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THE HAMILTONIAN STRUCTURE FOR DYNAMIC FREE BOUNDARY PROBLEMS
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Hamiltonian structures for 2- or 3-dimensional incompressible flows with a free boundary are determined which generalize
a previous structure of Zakharov for irrotational flow. Our Poisson bracket is determined using the method of Arnold, namely
reduction from canonical variables in the Lagrangian (material) description. Using this bracket, the Hamiltonian form for the
equations of a liquid drop with a free boundary having surface tension is demonstrated. The structure of the bracket in terms
of a reduced cotangent bundle of a principal bundle is explained. In the case of two-dimensional flows, the vorticity bracket is
determined and the generalized enstrophy is shown to be a Casimir function. This investigation also clears up some confusion
in the literature concerning the vorticity bracket, even for fixed boundary flows.

1. Introduction

This paper determines the Poisson bracket
structure for an incompressible fluid with a free
boundary and shows that the equations for an
ideal fluid having a free boundary with surface
tension are Hamiltonian relative to this structure.
The Poisson bracket structure we derive gener-
alizes that found in the irrotational case by
Zakharov [1]; see also Miles [2], Benjamin and
Olver [3] and references therein. Our aim is not
merely to exhibit the bracket but rather to under-
stand its derivation and its geometric structure.

The method we use to obtain the Poisson brac-
ket structure is to pass from canonical brackets in
‘the Lagrangian (material) representation to non-
canonical brackets in the Eulerian (spatial) repre-
sentation by eliminating the gauge symmetry of
particle relabelling. This method, going back to
Arnold [4], is at the basis of the general theory of
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reduction (Marsden and Weinstein [5]) and was
used by Marsden and Weinstein [6] to derive the
bracket structure for the Maxwell-Vlasov equa-
tions and the equations for incompressible flow
with fixed boundaries.

We shall give two representations for the
Poisson bracket. The first, and most elementary,
form is given in section 2. This has the struc-
ture of a Lie-Poisson bracket (see Marsden and
Weinstein [6] or Marsden et al. 7] for background
and references on Lie—Poisson structures) plus a
canonical bracket, although the variables used in
these two terms are not independent. The second
representation, given in section 4, gives the bracket
as a special case of the Poisson bracket on the
reduction of the cotangent bundle of a pringipal
bundle by its group due to Montgomery, Marsden
and Ratiu [8] (see also Kummer [9)). These brac-
kets have the following general structure (sche-
matically):

{ F, G} = (Lie—Poisson bracket)
+ (Curvature term)

+ (Canonical bracket).
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In other examples, the curvature term can repre-
sent Coriolis or magnetic forces (see for example,
Kummer [9] and Krishnaprasad and Marsden [10]).
In our example the Lie—Poisson bracket represents
the internal fluid contribution decoupled from the
canonical bracket for the boundary motion. The
coupling between the fluid and the boundary is
now carried by the curvature term. In either repre-
sentation the canonical bracket is the term corre-
sponding to the bracket of Zakharov.

The two representations of the bracket are
sometimes called the “ Weinstein” and “Sternberg”
representations since they correspond to two Ham-
iltonian representations of a particle in a
Yang-Mills field found by these authors. (See
Guillemin and Sternberg [11] and references
therein.) It was this work which led, via
Montgomery [12], to the general principal bundle
picture of Montgomery, Marsden and Ratiu [8].

In view of the detailed understanding of this
case, we expect that one can similarly obtain
brackets for free boundary problems for com-
pressible flow and plasmas, either relativistic or
not. This will clearly involve semidirect products
in the Lie-Poisson part, as in Montgomery,
Marsden and Ratiu [8]. For papers which explicate
and review bracket structures for these other prob-
lems, see, for example, the articles in Marsden [13]
and for the relativistic case, see Holm and
Kupershmidt [14], Bao et al. [15], Holm [16],
Marsden et al. [7] and references therein.

We expect that the Hamiltonian structure
studied here will be useful for a variety of ques-
tions, including the following:

1) Nonlinear stability of equilibria; see Arnold
[4, 17], Sedenko and Iudovich [18], Artale and
Salusti [19], papers in Marsden [13], Holm,
Marsden, Ratiu, and Weinstein [20] and
Abarbanel, Holm, Marsden, and Ratiu [21].

2) Short time existence, uniqueness, smoothness,
and convergence theorems using the method of
Ebin and Marsden [22].

3) Bifurcations of rotating liquid drops (Brown
and Scriven [23)).

4) A study of the modulation equations and

relationships to other surface wave models
(Zakharov [1], Olver [24]).

5) A study of prechaotic motion in the forced
vibration of a fluid with a free surface (Benjamin
and Ursell [25], Miles [26]) using the Melnikov
method (Holmes and Marsden [27] and Holmes
[28]).

With a view towards item 1), we show that for
two dimensional ideal flow, the generalized en-
strophy is a Casimir function. In this connection,
we show (contrary to what is often stated) that the
Poisson bracket for two dimensional flow, even
with a fixed boundary, is not

8F 8G
{F,G}=Lw{%,m}xydxdy, (1.1)
where
_90f dg dg If

{f’g}xy_aw_g_;@a

D is the flow region and 6F/8w is interpreted in
the usual way, but rather needs to be corrected by
the addition of a boundary term. (This does not
contradict a similar looking and correct formula
given in Marsden and Weinstein [6] because they
interpret 8F/8w in a more sophisticated way.)
This boundary correction to (1.1) is necessary so
that the generalized enstrophy

C(w)=fD¢(w)dxdy (1.2)

is a Casimir function.

The plan of the paper is as follows. In section 2
we state the first version of our Poisson bracket
and verify that the equations for a liquid drop
with surface tension are Hamiltonian. In section 3
we derive this Poisson bracket by reduction of
canonical brackets from the Lagrangian descrip-
tion and in section 4 we present a second represen-
tation of the bracket and explain how it is a
special case of the bracket on the reduction of the
cdtangent bundle of a principal bundle by its
structure group. Finally, in section 5, we present
the corrected vorticity bracket for two dimensional
flow and check that the generalized enstrophy is
indeed a Casimir function.
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In this paper we do not attempt to make precise
all the function spaces needed for a proper analyti-
cal treatment of the infinite dimensional manifolds
involved. Most of this can be filled in routinely
following Ebin and Marsden [22] (see also Cantor
[29] for the non-compact case). These analytical
aspects properly belong with a detailed investiga-
tion of existence and uniqueness questions, and so
are deferred to a later study.

2. The first Poisson bracket and the equations for a
liquid drop

We shall first state the Poisson bracket for the
free boundary problem and then shall show that
the equations for a liquid drop with a free boundary
and surface tension are Hamiltonian relative to
this bracket. The derivation of the bracket is given
in the next section.

The basic dynamic variables we use are the
spatial velocity field v and the free surface 2. We
assume that v is divergence free and is defined on
Dy, the region whose boundary is 2. (Correspond-
ing to o being divergence free, Dy will have
constant volume.) The surface ¥ is assumed to be
compact and diffeomorphic to the boundary of a
reference region D. We take X to be unparame-
trized. Thus, = is a 2-manifold in R? (or a curve
in R? for planar flow); it is not a map of dD to
R, but rather is the image of such a map*.

According to Weyl-Hodge theory (see Ebin and
Marsden [22] for a summary and references), v
decomposes uniquely as

v=w+ Vo, (2.1)
where w is divergence free and tangent to X.
Notice that @ is determined (up to an additive
constant) by

00
v2d =0, T = (v, »),

(2.2)

*We have also worked out the bracket for the case in which
% is parametrized, but the theory seems superior in the un-
parametrized case and makes more direct contact with the
existing literature.

where v is the unit outward normal to 2 and (, )
is the inner product on R,

Let .4 be the space of pairs (v, 2). The space
A will be the basic phase space for the first
representation of the bracket; the other represen-
tation will be in terms of the set A" of triples
(w, ¢, ), where ¢ is the restriction of @ to 2 and
is understood to be taken modulo additive con-
stants.

The bracket will be defined for functions F, G:
A"— R which possess functional derivatives, de-
fined as follows:

a) 8F/8v is a divergence free vector field on Dy
such that for all variations 8v

SF

D,F(v,3) -au=fD < e (2.3)

8v> d’x,
where D_F is the derivative of F holding 2 fixed.

b) 8F/8¢ is the function on X with zero in-
tegral given by

OF _/3F
8¢_<8v"’>‘

(One easily checks that 8F/8¢ is just the varia-
tional derivative of F taken with respect to varia-
tions of v by potential flows.)

¢) The definition of 8F/82 is shghtly more
involved. A variation 82 of X is identified with a
function on X; it represents an infinitesimal varia-
tion of X in its normal direction. By the incom-
pressibility assumption, 82 has zero integral on 2,
a condition dual to the additive constant ambigu-
ity in ¢. Smoothly extend v so it is defined in a
neighborhood of Z; thus, holding v constant while
varying 2 makes sense. Then set

(2.4)

Fv02dA,

DyF(v,3) 85 = f (2.5)

so 8F/8% is determined up to an additive con-
stant. (One checks that 8F /82 is independent of
the way v is extended, as long as F is C! as o
varies in the C! topology.)
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Here then is the first representation of the
bracket:

Definition 2.1. Given F and G mapping 4" to R
and possessing the functional derivatives just de-
fined, set

(F.G)=/ <w,%§><86—i>d3x
Dy

8F 8G 8G OF
+/E(———3—§%)d,4, (2.6)

where w = ¥ X v is the vorticity.

Proposition 2.2. This bracket makes 4 into a
Poisson manifold; i.e. {, } is real bilinear, antisym-
metric, satisfies Jacobi’s identity and is a deriva-
tion in F and G.

The validity of this proposition will be clear
from its construction via reduction, which is given
in the next section. The only nonobvious property
is, of course, Jacobi’s identity. Notice that the two
terms in (2.6) are coupled via the definition of
0F /8¢. Our second representation will decouple
these at the expense of introducing additional
terms.

Remarks. 1) For irrotational flow « = 0, so (2.6)
reduces to the canonical bracket in ¢ and 2. This
shows that for irrotational flow the bracket re-
duces to that of Zakharov [1].

2) For some functionals, such as the generalized
enstrophy, the functional derivatives do not exist
as we have defined them. Rather, they have contri-
butions concentrated on X arising from v varia-
tions. Such terms often appear as boundary terms
after an integration by parts. This situation com-
plicates (2.8) somewhat, and will be discussed in
section 5.

3) The bracket (2.6) is purely kinematical in the
sense that it can be used for a variety of dynamic
problems with different Hamiltonians.

To illustrate the relevance of the bracket (2.6)
we consider the equations for a liquid drop con-

sisting of an ideal (incompressible, inviscid) fluid
with a free boundary and forces of surface tension
on the boundary. In terms of the variables already
presented, the equations are

@4_( . ) = _

I

';9-1' = <U, V>, (2.7)
dive=0, p|2=r1«,

where k is the mean curvature of the surface 3
and 7 is the surface tension, a constant. The
Hamiltonian is taken to be

=1 243
H= 2/D2|v| d x+frf2dA. (2.8)

Proposition 2.3. The equations (2.7) are equivalent
to

F={F H)

for all functions F (possessing functional deriva-
tives), where H is given by (2.8) and the bracket
by (2.6).

Proof. The functional derivatives of H are com-
puted to be

0H 8H 8H

ETIA W=<%’”>=<W>’
and

6H

'szélv‘z_"ﬂc

(where 8H/8% is taken modulo additive con-
stants). Now

- 0F dv\ 4
F—f1)2<8—v,ﬁ>dx+ (fs 74 (9
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and from (26),
()= [ (w5 o) ot [ B en)an
- [ 3101+ ] 55 a4
[ (3 exa) s [ Bor)as
RAMEGEI

_/Z<m§_5,y>d/1.

If (2.7) holds, then (2.9) and (2.10) are clearly
equal in view of the vector identity

(2.10)

—(v*V)v=vXw-—1ivV|v

Conversely, if (2.9) and (2.10) are equal for all
8F/6v and we define p to be the solution to the
Dirichlet problem

plE=1k, vVp=—div((v-V)v)

then the boundary term [ {T«8F /8v, »)d A drops

out of (2.10) when vp is subtracted from v X w —
V3|02 Thus (2.7) holds. [

3. Derivation of the bracket by reduction from the
Lagrangian representation

We choose as the configuration space €=
Emb,(D,R"), the manifold of volume-preserving
embeddings of an n-dimensional reference mani-
fold D, an open subset of R” with smooth
boundary, into R”. The corresponding phase space
isits L, cotangent bundle T*#= T*Emb, ,(D,R")
elements of which are pairs (), p) where n: D — R”
is an element of ¥ (configuration maps) and g,
the momentum density, is a divergence free one
form over 7; i.e. to each reference point X€ D, p
assigns a one form on R” based at the spatial

point x =7n(X). The pairing of p with a tangent
vector 8n € T, %, a map of D to TR” which sends
a reference point X to a tangent vector in R”
based at x =n( X), is given by

(. 8m)) = [ p(X)-8n(X)dv, (3.1)

where the natural contraction produces a function
on D which is then integrated over D with respect
to dV = d3X, the Euclidean volume element. (For
compressible flow, p should be taken to be a one
form over n, tensored with a density on D.) This
choice of configuration and phase space for the
Lagrangian description of continuum mechanics is
standard; see, for example, Marsden and Hughes
[30].

Before defining the Poisson bracket on T*%, we
define the partial Fréchet and functional deriva-
tives of a function F: T*%— R. The partial Fréchet
derivative with respect to p is simply the fiber
derivative: a variation 8p is also a one form over
7, so the partial p derivative is defined as usual:

d
D,F(n,p)du=q;| F(n,p+edp). (3.2)
e=0

To define the partial derivative with respect to 7
one must in some sense “fix” p while allowing 7 to
vary; this may be accomplished, analogous to what
we did in section 2, in the following fashion. We
identify T*(n(D)) with n(D)XR"" and let §
denote the principal part of p; i.e. the projection
of p onto R”". Thus, i D > R" is a map such
that p=mn X ji: D> n(D)XR™ = T*(n(D)).
Given a variation 8% and a curve 7, tangent to &
at e=0, let p_=mn, X[ and let

d
D, F(n, p)-8n="qg| Fln.p). (3.3)

A function F: T*$— R is said to have partial
functional derivatives if there exist, for every ele-
ment (7, p) of T*%, the following:

(i) (6°F/87)(n, ), a divergence free one form
over 7;
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(ii) (8'F/8n)(m, 1), a density on dD tensored
with a one form on D over 7 defined at points of
oD,

(i) (8°F/8u)(m, p), a divergence free vector
field on D over n;

(iv) (8 F/du)(m, p), a vector field on D over 7
defined at points of dD tensored with a density on
aD, satisfying

8°F
D, F(n, u) '3n=f W(n,#)ﬂsndV

for all variations 8% and

A
+f wlaD-T(nm)  (35)

for all variations 8p. Eqgs. (3.4) and (3.5) do not
uniquely determine the components of the func-
tional derivatives. By applying the divergence the-
orem to these equations, one sees that we are free

to add the gradient of a harmonic function (re-

garded as a density, etc., as is appropriate) to the
interior term 8§ F /&7 (or 8 F/6u) and subtract the
corresponding normal component from the
boundary term &°F/8n (or 8°F/8u) without
changing -the validity of (3.4) and (3.5). These
partial functional derivatives can be uniquely
specified by specifying Dirichlet boundary condi-
tions for the harmonic function. We remain flexi-
ble about the choice as two different ones will be
needed later.

Our definition of the bracket is motivated as
follows. Let 8,, be the Dirac delta measure on D
which is concentrated on dD; dropping the densi-
ties from the boundary terms, define

3F _8°F o 8F . g_:_ 8F o 8F
Sn_ &q @ %pFy MG 5T T T ey
(3.6)

Using the functional derivatives defined above, we
formally define the canonical Poisson bracket on
T*% in the standard way,

8F 8G 8G OF
{F,G}=fD(&7 %5 su)dV (3.7)

If (3.7) is to be well-defined, we must avoid
squares of delta functions and uniquely specify the
functional derivatives. We can do both of these
things by restricting our attention to one of the
following two classes of functions: 1) F such that
8°F/8n =0 or i1) F such that §"F/8p.= 0. (In our
derivation of the bracket on .4 we shall work
with the second class.) If one wishes to have a
larger class of admissible functions, another ap-
proach is possible. After making a choice of
boundary conditions that makes the functional
derivatives unique, we require that functionals F, G
are such that

8F 8G 686G 8F
én ou dn  ou

- 0. (3.8)

In either case, substituting (3.6) into (3.7) gives the
well-defined expression

8°F 8G &G 8°F
{F’G}zf,)( 5n 8n  8n  on )dV
L[ [8F| 8G, 8F 86
ap\ 81 [ap Ou ~ dm  Op | .
B 0G| OF 8G 8F
ap\ OM [ap O~ dm | )

Now we map T*% onto 4" by the map
II ,: T*¢—> A4
which takes (7, ) to (v, 2), where
2 =49(n(D))

and

(o), w(x)) = w(X) - w(x)
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for all vector fields w(x) on R”, with x =7n(X)
and (,) the Euclidean inner product. The map
II , is invariant under the right action of G =
Diff (D), the group of volume preserving diffeo-
morphisms of D, and so induces a bijection

II,: G\T*¢—->N

which, given the correct topologies, is a diffeomor-
phism. Thus, by the theory of reduction of Poisson
manifolds (see Marsden et al. [7] for a review), A~
inherits a Poisson structure. Explicitly, the brac-
kets on T*% and A" are related by
(F,GYeIl = {FoIl ,,,G oIl 4} 1sg (3.10)
Given F: #'—> R possessing functional deriva-
tives, let F= FoII ,. Then a straightforward ap-
plication of the chain rule gives

D, F(x,n)8n=DyF(v,2)(8n,7)
—D,F(v,2)+(8n-V)v.

(Note that v regarded as one form is (o~ "'), s0

an m variation causes a v variation - the evalua-

tion points x or X are suppressed for clarity.)
Also,

D, F(n, u) 84 = D,F(v, ) dv.

Thus, choosing the boundary condition 8 F/8p =
0, we get

8" F & oF

8'11 = —(Vv)°8 , —T’:'a—vdA (3.11)
and

8'F 8F &F

Srd (3.12)

where one forms and vector fields have now been
identified using the Buclidean metric. Here (Vo) -
8F /8v is defined by contracting the v and 8F/dv
indices; i.e. for any vector u, (u,(Vv)*8F/8v) =
{(u+V)v,8F/8v).

Substitution of (3.11) and (3.12) into (3.9) yields
(2.6). This then derives (2.6) and proves proposi-
tion 2.2.

Remark. The general principles of reduction show
that the motion in Lagrangian representation can
be reconstructed from that in Eulerian representa-
tion (and, of course, the motion in Lagrangian
representation covers that in Eulerian representa-
tion consistent with the respective Poisson struc-
tures). Explicitly, given a solution o,(x) =

v(x, 1), 2(t), we construct 1,(X)=1(X,t) by in-
tegrating the ordinary differential equation on %
given by

dn _
&b ouen

and then let u,=v,0n, ', regarded as a one form
over m,. Then (n,, t,) is an integral curve of the
corresponding canonical Hamiltonian system on
T*%.

4. The second representation and reduced principal
bundles

The variables for the second representation are
(w, ¢, 2). Recall that the space of these triples
(w, ¢, 2) is denoted by A#"’. Here w is divergence
free and tangent to X, so we must impose the
boundary condition

(w,¥)=0 (4.1)

and so variations are also constrained. The con-
straint on the variations may be obtained by
differentiating a curve w, = n..§,, where £ is di-
vergence free on D and parallel to dD. We find
that 8w has the form

Sw=w+[w,ul, (4.2)

where w’ is divergence free and parallel to 2, u is
a divergence free vector field on Dy satisfying
(u,v) =382 and [w, u] is the Lie bracket of vector
fields on Ds.
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Notice that w and ¢ are decoupled, but that w
and X are now coupled through (4.1) and (4.2)
and note that 8w need not be parallel to the
boundary.

Given variations dv and 82 we get the corre-
sponding variations 6w, 8¢, and 8% by letting
8v —[w, u] be decomposed into w’ and V8¢, and,
in (4.2), letting u = VN(8X) where N is the linear
operator that takes functions on X with zero in-
tegral to functions on Dy modulo additive con-
stants defined by

Jid

(D=N(f) v =f. (43)

This produces an isomorphism between the varia-
tions (80, 82) and (8w, 8¢, 8).

Given a function F(w,¢,X) define 8F/8w,
8F/8¢ and 8F/8% to be, respectively, a diver-
gence free vector field parallel to ¥, a function on
2 with zero integral and a function on = modulo
additive constants such that the differential of F
on allowed variations (i.e. a tangent vector to A4"")
satisfies

satisfies V2@ =0,

DF(w,¢,X)(8w,8¢,8X)

—f< 8w>d3x+f( 59+ 5% 82)
(4.4)

Remark. Note that dw, ¢ and 82 are linked by
(4.2), so, for example, 8F/8w is not simply given
by differentiating F with respect to w holding ¢
and X fixed. However, one can relate the func-
tional derivatives by changing variables using the
constraints on the variations. Also, 8F/82 here is
not the same as 8F/82 holding v fixed. To avoid
confusion for the comparison, we temporarily de-
note 8F /62 in A"’ by §'F/82. One gets

- §F 5F

Sw P(Bv)

8F | &F 1

%=<§57”>’ (4.5)
8F OF v OF

55 T8z \ " VN 5e

where P indicates projection onto the component
of the Weyl-Hodge decomposition parallel to X,
by noting that we must have

/<‘§F 80>d3x+/8282dA
Dy

oF ;
=/’D2<W,8w>dx+f(8282+ ¢8¢)dA

and decomposing v into dw and 8¢ as specified
earlier. (This calculation makes use of the vector
identity

o 9g
[, (w1 Iw.vglydx= = [ Onvr) G da,

where f and g are harmonic functions on Dy and

w is a divergence free vector field on Dy parallel
to 2.)
The bracket on A"’ is given in the following:

Definition 4.1. For F,G: A" —> R which possess
functional derivatives, let

{FG}:
(o [5e o(5g )] <[ e w(36)]) e

OF 8G &G 6K |
./62&1; 3= 5o

e sn{ 25 eon{ 8] oo

(4.6)

—+

o

There are three ways to derive this bracket:

(a) directly from (2.6) by changing variables
using (4.5),

(b) by repeating the reduction procedure in sec-
tion 3 using (w, ¢, &) in place of (v, 3),

(c) by using the general formula for brackets on
reduced principal bundles.

We shall omit the derivations using (a) and (b)
(although it was (b) which first obtained the cor-
rect answer) and instead turn to method (c).
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The key point which relates the present situation
to bundles is that the material configuration space
¢ described in section 3 may be considered as a
principal bundle over 4, the manifold of surfaces
> in R? which are diffeomorphic to the boundary
of the reference manifold D and bound a region
D of volume equal to that of D. The structure
group of this bundle is G = Diff (D), the group
of volume preserving diffeomorphisms of D. The
projection 7 from € to # takes 1 to 2 = d(n(D)).
We endow % with the connection determined by
choosing the horizontal subspaces to be H, =
{(vf on|f is a harmonic function on n(D)}. This
defines for each n € ¢ the horizontal lift

hy: Toy®— T,€

(1)

83— wN(8Z)o . (4.7)

Physically, #,(82) may be thought of as the veloc-
ity field of the irrotational flow determined by the
boundary motion §2.

We consider the “Sternberg Space” ¢ * x X =

N, where €% = {(n,¢)|nE€ € and ¢ is a func-
tion on X =n(n) with [y$dd4=0},2Z* is the
dual of the Lie algebra of G, elements of which are
represented here as divergence free vector fields on
D parallel to dD, and €% x Z ¥ is the quotient of

€% X% by the diagonal G action:

Y((n,9),v)={((n°v.$), P(4*Tv)).

where ¢*T denotes the coadjoint action, given in
our representation of Z* by y*Ty=(Ty H)T-vy*
¢~ 1, where T denotes transpose and Ty is the
tangent of . (Note that 47 is written here as
triples in the order (Z, ¢, w).) We remark that € *
is the pullback bundle which makes the diagram

CF > €
) ¢ (4.8)
T*%# > %

commute. The horizontal lift # from % to €
defines a connection one form I' on %, a horizon-
tal lift # from T*% to A"’ and a connection one

form I"on A4"’: we define the covariant differential
of a function F on A"’ as follows:

DI‘F(E’ qb’ W) .(625 8¢’)
= DF(2,¢,W)-71(Z oo (82, 80)

f( 08z + 2 6¢)dA+f<

where (83, 8¢, 8w) = s 4 (82, 8¢).
We calculate the third component, 8w, of
il(E,d),w) as follows. Let (7, ¢, v) be a curve in
€% X Z¥ tangent to the vector (89, 8¢, 0).
The projection of €% X Z* onto A =

¢* é(.”[H* takes (n,,9,,v) to (2,9, Plu,)),

>dV

(4.9)

where 2, = d(n (D)), P, denotes projection onto
the parallel component of the Hodge decomposi-
tion with respect to =, and u, = n*"Ty. We assume,
without loss of generality, that n,=Id and note
that in the following calculation the symbol &
represents differentiation with respect to &
evaluated at e =0 (e.g. Su=d,/de| _qu,). A com-
putation shows that

Su=28nlul, (4.10)

where 8q[u]/ = — (84 ,u’ + u/87'). Since w, =
P(u,)=u,— va, for some harmonic functions
a,, we find that 8w =08u— Vda. Also, dnju]=
8q[w], since u=u,=w=1y at e=0. Now, using
the horizontal lift from %# to €, we set én=
h,(82) = VN(82) and compute that
dw=vN(82Z)[w]+ agradient, (4.11)
using the fact that

VN(82)[va] = v((VN(3Z), va)).

(The gradient term is chosen to make the boundary
condition for 8w the same as the condition (4.2).)
It follows that

D F(Z, ¢,w)(82 8¢)
f( 285 + o 8¢)dA

+f1) ‘<g—f’,VN(82)[w]>dV. (4.12)
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According to the general bundle formula given in
Montgomery, Marsden and Ratiu [8], the bracket
on A is

(F.G}(2.9.w)
(e )

+{(w, 25 ,(JDF, JIDFG))) dav

+{D;F, DG} 1sg, (4.13)

where the bracket in the first term denotes the
usual Lie bracket on fields on Dy (minus the left
Lie algebra bracket of Diff), 2y , is the curvature
of the connection I' on A4, thought of as a
bundle valued two form on T*%’, J is the mapping
induced by the symplectic form on T*# which
takes T*(T*#) to T(T*%) and the bracket in the
final term is the canonical bracket on T*# with
partial derivatives replaced by covariant deriva-
tives. Substituting the expression for D.F given
above, one finds

Sl fuz(_<w[g—ig%]> —<w,[VN(g(I;

8F oG e SF
{8 {2 (3 (2

S. Generalized brackets and vorticity Casimirs

A straightforward (although somewhat lengthy)
computation shows that this bracket is equal to the
bracket given in (4.5).

Remarks. 1) In the computation of the curvature
and canonical bracket terms, it is never necessary
to explicitly determine a functional derivative cor-
responding to the X-component of D F. In the
curvature calculation, JD . F is projected via the
canonical cotangent bundle projection onto
0F, »&T%; the Z-component does not enter
into the calculation. In the canonical term we
express the bracket in the form

5G SF
(F\GYqeg= f( »F 54~ DsG- 8¢)dA

(4.15)

avoiding the need for a covariant functional de-
rivative with respect to =.

2) The calculation of @ , involves a projection
onto the parallel component of the Weyl-Hodge
decomposition which need not be explicitly com-
puted, since pairing the curvature field with the
parallel field w annihilates the gradient compo-
nent.

Fo(35)])

w]>)dV +f(6—F8—G—‘S—G-8—F da.

(4.14)

We now introduce a more general Poisson bracket which, while more complicated than the brackets
already given, has the advantage that it admits a larger class of functions. In particular, functions of the
form f, P(w)dV, where w is the vorticity, do not possess functional derivatives of the form prewously
descnbed but still will be shown to be Casimirs of the generalized bracket.

We consider first the case of an ideal fluid moving in a fixed region D in R". The configuration space for
such a fluid is G = Diff ;(D); we are concerned with the phase space T*G reduced by the right action:
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G\T*G = Z *(D). (See Marsden and Weinstein [6].) We identify Z'*(D) and Z(D) via the L, pairing of
elements v and wof Z(D),

fD<v, w)dV. ‘ (5.1)

A function F: Z*(D)— R is considered to have functional derivatives if for every element v of Z*(D),
there exist (i) (8" F /8v)(v), an element of (D), and (ii) (8 F, /8v)(v), a vector field on 9D satlsfymg

DF(U)-au=fD<%(v),so> dV+/ < (v), au|aD> (5.2)

for every variation 8v. (As in section 3, 8"F/8v and 8°F/8v are not unique; the normal component of
8"F/8v can be modified arbitrarily using a harmonic gradient.) The Poisson bracket on % (D) is
computed, using an argument analogous to that given in section 3, to be

8F . 8G  O8F 8G
{F,G} =fD< ’8v dv+ (< X + X >

#{vlhs n.e > (v(s.9). 83Vf>)dA, (5.3)

where Vf, = (I — P)(Vv)+*8"F/8v) and vf= (I~ P)((6"F/8v)*V)v). For this to correspond to a
well-defined bracket in Lagrangian representation, a restriction must be placed on the boundary terms to
avoid squares of delta functions, just as in section 3. For example, if one of F or G should satisfy
8°F/8v =0, then (5.3) is well defined.

In the two-dimensional case, the bracket (5.3) simplifies to

(r6)= [ {0 50 x 52V v [ (v 50 )~ (wlam o G ) aa 9

since, on 3D, 8"F/8v and 8°G/8v (likewise 8°G/8v and 6 F/8v) must be collinear and hence have trivial
cross product.

We now restrict our attention to the two-dimensional case and show that a function of the form
C(v)= [P(w)dV, where «w = <w, Z >, £ is the unit vector in the z-direction, and @ is a C* function on D,
is a Casimir. We will show that {C,G} =0 for all functions G with functional derivatives such that
8°G/8v=0. A calculation shows that C = [,@(w)dV has functional derivatives

8°C R 8°C R
5o = P(curl (@(w)£)) and —- =P(w)iXw
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(so here we choose 8°C/8v to have zero normal component). Thus, using (5.4), and integration by parts,
{C,G}= f<w P(curl (9'(w) ))X >dV f (V(ge—g), & (w)Exv)d4

d1v <15( )6 ) <8G ((I=P)(curl(9(w)2)) V)v >

8"

z 80'V)”’(’—P>(curl(¢'(w)f))>)dv

+

(vo)-

< (1= P)(curl (¢(0)2), (Sf-v)u>
(v

= (.

Thus C is a Casimir in the sense that {C,G}=0 for any G such that § G/80—0 In partlcular
{C, H} =0, where H(v)=(1/2)p|v|?> dV is the standard Hamiltonian.
We note here that

8F §G
/Dw{E,m}xydxdy, (5-5)

where { f, g},,=(3f/dx)dg/dy —(dg/dx)df/dy and df/dw is determined by the condition

DF 8w = f S Swdxdy, (5.6)
D

is not the appropriate bracket for two-dimensional fluid flow. The vorticity functionals defined above are
not Casimirs for (5.5). In fact (5.5) differs from the correct bracket (5.4) by some non-trivial boundary
terms. This can be seen if one computes {C, H} using (5.5) alone; one gets a non-zero answer, which
would contradict the conservation of vorticity by ideal fluid flow.

We now present the generalized bracket in the free boundary case, in two dimensions for simplicity. We
say that a function F on A" has functional derivatives if there exist

(1) (8F/82)(v, X) a function on X determined up to a constant,

(ii) (8"F /8v)(v, ) a divergence free vector field on Dy, and

(iii) (8 "F /8v)(v, X) a vector field on X
such that

DF(v, 3)+ (8v,83) =sz< %(U, ), 60> av

: +f2(g—§(v,2)-8E+<%(u,2),89>)d,4 (5.7)

for all variations (8v,82). (As usual, one can choose the normal component of 8 F/§v at will.) The
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generalized bracket on A" is

8F 8
{F’G}sz <w, 8v
z
8F 8 L 8F 3G 8F  8°G
+f2<‘°’ TR DT a—u>+<a—z‘”’—aa‘>
8G\ /8G &°F 8F
+<VPF»W>—<8—EV,W>'<VPG,W>)dz4, (5.8)

where w? =curl v and p, is the solution of the Dirichlet problem: Vipp=

—div ((vv)*8°F/8v) and

prl2 =8F/8% — ((Vv)+8 F/8v,»). The derivation of the bracket (5.8) is analogous to that given in

section 3.

As in the fixed boundary case, functionals of the form C(v, 2)= [, ®(w)dV are Casimirs of the
generalized bracket in the sense that {C, G} = 0 for any function G on .#" with functional derivatives such
that 8 G/8v = 0. The function C given above has the functional derivatives

8°C

8C
'g'z-=¢(w), W=curl(¢"(w)z),

§C

—d)( )i X v,

we omit the details of the calculation that {C,G} =20, which involves, only basic vector identities and

repeated application of the divergence theorem.
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