. (X) = Tn, " (n, (n_"(x))/3¢)

(¥, (X))

=g . v, o 1))

That is, [cf. Holm [1986]) Eq. (2.17)]

ks

vV =T V, = v

-1

*
where n_v

= tn”! . - ; .
e T '1'r|t o Y o Ny denotes the pull-back of the vector field Y.
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Thus, we define convective quantities, in general, as pull-backs of
the corresponding spatial quantities, i.e., if gc is a coavective vector
quantity on D, it is defined from the corresponding vector spatial quantity

2z, in terms of the motionm n, by

o

2 =

S T N2, (4.8)

The pull-back here is understood to be defined on the class of objects that

z, defines, e.g., if z_ is a vector field, n; denotes pull-back of vector

t

*
fields and if 2z  is a tensor of a given type in D, then N, denotes the

t
pull-back operation on that type of teasor.

Now let us return to the invariance properties under the spatial

diffeomorphism group Diff(IR3). If 2, is a teasor field on IR3, the

diffeomorphism A € Diff(IR3) induces the push-forward action on z,.

Therefora, the convective quantity corresponding to A*gt is

A * - *A* - ® -
(A o) Aze =0 A Az, 202, =2,

%2 St

i.e., convective quantities are invariant under the action of Diff(IR3) on

teasor fields defined on C.

Summarizing, in the language of Section 2 we have two groups
G = Diff(D) and G = Diff(IR°), which act from the right and left,

respectively, on the manifold B = C. The quotieat C/Diff(D) is ideatified

with the manifold M of unparameterized embedded boundaries of D ia IR3

because the Diff(D)-orbits in ¢ coincide with the set of images of D in

IR3. The other quotient N = G\B = Diff(IRa)\C is a point. This is seen in

the following manner. If n and n' are elements of C, then ' , n'l is a
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diffeomorphism of n(D) with n'(D). Now let A € Diff(IR3) be any
diffeomorphism which on nN(D) coincides with n', so that ' = A , n. This
shows that C is a single Diff(IR3)-orbit.

So far, we have half of the set-up of Section 2. To obtain the other
half, let C = {ﬁlﬁ is a diffeomorphism from a region in IR3 to D} and set
. Then G = Diff(IRs) acts oa C by composition oam the right and

B =
G = Dif£(D) action C by composition on the left. Therefore, G acts on B on

(= (21

the right and G acts on B on the left. The quotients M = B/G = E/Diff(IR3)
and N = G\B = Dif£(D)\C are, respectively, a point and the images of

boundaries of D in IR3. Finally, let's choose the diffeomorphism

w=%:n6c+n'led , (4.9)

and observe that the commutation relations (2.1) and (2.2) of Sectiocnm 2
hold. Thus, we have now all the hypotheses of Seg;ion 2. However, even in
the simplest examples, the Hamiltonians of interest depeand on parameters;
so we must apply the general theory of Sectiom 3 to each specific example
separately. As we shall see, all these examples have enough special

structure to enable us to write down their Poisson brackets explicitly.
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S. THE HEAVY TOP

In chis section, we apply the results of Sections 3 and 4 to study the
motion of a rigid body about a fixed point. We shall deduce here the
equations of motion both in the coavective (also called "body") and spatial
pictures. The formulas we shall use are givem in the Appendix to
Section 3, since the nature of the problem summons left representatioms.
As a by-product of the differeat formulatioas of the equations, we shall
gain some insight into the complete integrability of various cases of the
heavy top, including the cases of Lagrange and Kovalevski.

5.1 The Material Phase Space

A top is by definition a rigid body moving about a fixed poiat in
three dimensional space. Rigidity of the top implies that the distances
between points of the body are fixed as the body moves. This means that if

the configuration x(X,t) represents the position of a particle that was at

£ when t = 0, then
x(X,t) = A(e)X , i.e. , xi = A}(t)xJ y 1,3 =1,2,3, sumon j , (5.1)

where A(t) = A}(t)) is an orthogonal matrix. Since the motion is assumed
to be at least continuous and A(0) is the identity matrix, it follows that
det(A(t)) = 1 and thus A(t) € SO0(3), the proper orthogonal group. Thus,

the configuration space of the heavy top may be identified with S$SO(3).
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Consequently the phase space of the top is the cotangent bundle T*(SO(3)),

which will be described shortly.

In this example, convected, or body coordinates are easy to visualize.
Let E.» §2, §3 be an orthonormal basis relative to which material
coordinates X = (Xl,Xz,X3) are defined and e, €y» &3 be an orthomormal
basis associated to spatial coordinates. Let the time dependent basis §1,

&y &3 be defined by

£; = A(t)E,

so the §i move attached to the body. The body coordinates of a vector in

3 are its components relative to §i. For v € IR3, its spatial

IR
coordinates v' are related to its body coordinates vJ by

vh = alyd ,
where A; is the matrix of A relative to Ei and e, - Of course the
components of a vector V relative to E, are the same as the components of

AV relative to §i' In particular, the body coordinates of x are ol

Euler angles are the traditional way to express the relationship

between space and body coordinates, i.e., to parameterize SO0(3). In what
follows, we shall adopt the conventions of Arnold [1978) and Goldstein
[1980], which are different from those of Whittaker (1917].

One can pass from the spatial basis [CTPRN-T e,) to the body basis
(&, &> §;), by means of three consecutive counterclockwise rotatioas
performed in a specific order: first rotate by the angle ¢ around &, and

denote the new position of e, by ON (line of nodes); them rotate by the
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angle @ around ON; and finally rotate by the angle -¢ around §3 (see
Fig. 1). Consequently 0 S ¢, ¢ < 2t and 0 £ 8 < n. Note that there is a
bijective map between the (¢,y,8) variables and SO0(3). However, this
bijective map does not define a chart, since its differeatial vanishes, for
example, at ¢ = ¢y = 8 = 0. The differeatial is nonzero for 0 < ¢ < 2w, 0 <
g < 2n, 0 < 8 < n and on this domain, the Euler angles do form a chart.
Explicitly this is givea by (¢,4,8) » A, where A is uniquely determined by

x = AX and has the matrix relative to § and e, given by

cosy cosd - cos® sind siny cosy sind + cos® cosd sind sin@ sinoy
A = Psiny cosd - cosO sind cosy -siny sind + cos6 cosd cosy sin cosy|.

sin® sin¢ -sinf cos9 cosB

With the aid of the chart given by Euler angles we induce a natural
chart (¢,w,6,$,¢,é) on the tangent bundle T(SO(3)) of the proper rotatioa
group SO(3). Then, using a Legendre transformation given by a certain
metric on S0(3) uniquely determined by the mass distribution of the top, we
will define a mapping to the natural chart (¢,¢,6,p¢,p¢,pe) on the
cotangent bundle T*(SO(B)) which is the canonical phase space. This will

be done below.

e £
- 2l

Fig. 1. Definition of Euler Angles.
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5.2 The Lie Algebra so(3) and Its Dual

In order to simplify the computations and identify the geometric
structure of the Hamiltoaian of the heavy top, a summary of the Lie algebra
s0(3) and its dual is needed.

The proper rotation group SO(3) has as Lie algebra the 3x3

infinitesimal rotation matrices, i.e., the space so0(3) of 3 x 3
skew-symmetric matrices; the bracket operation is the commutator of

matrices. The Lie algebra so(3) is identified with IR3 by associating to

the vector v = (vl,vz,v3) € IR3, the matrix 2 € so(3) given by
0 -v3 v2
v = v3 0 -yl . (5.3)
-v2 vl 0

Then we have the following identities:

(uxv) =[d4,¢] |, (5.4)
dry=uxy , (5.5)
(8,9] ~w=(uxv) xw , | (5.6)
wey=-2Te@® = 2 ET) (5.7)

AY

Moreover, if A € SO(3) and v € IR3, then the adjoint action (conjugation)
is given by
(Av) = Ad, ¥ : = A"l . (5.8)
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Consequently, since the adjoint action is a Lie algebra homomorphism, for

all A € S0(3), w and v € IR3 we recover the vector algebra identity

A(u x v) = Au X Av . (5.9)

In what follows we shall identify the dual so(3) with IR3 by the

~ * -~
inner product, i.e. m € so(3) correspoands to m € IR3 by a(v) =m - v, for

all v € IR3. Then the coadjoint actiom of SO(3) om so(3) is represented

3

by the usual action of SO(3) omn IR”, i.e.

Ad m
Al T

Am (5.10)

since (A-I)T A.

5.3 The Hamiltonian

The material velocity at a point X in the body D is [by Eq. (5.1)]

v(%,t) = 3x(X,t)/3t = A()X , : (5.11)

so that the spatial and convective velocities have the following

expressions, respectively

v(x,t) = 3x(X,t)/3t = V(X,t) = A()a(e) 'x (5.12)

V(Z,t) = - 3(z,t)/3t = a(t) "tACR)A(e) s

a(e) tA)E = A TNV, B = A THe(x,e) (5.13)

Let D denote the refereace configuration of the body, a compact regioa
of IR3 with piecewise smooth boundary. Let po(g) denote the density of the

body in the reference configuration. Then the kinetic energy at time t is,
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by (5.11), (5.12), (5.13), and the invariance of the Euclidean norm under

50(3),
K(t) = 1 g P () 19(x,t)1% (material) (5.14)
=30 pyal®) ) lvix,0)1? &k (spatial) (5.15)
A(e),
= % g po(g)IV()_(,r.)l2 d3§ . (coavective) (5.16)

Differentiating A(t)TA(t) = Identity and A(t) A(c)T = Identity, it follows
that both A(t)-lé(t) and A(t)é(t)-l are skew-symmetric. Moreover, by
(5.5), (5.12), (5.13), and the classical definition of angular velocity, it

follows that the vectors we(t) and wp(t) in IR? defined by

A(WAa)™ - (5.17)

g (t)

i (t) ae) Yy (5.18)

are the spatial and body angular velocities of the top, respectively. Nota

. -~ - - "1
that gs(t) = A(t)ga(t), or as matrices, We = AdAmB = AgBA . In the Euler
angle parametrization (5.2) of SO0(3), Egs. (5.17), and (5.18) for we and Wy

have the following expressioans

8 cos¢ + $ sing sind 8 cosy + $ siny sind
és =| 8 sing - § cosd sinb y Wy = -8 siny + ¢ cosy sin6 . (5.19)
$ + & cosf $ cost + ¢
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Since Py is independeat of time in (5.14) and (5.16), the kinetic
energy can be expressed in a simple manner in the material and reference

configurations (convective represeantation). We have by (5.5) and (5.16),
1 2 3 ,
K(e) =5 J Pg (B lug(e) x X% 47X . (convective)  (5.20)
D L)

Using (5.19), the kinetic energy of the body is a function of (¢,¢,8,$,@,é)

or of Wy . To give it a more familiar expression, introduce the following

inoner product on IR3,

<a,p> : = [ p,(0(ax X - (bxKX , (5.21)
D

completely determined by the deasity po(g) of the body. Then (5.20)

becomes
K(ga) = % <EB’ wp> . (5.22)
Now define the linear isomorphism I:IR3 - IR3 by Ia‘b = <a,b > for all

a,b € IR3; this uniquely determines I, since both the dot product and <,>

are non&egenerate bilinear forms (assuming the rigid body is aot
concentrated oan a line). It is  clear that I is symmetric with respect to
the dot product and is positive. To gain a physical interpretation of [ we
compute its matrix. Lat (§1,§2,§3) be an orthomormal basis for material

coordinates. Thus,

- [ poxixiax , i i #
D
I =(IE)-E =<E,E>= (5.23)

[ oo xl® - xhPeakx o if 1=
D
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which are the expressions of the matrix of the inertia teasor from

classical mechanics. Thus I is the physical inertia tensor. Since it is
symmetric, it can be diagonalized; the basis in which it is diagonal is a
29 I3 are the
principal moments of intertia of the rigid body. In what follows we work

principal axis body frame and the diagonal elements Il, I

in a principal axis body frame (coavective representation).

To define the kinetic energy (5.22) as a function on the dual Lie
algebra so(3)* = IR3, we must take into account that so(3)* and IR3 are
identified by the dot product and not by the pairing <,>. Coasequently,

the linear functional <w,, > on so(3) = IR? is identified with Iwp : =m €

so(B)* z IR3 since m-a <gB,g> for all a € IR3. Heace (5.22) becomes, for

I= diag(Il,Iz,I3),

-
NN
w N

m-Im =g : (body) (5.24)

N
+
HI B8
~N
+
S
o

VK(g) =

N

%
which represents the expression of K om so(3) . Note that m = IgB is the

angular momentum in the body frame.

By the second formula in (5.19) and the definition of m for I =

diag(II,I I3), the angular momentum is expressible as

2’

[ I1($ sin® siny + 8 cosy) ]

18
]|
}

I2($ sin® cosy + 8 siny) . (5.25)

13(& cosf + ﬁ)

Eq. (5.25) expresses m in terms of coordinates on T(S0(3)). Since T(SO(3))

%
and T (SO(3)) are to be identified by the metric defined as the left
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translate at every point of <,>, the canonically conjugate variables
(p¢, pw, pe) to (¢,9,8) are given by the Legendre transformation Py =
3K/3¢, By = 3K/ 34, Py = 9K/36 of the kinetic emergy on T(SO(3)) which is

obtained by plugging (5.25) into (5.24). This produces the staadard

formulas
p¢ = Il(ﬁ sinf siny + 8 cosy)sin® sing
+ Iz($ sinf cosy - 8 sing)sin® cosy + I3($ sind + §)cos8 ,
Py = I3(0 cosé +4) (5.26)
Py = Il($ sin® siny + 6 cosy)cosy - I2(6 sin@ cosy - 8 siny)siny

whence; by (5.25),

[(p¢ - p¢cose)sin$ + pasine cosy)/sin@]
m = [(p¢ - pwcose)cosw - Pg sin® siny]/sind] | . (5.27)
Py
Consequently, by (2.24) and (5.27) the coordinate expression of the kinetic

energy in the material picture becomes

[(p¢ - é& cos8)siny - Pg sinb cosdl]2

K(9,%,8,p4,p,,,Pg) = % {

. 2
Ilsln 8
[(p¢ - Py cos8)cosy - Pg sinf sinwlz Pi
+ 5 + I—- y (5.28)
Izsin 8 3
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or ianvariaatly, from either (5.24) via (5.18) or , (5.28)
1 -1; -1 . <
K(A,A) = - Z Tr(IA "A A "A) . (material) (5.29)

To find the expression of K in spatial coordinates, observe - ¢ by

(5.8), (5.17), and (5.18) we have
wp(e) = A(e) lug(e) -,
so that defining
Ig(t) = A(t)IA(E) ™! (5.30)

yields the expression of the momentum in the Eulerian picture

gs(t) = Is(t)ms(t) = A(t)m(e) . (5.31)

Therefore, by (5.24), the expression of the kinetic energy K in the spatial

picture takes the form

Rlag, I) = 5 mg + I'mg . (spatial) (5.32)
The potential energy U for a heavy top is determined by the height of
the ceater of mass over a horizontal plane in the spatial coordinate
systems. Let £ denote the vector determining the ceater of mass in the
reference configuration (i.e. the body frame at t = 0), where X is a unit
vector along the straight line segment of length £ connecting the fixed

point with the center of mass. Thus, if

71



M=f du(x)
IR

is the total mass of the body, g is the gravitationmal acceleration, and k
denotes the unit vector along the spatial 0z axis, the poteantial energy at

time t is

U(t) = Mgk + A(t)ly = Mg2A 'k - x = Mgly -+ x = Mglk - A ,
where Y = A-IE and A = AY. Consequently,
U = Mglk - Ax (Lagrangian or material) (5.33)
= Mglk - A (Eulerian or spatial) (5.34)
= Mgy - X * (convective or body)" (5.35)

Summarizing, we have the following expressions of the Hamiltoniaa in

the material, body, and spatial picture:
H(A,A) = - 7 Tr(Ta™'AA774) + Mgk - &) , (macerial) (5.36)
or in the chart given by the Euler angles,

1 [(p¢ - Py cos8)sia¥ + pe-sine c95¢]2

H(¢$¢verp P ,P ) =3
LAk 2 Ilsinza
. . 2 2
[(p¢ - Py cos@)cosd - py sind sin¥] p
- N S Mgl cosb , (5.37)
. 2 I
1251n 8 k]
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13 121 1 -1
H(m,y) =5 Z - +M482y;=3m -1 'm+Hgly, , (body) (5.38)
=1 7]
1 -1 :
H(mg,Ig,A) = 7 mg * I 'mg + Mgk - A . (spatial) (5.39)

The formulas below summarize all relationships between the variables (m,Y)
in the convective picture and the variables (¢,¢,9,p¢,p¢,pe) in a chart

given by the Euler angles in the material picture:

1 [(p¢ - Py cos@)siny + Pg sin® cosy)]/sind Il($ sin® siny + & cosy)

[(p¢ - pw cos8)cosy - Pg sin® siny}/sin® 12(6 sin® cosy - 6 siny)

B
]
H

= I3($ cosf + &)

a8
(%]
"

Py

Y, T sin® siny

YZ = 3in@ cosy

Y3 = cosf

=m Y= Il(é sin@ siay + 8 cosy)sin® siny + .
Iz(é sin® cosy - ésin¢)sin6 cosys + 13(6 sin® + {)cosH

m, = 13(6 cos® + )
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Pg = (Yzm1 - Ylmz)/Jl - Y§ = Il(é sin® siny + 8 cosy) cosy

- Iz($ sinf cosy - 8 siny)sinyg

.1
¢=—- +
Mi-y) 1-4 :

O e R S w17
) 2
3 Il(l Y3) IZ(I - ‘{3)

L =
1}
7

o O S 14

IlJi - yg IZJI - yg

Do
]

" There are similar relationships between (¢,¢,6,p¢,pw,pe) and (QS, IS' A)
which will not be used in this paper. |
Note that the Hamiltonmian H in the material picture (5.36) depends on

3 x 52(1R3) x IR

three parameters: (k, I, Mg2x) € IR , where SZ(IR3)
denotes the symmetric covariant two-tensors oan IR3. Therefore, in the
spirit of Section 3, we take the material phase space of the rigid body

motion to be the Poisson manifold

3 3

7°50(3) x IR x 52(133) x IRS

where the last three factors are thought of as trivial Poisson manifolds.
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5.4 Heavy Top in Convective Picture

We begin by studying the invariance of H in (5.36) under the left
action of the group S0(3) oa T*SO(B) x IR x Sz(IRB) x IR3. Recall the
action of SO0(3) on IR3 is given by the usual left multiplication x -+ Ax,
A € 50(3), x € IR3 and on Sz(IR3) by S » ASA-I, S € SZ(IR3). If B € SO(3)

is time independent, we have by (5.36)

- 3 Tr(1a™'87'BAA 187 15A) + MgeBK - Bay

H(BA, BA, Bk, I, X)

- 2 Te(1a"'aaThA) + Meok - Ay

H(A,A,k,I,X) ,

i.e., H satisfies the left version of the hypothesis in Theorems 3.2 and
3.3(i). Therefore, the motion in body coordinates takes place on (T*SO(3)
x IR x 5,(IR%) x IR)/S0(3) = [(s0(3), @ 8% x sA(R% x R3] where
(IR3)* is identified with IR3 via the usual dot-product and Sz(IR?) denotes

the coatravariant symmetric two-tensors on IR3

dual to SZ(IR3) via the
pairiag:(I,T) € S,(IR%) x S2(1R%) » - 1 Te(IT) € IR (see Theorem 3.1(i)).
Consequently, the motion of the heavy top in the coavective picture is

given by the Hamiltomiam (5.38) with respect to the Lie-Poisson bracket

{F,G}(m,Y,I,X) =~ a * (Eéf x EEG) - 1'(22F x §.6 + V. x ZEG) , (5.40)

where V  and ZX denote the gradients with respect to m and y, respectively.

To write the equations of motions explicitly, we first note that

6 : so(3) » Ead(IR%) is given by ¢(¥)x = § x = y x x, for x, y € IR3, so
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3

that via the identificaticas of so(3)w wich IR and (IR3)* with itself, we

have

*

¢(2)*1=§><1=¢ X

1%

1€ F:{(s0(3) @ IRY) x s2(1R%) x R3] » IR, we have:

=9VF

-l ’

L]

= (Y'LF) )

<15

(5.641)
so that the equations of motions are obtained by (3.12L) and Theorem 3.3(i)

weMgyxy , )

8.
[}

18
X

(O3
L]

=<
X

w o,

P (5.42)

—de
-0
o

.
L]
o
—

since YEH= w, ZIH = Mgy, y = A-lg, and H given by (5.38), i.e.,
H(am,y,1,k) = -21- n-Ilg+ Mgly,.
The Casimir fuactions of [(so(3) ® IR3) X SZ(IR3) X IR3]: are given by

the invariant functioans on (so(3) @IRa)” under the coadjoint action

ad”  _ (m,y) = (Am + u x Ay, AY) (5.43)
(A,u)

plus all the functioas that depend only on (I,x). Therefore, these Casimir

functions are givea by Cl(g,lll,z,x) = 3(12), Cz(g,j_,l,l) = b(m-y) where

a,b:IR +- IR are arbitrary smooth functions, plus aine other functioens

depending respectively on the six invariants of I and the three coordinates

of X. The generic symplectic leaf is four dimeansional and equals the
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generic four-dimensional coadjoint orbit Orb(m,Y) of (se(3) (3 IR3): By

(5.43), this orbit Orb(m,Y) coatains a point of the form (m',1ylk), so we
%

may think of Orb(m,y) as being obtained by reducing T SO(3) by the circle

S1 of rotations leaving the spatial Oz-axis fixed. (See the Remark

following Theorem 3.1.) The equivalence S0(3)/S! 2 s%, implies that

* -~ -~
Orb(m,y) is symplectically diffeomorphic to (T Sz, wy = B) where B is the

lift to T S° of the following closed two-form B on 52: n“B = da, where
*

a(A) = (A,lylk) in the right trivializatiom of T SO(3) = SO(3) x IR%, and
n:S0(3) » 52 is given in terms of Euler angles by n(¢,¥,8) = (¢,8). The
degenerate two-dimensional leaves are characterized by Yy = 0 and they are
spheres in IR3. In fact when Yy = 0 for fixed (I,X), one obtains the

. . . * 3
Lie-Poisson manifold so(3)_ = IR".

5.5 The Heavy Top in Space Coordinates

To study the equations of the heavy top in the Eulerian picture, we
again apply the theorems of Section 3.4. First, we have to investigate the

invariance properties of H in (5.36) under the right action of S0(3) oa

3

T'S0(3) x IR’ x 5,(1R%) x IR>. We have for any B € SO(3)

H(aB,AB, k, B7'1B, B™'y) = - } Tr(8"'1BB " isB" A" 4B)

+ Mg k - ABB !y

)

H(A,A, k, I, X) ,

i.e., H satisfies (3.43L) and thus the motiom in space coordinates takes

3

place on SO(3)\(T S0(3) x IR x 52(1R3) x IR = {[s0(3) @ (S2(IR%) «x

*
IR%)] x IR}, by Theorems 3.1(ii) and 3.3(ii). Under the map (a,, k, T, x)
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€ s0(3)" x IR

3

3 3 = ) -1 *
x §,(IR%) x IR° = (T R,(a,), k, AIA"',AX) € so(3)" x IR’ «
Sz(IRa) X IR”, the Hamiltomian (5.36) is easily seen to transform iato its
expression in space coordinates (5.39). The Lie-Poisson bracket on

[(s0(3) @ (s2(1R%) x 1’%)) x 1R%]] is given by

On|On
(11}
w

(F.6l(ag. I Ak =mg + (T, Fx T,

G) + Te(I([(V F) -
S S S,

5

° _ &F
- (T, @ ET;])) +A (Yg FxV6+Y7 GxUF)

A

=S S =5 -
Siace
vV H=I-ln. = uw 7.H = Mgfk and SH_ . we X W (5.44)
mg s "% A 852 8~ 5 s '

where a & b represents the symmetric matrix whose - entries are aibj'

Therefore, by (3.12L), the equations of motion are

%t

. v
o = Tp s X o lary sl L x 2
Ig = ((v, Bg) LIl

S

1>
[]]
q
e ]
x
I>

&
"
o
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and where v : so(3) =» IR3

is the inverse of the Lie algebra isomorphism
A direct computation shows that [wg X wg, Is]v = mg X wo so that the first
two terms in the top equation of (S5.14) cancel by (5.44). Therefore, the

equations of motion of the heavy top in the Eulerian picture have the

expression

o )
w
[
ro—
4
(7]
IE »
w
—

(5.46)

fxce
[[]
o

where mo = Iowe.
The Casimir functions on the Poisson manifold {[so(3)(®) (SZ(IR3) X

*
IR3)] x IR3} 4+ are given by the functions invariant under the coadjoint

action of the Lie group S0(3) (® (SZ(IRs) x IR3) which is given by

* - -
ad (me,IcoA) = (Ame,u x AN + (J, AIA™YY , a1a™lan) . (5.47)
-1*=8'"s'= -S’= - S S -
(A,J,u)
Let Mis nz, n3 be the three invariants of the matrix IS' Since they are

invariant under conjugation, they are invariant under the above coadjoint

action. Consequently, these give Casimirs. There are in fact six in all:
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C (m ssA k) = ¢2(ﬂ2) )

C (msl S,A E) ¢3(n3) ’

(5.48)

C,(mg. T, k) = 0, (1A%,

c (mS’ st 5) ¢5((Is§) ‘ é) ’

i"

2
Cqlng, IgAk) = 0, (ITAIS)

where ¢i:IR + IR, i = 1, *++ ,6 are arbitrary smooth functioms. To these,
one has to add. another three additional Casimirs corresponding to the
trivial Lie-Poisson structure of IR3, namely three arbitrary functioas of
each coordinate of k. Note that all these nine Casimirs are."uondyuamic",
i.e. they do not involve g - For the specific Hamiltomian (5.39), cthere
is, however, an additional integral Bg k, the momentum of the top about
the Oz-axis. The generic symplectic leaf of {[so(3)\@® (SZ(IR3) X IR3)] X
IR3}i is six dimensional and by the remark following Theorem 3.1 it 1is
symplectically diffeomorphic to T*SO(B) with the canonical symplectic

structure (because Al = I., AA = A has generically ouly A = ideatity as
g ML

a solutiomn, i.e., a = {e} in the general theory). Now reducing at mg k
by the corresponding circle action yields again T”S2 with a noncanoaical

symplectic structure as in the study of the heavy top equations in the

convective picture.
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5.6 Completely Integrable Cases

We first investigate the complete integrability of the heavy top
equations in the material picture. Via the Reconstruction Method (Abraham
and Marsden [1978], p. 305), it suffices to study the complete integrabil-
ity of the convective (5.42) or the Eulerian (5.46) equations of motion on
the generic symplectic leaf of the corresponding Poisson manifold.

(a) Euler case: free rigid body, i.e. Yy = 0. We already saw that if
Y = 0, the degenerate leaf in [(so(3)C)IR3) x SZ(IR3) X IR3]i (convective
picture) is a sphere. Since the Hamiltonian (5.38) is conserved, this
makes the free rigid body equations completely integrable.

(b) Lagrange case: I1 = IZ’ X = (0,0,1), a symmetric top whose
center of mass lies on the axis of symmetry. One can deal with this
problem in several ways. The symmetry of the top has as a consequence the
existencé of ‘a second Sl-action, namely, rotations about the symmetry axis
of the body. The associated momentum map is computed to be equal to 5,
the third component of m. Thus, on the generic four-dimensional leaf T*S
one has the Hamiltonian (5.38) and L which are easily shown to
Poisson-commute under the bracket (5.40). It turns out that the equations
for the Lagrange top have a second Hamiltonian structure derivable from a
Kac-Moody type extension of so(3) and that its complete integrability can
be shown to follow from the bi-Hamiltonian character of the equations of
motion. See Ratiu and van Moerbeke [1982) and Ratiu [1982] for this
approach and its generalization to n dimensions.

Next, we shall show that the Lagrange top equations are integrable by
using the Eulerian picture. The main idea is the following. Since in

space the equations for the moment of inertia temsor IS and the center of
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mass unit vector A are noatrivial, ome can ask whether the Lagrange top
conditions define a degenerate four-dimensional symplectic leaf. If this
occurs, one has Hamiltonian equations of motion on a four-dimensional
symplectic manifold on which we have the Hamiltoniam in space coordinates
(5.39) and the momeatum about the Oz-axis mg k as commuting, generically
independent, conserved quantities. This would then prove the complete
integrability of the Lagrange top.

Thus, comsider the twelve dimensional Lie-Poisson submanifold [so(3) ®
(s?(1R%) x IR®)]] defined by k = (0,0,1) of {[s0(3) @ (S2(IR%) x 1RY)] x
IR3}*. Compute the isotropy subgroup under the coadjoint action (5.47) of
the point (gs,Is,é), with Is being a diagomal matrix of the form
Is = diag(a,q,Y) and A = (0,0,1). Using the Euler angle formula (5.2), the
relation AA = A implies that 8 = 0, i.e., that A is a rotation by the angle
¢ + ¢ in the plane defined by 6 = 0. But then automatically AISA.1 = IS
since the diagomal matrix Is has the (1,1) and (2,2)-entries equal.

Therefore, the equations that defihe the isotropy subgroup of (gs,Is,é) are

g=0 |,

mlcos(¢ + ) + mzsin(¢ + ) + u, + J23(A -C)=0 , (5.49)
-mlcos(¢ + ) + mzsin(¢ + ¢) - u, + J13(C -A) =0 ,
whera

(&, 1, w) € 50(3) @ (s3(®%) x 1Y)

6

and A is given by (5.2). The last two equations define a map IR =~ IR?

whose Jacobian matrix has rank 2. Therefore, by the implicit functien
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theorem, the set of (¢, ¥, u;, u,, J13, J23) € IR6 satisfying the last two

equations is a four-dimensional submanifold of IR6. Thus, for (A,J,u) €

S0(3) x SZ(IR3) X IR3 fixing (gs,Is,A), the only other free parameters left

J J

are: 110 J22° J33, le. Hence, the dimension of the isotropy group

uq,
is 8, i.e., the orbit is four dimensionmal. This proves the Lagrange top is
integrable.

To obtain the secondary Casimirs (Casimirs on the degenerate orbits),

observe that by (5.47), the quantities

1A (5.50)

2 s © ‘sd

Bs ° A aud o

would be invariant under the coadjoint actiom, if

(3,171 - ma =0, (5.51)
(3,a147117 - AL A = 0 (5.52)
(ax 8A) + AIA = 0 (5.53)

for all J € S2(IR%), u € IR>, and A € SO(3). The first relation (5.50) can

be written equivaleatly as

(3,15)7 - A =0

where 3 =‘.A'1

JA. The computation leading to (5.4y, shows that if
Is = diag(Il,Il,I3), then [3,Is]v has zero third componeat. Consequently,
if in addition A = (0,0,1), then (5.51) holds. One proceeds similarly to

prove (5.52). Finally, (5.53) is equivalent to
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AxIA) -alu=0 ,

which clearly holds for our choice of Ig and A since then already A x IcA =

S
0. To get from (5.50) quantities in the convective picture, recall that

mg = Am, A = AY, so that

g *A=m - X=@y ,

in the case of the Lagrange top. Also m - Isé = 13m3, since I, = aIa™’.

S
Thus my, the Lagrange integral, is a "secondary" Casimir in the spatial

picture.

(¢) Kovalevski Case: I1 = I2 = 213, x = (1,0,0), i.e., the top is

symmetric with a very special shape along the third principal axis and the

center of mass lies in the plane of the two pfincipal moments of inertia.
It is an outstanding curreat problem to explain the complete integrability
of this top by symplectic means. The usual aveﬁues of finding a second
Hamiltonian structure using a Kac-Moody extension do not work here. In
fact, the more general question of finding a second nonlinear Hamiltoaian
structure is still open. Let us apply the philosophy of the previous
example to this case, i.e., let us compute the isotropy group of the
coadjoiant action of SO0(3) s (SZ(IR3) X IR3) at a poiat (gs, IS’ A) with
I, = diag(2a, 2a, a), A = (1,0,0). A direct computation shows that the

S

elements of this isotropy group are all of the form

1 00 Jiy 375 J u

11 12 13 1
0 ¢ O , le 322 0 , -(1 - e)ms3/2 (5.36)
a (1 - g)
0 0 = Ji3 0 I35 7913 " T o5y |
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for £ = #1. This is clearly six-dimensional, coordinatized by CITTRRIPY
J13, J22’ 333, ul). Therefore, the Kovalevski top in space coordinates has
as phase space onme of the generic leaves of our Lie-Poisson manifold and
the trick that works in the Lagrange top case, fails here. We recall,
. however, that the Kovalevski top is completely integrable, the second

%
integral on a generic leaf T S2 in the coavective picture being given by

2

. 2 . . -
(m2 + lml) - 4H32131(yz + 171) (5.55)

Kovalevski has shown that the three cases we mentioned above are the only
completely integrable cases of the heavy top equations admitting polynomial
integrals of motion. Ziglin ([1981], (1983] has extended this result by
showing that these are the only completely integrable cases admitting
meromorphic integrals. |

The nature of the Ko;alevski integral (5.55) remains to this day one

of the outstanding problems in the theory of completely integrable systems.
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6. IDEAL COMPRESSIBLE ADIABATIC FLUIDS

The results of Sections 3 and 4 are now applied to the equatioas of
motion of an ideal, compressible, adiabatic fluid in a fixed regioa D IR3
with smooth boundary dD. Starting with this example, all coaventioas are
the same as in the main body of the text in Section 3, ogamely group

representations are by action on the right.

6.1 The Material Phase Space

Let D be a compact region in IR3 with smooth boundary 3D. 1In
accordance with Section 4, let C be the space of configurations of the
fluid, i.e., the spaca of orientation preserving smooth embeddings of D
into IR3. Since we assume the boundaries are fixed, the images sf these
embeddings are all subman?'.folds of D. Let us make.the simplifying physical
assumption that cavitation and infinite density are excluded. Thus,
CCDiff(D), the group of diffeomorphisms of D.

As in Section 4, we shall denote material points by capital letters ¥
and spatial points by lower case letters x. Given the mass deasity po(g)
and specific entropy co(g) of the fluid in the refereace coanfiguration,

both functions of X, denoting by J_ (¥X) the Jacobian determinant d3§/d3§ of

n
the motion N, at X, we shall see in this section that the mass deasity

P, = p(+,t) and specific entropy g, = o(+,t) satisfy {[cf. Holm [1986]

Eq. (A.1)]
p(§,t)Jnt(§) = pg(X) and a(x,t) = 0,(X)
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Consequently, the Eulerian mass density p and eatropy G are completely
determined by the motion, given initial conditionms po and oo, respectively.

Hence, the configuration space of compressible fluid flow with a given mass

and entropy demsity in the reference configuration is the group of diffeo-

morphisms Diff(D) of D. Coansequently, the phase space is the cotangent

*
bundle T (Dif£(D)).
For later reference, we summarize here the relationship between the
Lagrangian (V,.), Eulerian (gt) and coavective (V. ) velocities for a fluid

motion in a domain with fixed boundary in the following diagram:

Tn

t

d

= TD
I

D —» D
The vertical arrows in this diagram are vector fields, whereas Ve is a

vector field over nt, i.e.,

v, (X) € T (X)D

Next we turn to the study of the configuration space C = Diff(D)).

6.2 The Lie Group Diff(D) and Its Lie Algebra X(D)

There are two ways in which Diff(D) can be made into a Lie group. The
most obvious ome is to coasider only c® diffeomorphisms. It turas out that
in this way Diff(D) becomes a Fréchet manifold, i.e., its model space is a

locally coavex, Hausdorff, complete vector space. Composition of
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diffeomorphisms and taking the inverse are smooth operations, so Diff(D)
becomes a Fréchet Lie group (see, e.g., Ebin and Marsdea (1970]). The main
drawback of this approach is that in Fréchet spaces special hypotheses are
needed for inverse functioa theorems to hold; the same is true of existence
and uniqueness theorams for integral curves of differential equations.

The second approach is to use diffeomorphisms of Sobolev or Hélder
class. It turns out that if the Sobolev class W°'P or Hilder class c5'¥ is
high enough so that such diffeomorphisms are at least Cl, then they form a
¢” Banach manifold and one has the usual existence and uniqueness theorems
for solutions of differential equatioms. Unfortunately only right
translation is smooth, whereas left translation and taking inverses are
only coatinuous. Thus W°'P Diff(D) (or Ck+°-Diff(D)) is now a topological
group, which is a Barach manifold on which right translatioa is smooth.
One may noé make Diff(D) into a "Lie" group by taking the inverse limit as
the differentiability class goes to ® (Ebin and Marsden [1970], Omori
[1974]).

We next determine the tangeat space Tn(Diff(D)) of Diff(D) at n. Let
t -0, be a smooth curve with Ny = N- Then (dnt/dt)lt=0 is, by definition,
a tangent vector at n to Diff(D). If X € D, thea t - qt(§) is a smooth

curve in D through n(X) and thus

dn, (X)

de €

t=0 Ta)?

where Tn(X)D is the tangent space to D at n(X). Consequently we have a map
€D~ (dqc(g)/dt)|t=o € TH(K)D’ i.e., (dnt/dt)|t=o is a vector field over

n. Thus,
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Tn(Diff(D)) =(v, :D~ TDIYn(g) €ET D) . (6.1)

LA n(K)

In coordinates, if X = n(X), then Yn(g) = vi(g)(a/axi).
In particular, if e denotes the identity map of D, then Te(Diff(D)) =
X(D), the Lie algebra of vector fields on D. One computes that the Lie

algebra bracket of X(D) is minus the usual Lie bracket of vector fields,

i.e., (U,v]" = vicaut/axd) - ud(avi/axi). Thus, the Lie algebra of Dif£(D)

may be identified with X(D), with the negative of the usual Lie algebra

structure.

To determine the dual of X(D) and the cotangent bundle of Diff(D), we
take a geometric point of view. Instead of considering the functional
analytic dual of all linear continuous functionals on X(D), we will be
coﬁtent to find another vector space X(D)* and a weakly onondegenerate

pairing

<,>: XD xX(D) » IR ;

this means that < , > is a bilinear mapping such that if (M,V) = 0 for all
%

Ve xX(D), then M =0. Clearly X(D) is a subspace of the functional

analytic dual. With this definitioa, it is easy to see that X(D)

consists of all one-form demsities on D, i.e.,

x0)" = Al x A3y . 6.2)

The notation in (6.2) is the standard one: Ai(D) denotes the set of all

exterior i-forms on D and |A3(D)I denotes the densities on J. Thus, a
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3

one~form deasity is of the form ad X with a a3 one-form on D, so locally it

is (ai(g)dxi)d3§. The pairing < , > between X(D)* and X(D) is
ad’, > = [ a(v) g ¢’
D

or in local coordinates,

[ a, v ey
D *° -

Finally, in view of (6.2), T (Diff(D))comsists of all one-form

densities over n, i.e.,

*o - oot 3 * 3
T (Diff(D)) = (3, : D> TDE IA (D] 13 (%) € rq@D@lAg(D)l) . (6.3)

This mean: that 3(1 = .§ﬂd3§, where gq 1:.5 a one-form o'ver n on D, i.e.,
5 (D) € rncg)n. Locally, 3, = (4 (@dx")d’X, vhere (x') = £ = n(%) and
En(g) = §i(1_()dxi. We shall denote the action of one~forms £ over n on
vector fields Zq f:ver n by gq(y_q); the result *is a function of X which
locally equals giv‘. The pairing < , > betwaen T;'(Diff(D)) and Tn(Diff(D))

is given by

< V>= v
SR g £qlq @4

locally this has the expression [ §i()_()!1(}_(_)d3§.
- D

Left and right translations are defined by the composition of maps,

r.q : Dif£(D) » Diff(D) |, Lq(¢)

Rq : Dif£(D) » Diff(D) , Rn(¢)

Nod

%N
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for n and ¢ € Diff(D). Both are diffeomorphisms of the Lie group Diff(D).

It is easy to see that their derivatives have the following expressions:

T¢Ln : ’r¢(niff(n)) > Tq°¢(Diff(D)) ; T¢Ln(2¢) = T,V (6.4)

and

TR : T¢(Diff(D)) -+ T%n(Diff(D)) ; T¢Rq(y_¢)

o%n T¢°n , (6.5)

for !¢ € T¢(Dif.f(D)). The physical interpretation of these formulas is the

following. Think of ¢ as a relabelling or rearrangement of the particles
in D and of n as a fluid motion. Then (6.6) says that the material

derivative of the motion n followed by the relabelling ¢ equals Tn, In

Z¢‘
local coordinates, if ¢(X) = Y and n(Y) = y, then !¢(§) = Vi(§) (3/3Y') and

i 3xi‘ J d
(Tne¥,) " (X) = = (Vi) = . _ (6.6)
- ayd ay*

On the other hand, (6.5) says that the material derivative of the

relabelling ¢ followed by the motion n equals g¢°n. In local coordinates,
if

A®) =x ad @(x) =y , then Y (X) = V(@Y
and

Ve (@ = (Vian) (D) 2/35") . (6.7)
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Simply put, left translation by n transforms V¢(§), a vector at ¢(X) to a
vector at n(¢(X)), whereas right tramslation merely changes the argument
from X to n(X).

By (6.7), the derivative of right translation is again right
translation, so Rﬂ is CG. However, if n and ¢ are diffeomorphisms of a
given finite Sobolev class, Tn loses onme derivative. (This is basically
the reason why left translation is only coatinuous ia ws’p-Diff(D). In
Ca-Diff(D) however with differeatiability suitably interpreted, left
translation is Ca.)

As an application, anote that the material velocity !: is the right
translate of the spatial velocity Y. and cthe left translate of the
convective velocity zc.

If Ve X(D), a diffeomorphism n E'Diff(B) acts on V by the adjoint

action, the analogue of conjugation for matrices. The definition combined

with (6.4) and (6.5) gives

Ad

Te(Lnok QY =T <1Ln(TeR (O

v
d n n n

TNeYo © = NV

i.e., the adjoint action of n on V is the push-forward of vector fields:

adV=nyv . (6.8)

For example, [cf. Eq. (4.7)]

92



which is similar to the formula which relates angular velocities @B and QS

in the previous section. Finally, we compute the coadjoint action Ad:_lg

of nonaé€ X(D)%. By the change of variables formula, we have

3D i =(@Ad V)= an'V=f ey
B B

here a-V in the integrand signifies the pairing between one-form densiti=s

and vector fields so that a-V is a density on D. Thus

Ad“-li = r'*é 5 (6-9)
n

Nsa is the push-forward of the one-form density a; the push-forward

operates separately on the one-form and the density.

6.3 Equations of Motion

We review the derivation of the equations of motion in Eulerian
coordinates from the principles of conservatién of mass, eatropy, and
momentum. Conservation of energy will follow by imposing the adiabatic
equation of state.

(a) The principle of comservation of mass stipulates that mass can be

neither created or destroyed, i.e.,

[ e @dx = [ a0y
N, (W) W

for all compact W D with nonempty interior having smooth boundary.

Changing variables, this becomes

n;(pt(g)dag) =po(§)d3}_< or (n;pt)J =Py (6.10)

Ny
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where Jﬂ = |dx/dX| is the Jacobian determinant of 1., aod qi is pull-back ™
of forms:or functions, as the case may be. Using the relatioan between Lie
derivatives and flows show that (6.10) is equivalent to the continuity

equation

apt
T + div(ptz) =0 . (6.11)

(b) By the prianciple of coaservation of entropy (ao exchange of heat

across flow lines), the heat content of the fluid cannot be altered, i.e.,

3, _ 3
gt(w) g, (x)p,(x)d7x = 5 9y (X)py(X)a7X

for all compact W with nonempty interior having smooth boundary. By a

: -,
change of variables this becomes )
e (0, (D)p, (2)d°8) = ay (D, (R)dX
e = et = 0*=For="" =
and by (6.10) one finds
* act
nt(ct(g)) = Uo(g) » OF Fr— + E'th =0 . . (6.12)
(c) Balance of momentum is Newton's second law: the rate of change
of momentum of a portion of the fluid equals the total force appliad to it.
Since we assume that no external forces are present, the only forces acting
on the fluid are forces of normal stress. The assumption of an ideal fluid
means that the force of stress per unit area exerted across a surface
element at x, with outward unit normal @ at time t, is -p(x,t)é for some ﬂ%ﬁ
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function p(x,t), called the pressure. With this hypothesis, the balance of

momentum becomes Euler's equation of motion,

) (6.13)

|

+
~
<

3
<

]}

[]

Vir—

i3

with the boundary condition : v tangent to 3D (mo frictiom exists between
fluid and boundary for an ideal fluid). The initial condition is of the
form v(x,0) = %,(x) in D for a given vector field v, defined on D.

The proof of conservation of energy is standard. The kinetic energy

of the fluid is

f o) Iv(x) 1% a3k
D

[ S

The internal energy of the fluid is

g p(x)e(p(x),0(x))dx

with the equation of state p(x) = p(g)z(aelap)(g) satisfying 3e/3p > 0.

(Also, the square of the sound speed dp/ap = cz should be positive.) In
the next computation the following two vector identities are needed, where

w = curl v is the vorticity:

(v v = YWvl%/2) +wxv ,

and

1

V(e + p3e/30) = p = Vp + (3e/30)Va
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We have by (6.11), (6.12), and (6.13)

2l . 1 2 3
3t [% l\_r|2 + pe(p,a)] = - dlv[pg(i Iv]© + a(p,0) + p 5%)]
- pTe (2 Dy + % % + 22 o]

]}

- divipy(z Iul® + e(p,0) + p 3]

Consequeatly, the total energy

H(v,0,0) = [ £ p(x)(1vl? + e(p(x), a(x))] &3x , (6.16)

D

P

which represents the Hamiltonian of the system, is consarved.
The physical problem to be solved now consists of the continuity

equation (6.11), entropy coavection (6.12), and Euler's equatiomns (6.13),

i.e.,
v 1
@Dz =-5% ,
% + div(py) = 0 , (6.15)
g% +v'Vo=0 ,
where —
p = pzae/ap , e the internal energy deasity |, (6.16)
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with boundary condition

v(x,t) € T 3D if x € 3D (6.17)

and initial conditions

v(x,0) = v,(x) , p(x,0) = po(x) , 0(x,0) = g,(x) , | (6.18)

where Y is a given vector field on D, and Py and g, are the material mass
density and specific entropy of the fluid, respectively.

We also mention that the coandition 3p/dp > 0 is needed in the proof of
local existeace and uniqueness of the system (6.15) - (6.18) (see Majda
(1985]).

6.4 The Hamiltonian in the Lagrangian and Convective Represeatations

The system (6.15) =~ (6.18) just described does not have T*(Diff(ﬁ)) as
its phase space. To describe the Hamiltonian dynamics on T*(Diff(D)), the
total energy (6.14) must be expressed on T*(Diff(b)), i.e., in the material
representation.

We start with the potential energy. Perform the change of variables

X = qt(X) in the potential energy and use (6.10) and (6.12) to get

[ o (®)elp, (x),0,(x))dx = [ 2y (Velp D), Y),o,@)%8 L (6.19)

D t

The right-hand side is a function of uN and, hence, &efined on Diff(D), so
that by lifting we get a function on T (Diff(D)).
To express the kinetic energy on the cotangent bundle of Diff(D), we

first need its expression in terms of the material velocity. This is



accomplished by performing the same change of variables x = nt(g). We have

by (6.10) and e o Ny = Yt’

[ ST

£ 6y (x) 7, (1% &'x = 1 [ pg(®) v (012 &’k . (6.20)

But

!c € ‘l.“1 (Diff(D)) ,
t
so that (6.20) is the expression of the kinetic energy on the tangent
bundle. Define

- | 3
<Tog>> = £ oy H @K (6.21)

for gq,gﬂ € Tn(Diff(D)), where the dot in the integrand means the metric on
D (in our case, just the usual dot-product in IR3). It is easily seen that
(6.21) defines a weak Riemannian metric on Diff(D).whose kinetic energy is
(6.20).

In finite dimensions, a metric on a manifold induces a bundle metric
on the cotangeat bundle, as we have seen in the case of the heavy top in
Section 5. In infinite dimeasioms, as in the present case, this bundle

metric. is not guaraanteed bDy general theory, so in examples it must be

constructed explicitly. Let gﬂ and Eﬂ € Tn(lef(D)), i.e., -
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where §n and §ﬂ are one-forms over r. Consequently, gﬂ/(p0 d3§) = gn/po)
and ﬁﬂ/(pod3§) = ;n/pO are one-forms over n, so evaluated at X they are
elements of T:(X)D' Now D is a finite dimensional Riemannian manifold
(with the Euclid;an metric in our case). Thus, to every one-form at n(X)
the metric associates a unique vector at n(X). Explicitly, if W € TxD’

> () =

¥
the one-form u” € T D is defined by ub U -w forallw €TD. In
- XX XX -

this way, the index lowering action b : D> T D is a bundle isomorphism.

The inverse of b is denoted by # : T D » TD and is called the index raising

action. In coordinates, if g = (g..) is the metric and (gij) is the

inverse matrix of (gij)’ we have for u = ul(alaxi), a = aidxl,
u = gy uldet , of = gHa, (a/0xh)
Now define the bundle metric on T (Diff(D)) by

(%@@=£pgy%@»%qmﬁ , - (6.22)

- 3 # = 3o\ . .
for !q = (gn/pod X)" and !ﬂ (Qn/pod X" € Tq(D1ff(D)). Denote by |]|-]]

the bundle norm defined by the metric (6.22) and let

_ b3 '
H = pg¥nd’X € T (Diff(D)) (6.23)

be the material momeantum density of the fluid. With this notation, (6.20)

becomes l|§q1|2/2 and so by (6.19) the expression for the Hamiltonian on

T (Dif£(D)) is

_ 1 2 -1 3
By = 3 1Mg11% + [ (el (03] (0,05 (04
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Define the function E(n, Pg? 00) by
E( a,) = e(p,J Y, ay)
n’ po’ 0 0 rl ) 0 . L

and call it the Lagrangian internal energy density. Thea the above formula

for the Hamiltonian becomes
HOM ) = = (1M 112+ [ p (X) E (7, Py, 0,) (X)dX (6.24)
n’ -2 ' g [0= v Pgr Gplt2/9 2 - :

Let us analyze carefully .:he parameters oa which the Hamiltonian
(6.24) depends. The mass deasity Po and specific entropy g, are readily
appareat. But, in addition, (6.24) depends on the bundle metric (6.22),
which in turn is uniquely determined by Py and the metric g on D (the dot
product in our case). Theréfore, H in (6.24) depeads in addition oa the
parameters (po, dy» g) € F(D)* x F(D) x Sz(D), where F(D) denotes the
vector space of smooth functions om D, SZ(D)- the covariant sypmetric

. %
two-tensors on D, and F(D) is the space of smooth deasities A(X) d3

X in
weak nondegenerate pairing with F(D) via the.Lz-product on D.

Next, let us investigate the expression for the Hamiltonian in
convective coordinates. We start with the poteatial eaergy in (6.24). The
only expression involving material quantities is Jq’ To traasform it into
a convective quantity, denote the metric on D in the reference configura-
tion by G (it is the dot product in our case), and its volume element by

u(G), i.e., d3§ = p(G). Then, recalling that Jn is defined by n (p(g)) =

an(G), where pu(g) = d3§, and denoting

%

C=f‘l g ’ (6-25)
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the Cauchy-Green tensor on D, we find

p(C) = Jqu(G) ’ (6.26)

vhich we symbolically solve by writing

detCAB(g)
Jﬂ = pu(C)/u(G) = ¢ EEEE;;TET . , (6.27)

Note that in this way Jﬂ becomes a function of the volume elemeats of C and
G, i.e., it is expressed in the convective picture. (In the case of
elasticity, as opposed to fluids, the potential energy depends on the

metrics, not just their volume elements.) Define the coanvective internal

energy density E(po, C, oo) by

Elpys C, 0p) (X) = e(py(X)u(G)/u(C),0,(x)) ,

so that the potential energy has the following expression in the coavective

picture,
[ Pg(DIE(Ry, C, 0)(X) X . | (6.28)

To express the kinetic energy in the coanvective picture, we need first
Lo express it in terms of the convective velocity V. We have by (6.20),

the expression
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and (6.25).

3
[ (081 (L, (0,1, X)) 4%
= [ pp(D2(n (D) (Tgn, (7, (D), Tygn, (¥, (01148
= 3
el JUAC R A Ly

- 1 # {3

where

L pozzu(G‘) ,

the index raising (#) and index lowering (b) actions being taken with
respect to C. But the latter expressiomn represeamts twice the kinetic

energy of the metric om X(D) induced by C and Pg> i.e.,

(ad’x, pd’y) = ! ﬁﬁ cexy e ?, sty (6.29)

Therefore, the total energy in the comvective picture has the expression

(see (6.28), (6.29))

H=3 (0 + [ 0y(DE,, C, 0) (X)X . (6.30)
D

N~

Proceeding as in (6.29) with ¥ replaced by x, Py by p, and C by g, we

oo
get another metric < , > on X(D) such that the kinetic energy,
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% 1) plglzd3§ ,

coincides with the kinetic energy of the metric < , >, Summarizing, we

have the following three expressions of the Hamiltonian:

H(M,, Py, O, 8) = 3 [ 0y (®8(¥, (), ¥, (X))u(6) (0

+ { Po(RE(N, py, 04) (XIN(G)(X) (material)  (6.31)

where !q = (gn/pop(G))#, the index raising action being relative to g;

H(M, p, 0, g) = % g P(x)g(v(x),v(x))Iulg)(x)
+ g P(x)e(p(x),0(x))u(g) (x) , (spatial) (6.32)
where v = (4/p p(g))¥ the index raising action being also relative to g
HX, Py, 9y, C) = 3 IENESIORICPMOTE Y

* I pg(X)E(p,, C, 0) (X)u(6)(X) , (convective)(6.33)
D

)#

where V = ()_l/pop(G) » the index raising action being relative to C. In

indices, (6.33) reads
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H(M,p,,0,,C) = % g QOMAMBCABd3§

/de:CAB 3
+ ]JJ- poe(po m . O’O)d 3 ’ (6.33')

where ¥ = HAdXAdsg and p(G) = d3§ = Jde:GABdXIAdXZ‘dX3. The relatioaships

between the various internal energy densities are

E(n,po,ao) = e(polal,ao)

E(pysC,04) = e(pyu(G)/u(C),ay)

6.5 The Ideal Compressible Adiabatic Fluid Equatioas in the Eulerian

Picture
To apply Theorem 3.3(i), we investigate the invariance properties of H

in (6.31) under right translations. We have for any ¢ € Diff(D) and Uq<,¢ €.

T,oq (DLfE(D)),

= yb * (Di
un = gq@pop(G) € T (Diff(D)) ,

Nod” <”n’Tno¢R¢-1(Uno¢)>

.
Tneo®,-10)

=1
= < U ¢ >
Mn’ qo¢ °

b 3 -1
Vo % P DI, Uy 4 0 0
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= -1 3
If)s(n()_t))(zq()_c), Uno®  ()py(X)eX

3
gs((notp)(r))(gn(cb(g)), U otD)) Po(e(¥)I(1)dY

b
<(Yﬂo¢)69(poo¢)J¢p(G), Unoo®

* b _ b |
T, ¢R¢_1(zn®poucc)) = (Vn00) © (pga®)Tu(6) . (6.34)

Therefore, by (6.31) and a change of variables X = ¢(Y), we get

% b '
H(Tn°¢n¢,1(zﬂ®pou(c)), (Pga®)Jy; TpePs &)

N

3
g p°(¢(Z))J¢(§)g((no¢)(Z))(Vn(¢(§)). v, (0(¥)d7Y

* [ g (00D (el (91D, (D7, oye())ey

¢

N

‘ 3
g Po(X)2(n (X)) (Y, (X), V (X))dX

+ § oy (Delpy(®I (D7), 0y (0)e%
D

b
H(Y, © pgu(8), pys Tp) 8)
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Consequently, by Theorem 3.3, H induces Lie-Poisson equations on [(X(D)C)
(F(D) x F(D) ) x sz(D)];. The Poisson bracket is hence given by (3.11).

Denoting by M(x) = p(x)v(x), this expression becomes

- ey & o (g8 3

g gg Vﬁr VﬁH)]d (6.35)
. (SE 6H _ &H &F
+£Ule(6—a_-6—!'-6—q-3E)d£ ,

where all dot products are taken in the metric g. The Hamiltomian of the
fluid motion is easily checked in this case to be given by H in spatial
coordinates (6.32) (see Theorem 3.3(:’.)‘ and (6.34)) and the equations of
motion are then computed via (6.35) to be (6.15) plus g = 0.)

Finally, demoting by w = curl v the Eulerian vorticity, the scalar

function
Q=uw -+ Y(a/p) = div{(ow)/p] ' (6.36)

is called the Eulerian potential vorticity. Using (6.35) it is easy to

check that

C(M,p,0,2) = [ p(x)P(a(x),a(x))d x (6.37)
D

for any smooth functiom ¢ : IR + IR is a Casimir fumctiomal. That is,
{C,F} vanishes for any F(M,p,0,g). In addition, any functional depending

only on g is also a Casimir functionmal for the bracket (6.35).
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6.6 The Ideal Compressible Adiabatic Fluid Equations in the Convectijve

Picture

We shall now apply Theorem 3.3(ii) to get the equations of motion in
the convective picture. We start by computing the left action of Diff(D)
on T*(Diff(D)). If ¢ € Diff(D), let Wb* denote the index lowering action

n

€ Tn(Diff(D)). Then for any U €

with respect to Y.g applied to W Yo N

n

* b
<T¢°nL¢_1(!n69 PoH(6)),U e

b

b -1
Vo @ pgH(6),TH " o (U, )>

-1 3. -
[ P20 (¥, (0,787 ¥, [ (©))a’)

L pg® () WD (¥ o V) (®),Y,, () 3

b-.'.-
(T o V) @pop(c),v¢°n>

Note. that

*

b = b* . 6.38
T%niw-l(zn@pou(t;)) (Té o V)" ©Opgu(6) (6.38)
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Now we check the condition in Theorem 3.3(ii). Denote by Jf’.g the -

Jacobian of A relative to M(G) and p(¥*g). Then Jfrg] = _]‘rl’ so that by
o
(6.31), (6.38) we have

* b
H(T¢°QL¢_1(ZH®OOP(G)), Por Ty ¥s2)

N1

3
.g P (X) (Y.8) (tb(n()_I)))‘((le o V) (X),(T¥ . V) (X))d7X

b8
" L g (Delog (03, ()™ ,0,(0)a%

n

=1 3
-1 3 N
* L pgDelpy (D3, (07,050 .
= b .
= H(Y, @ pgu(6),py,s 0y, U48)
Therefore, by Theorem 3.3(ii), H induces Lie-Poisson equatioms oa [(X(D) bt
* ®
2 ® A0))) x FD) x FM*]*. The action of Diff(D) on the vector
space of contravariant sﬁmetric two-tensor densities SZ(D)@ A3(D) is
given by pull-back, i.e.,
*
(T@rG)) * n=n (T pE) . . (6.39)
Therefore, the action of X(D) oa SZ(D) X A3(D) is by Lie-derivative, i.e.,
(T ) v =LT@rE) . (6.60) ™
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The dynamic variables are:

- on x(D)* = one-form densities on D, ¥ = convective momeatum
density of the fluid;

- on (SZ(D)®A3(D))* = Sz(D) = symmetric covariant two-tensors on
D, paired with S2(D) ® A3(D) by (5, T® p(e)) € 5,(D) ® (s(D) ®
A3(D)) = jﬁS:Tp(G) € IR where S:T denotes contraction on both
indices of S and T, C = the Cauchy-Green tensor, defined by C =
n*g for n € Diff(D) a motion of the fluid;

- on F(D)* = densities on D, pop(G) = material mass density of the
fluid; and

- on F(D) = functioas on D, Oy = the material entropy function of
the fluid.

If FH: x(D)" x S,(0) x F(D)" x F(D) » IR are functions, their

Poisson bracket is givea by (3.11), which in this case takes the form

- CE &
{F’H}(ﬁypoicotc) = g _! lﬁg ’ 6!]

. 6H _ 13
Y] ]

where the dot in the first integral demotes the contraction of a one-form
density with a vector field and the colon in the second integral denotes
contraction of a covariant symmetric two-temsor with a coatravariaant
symmetric two-temsor density.

Using (6.33) and the formula for the derivative of p(C), i.e.,

Du(c) - &C = 5z p(C) trace. &, (6.42)

N
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where traceC denote the trace fudction with respect to C, we get

SH _

I

2l

VY@, u(G) + % T®uc) ,

N e—

where T € Sz(D) is the stress-teasor defined by

| On
al&
=

P
[21{2)
o~

T= Zpo (6.43)

Next, we carry out the computation of the equations of motion. If F is an
arbitrary function of (g,po,ao,C), we have by the equations of motion
F = {F,H}, (6.41), and (6.42),

(13 . 8F . 65F - 5F .
S 8+ [ 7— (pu(G)) + [ =g, u(G) + [ z=:C
o o 58 0 o 89, 70 p &€

- [ -6-2
=-fN LV T
D L o
fC: (L (-2 v@V@pp(e)) + 5 T®W(C)) - L, =] (6.44)
20T eE 222 R 2 v &C '
&
Comparing the coefficients of
6F na &E
épo 600
on both sides of (6.44) leads, respectively, to
60=0 and &0=o . (6.45)
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The coefficient of %% on the right-hand side of (6.44) is isolated via
integration by parts. Namely, we write
. 8y _ . oF . OF

v v: * &C

<

- 8F _ . &F SF
g c Lz i = g LKC ' 5C g LZ(C 3c)
6F
= [ LC: 5= - J div (V)v
p £ &
- - 6F - L] -
= ]JJ' ch 3 gD V-.no VaD , (6.46)

where v = C:%%, n is the outward unit normal to 3D, “an is the induced

volume form on 3D, and divv(g) is the divergence of V with respect to the

volume form v. The last integral is zero since V is tangent to 3D at

points of 3D. Therefore, ideatifying the coefficient of g% in (6.44)
yields
¢=1L,cC , ' (6.47)

i.e. C is dragged along by the flow of V during the motion;'this result is
predicted by Theorem 3.3 and the above computation is merely a confirmation
of a general fact. Finally, we must isolate the coefficient of g% in the
right-hand side of (6.44). By integration by parts as in (6.46),-we have

-{)‘!.Lva_.zg([‘v!).ﬁ . (6.48)
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Using the derivation properties of the Lie derivative and the relation

between ¥ and VY, namely,

V> @pu@) =u (6.49)

*
where b denotes the index lowering operation defined by C, leads to the

following series of ideatities.

JC: Ly (VO V® pyu(6))
P

N

[C: (Lep DOV pu() - %g C(V, V) Lep (Pgu(G))

° & a

= - { [% LVl N - %1{ {L% [C-(!,z)pop(G)] - r.g_z (C(V,¥)) pgh(6)}

L0 - ARG - 8 ege(@)]

=Ll L a3 11¥112) @ pyu(e)] - g—_f,_ . | (6.49)
Finally, the last term involving % in (6.44) is

%gc F Ly (T@ (O]

]
- {) div, T- g_z u(C) (6.50)
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where divCT'denotes the divergence of T with respect to the metric C. {In
coordinates, if ; denotes covariant differentiation with respect to C, then

one has the identities

[ ¢ LylT@u(o)]

R

g LVC : T p(C)

i
2 IJ)’ v Q;jp(C)

by the divergence theorem and symmetry of T. Thus, (divcr) is the one form

with components Tg_j, where index raising and lowering and covariant
4

differentiation is taken with respect to C. Thus, adding (6.48), (6.49)

and (6.50) yields

oM
= = ael 2 . -
5c * Lt = 4G 1IVIIQegu(6) + diveT (6.51)

which is the desired equation of motion for M.
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7.  CONCLUSIONS

In this paper we have laid the foundation for systematic passages
among the Hamiltonian forﬁalisms for the material, inverse material,
spatial and convective pictures. The examples preseanted include the motion
of incoumpressible fluids with a free boundary and surface teasioa (in §1),
the heavy top (85) and ideal compressible flow (§6). In other publica-
tions, these ideas will be used for other systems such as nonlinear
elasticity (see Holm and Kupershmidt [1983], Marsden, Ratiu and Weinstein
(1984), Simo and Marsdem [1984] and Krishnaprasad, Marsden and Simo
[1986]). The new feature here is the inclusion of the inverse material and
convective pictures to complete the overall scemario of standard
representations of continuum systems. The inverse material and convective
pictures are useful in a oumber of situations such as for genperal
relativistic fluids (Holm [1985]) and in the study of stability for ideal
fluid equilibria in three dimensions. See Holm [1986] in this volume for
the treatmeat of Lyapunov stability of three-dimensiomal ideal fluid

equilibria using the inverse material representation.
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