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ilONLINEAR STABILITY OF THE KELVI:I-STUART CAT'S EYES FLOW

Darryl D. liolm, Jerrold E. Marsden] and Tudor katiu2

ABSTRACT. Conditions which ensure the nonlinear stability
of the Kelvin-Stuart cat's eyes solution for two dimensional
ideal flow are given. The solution is periodic in the x
direction and is bounded by two streamlines, which contain
the separatrix, in the y-direction. The stability condi-
tions are given explicitly in terms of the solution param-
eters and the domain size. The method is based on a tech-
nique originally developed by Arnold [1969].

1. EQUATIONS OF MOTIOi AND CONSERVED QUANTITIES. The Euler
equations for an ideal, homogeneous incompressible fluid in a
domain D in the plane R 2 are:

av . S -

¢t (ve¥ly = -Tp

divv =20 (1.1}
veii = 0

where v = (v],vz) is the velocity field, p 1is the pressure,
and @ s the outward unit normal of the boundary 3D.
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172 HOLM, MARSDEN AND RATIU

let w=Zecurl v =v -v be the scalar vorticity and ¢

the stream function, ?::, v = curt (¢ 2) = (w,y ,-¢.x). where
2 is the upward unit vector, orthogonal to the xy plane. The
existence of y is proved in the following manner. Since v
is tangent to each component (ao)i of 30,i=0,1, ..., 0,
the integral of i dy - vy dx around each (aD)i is zero.
Since div v = 0, we conclude that its integral around any
closed loop is zero. Thus, by elementary calculus, vtdy -

v, dx = dy for some ¢, i.e. vy = w,y and v, = '¢,x‘
Since v is tangent to (ao)i. v 1is constant on each (30)1,
i=0, ..., g, so adding a suitable constant to ¥, we can
assume it is zero on (ao)o. Since

vedg

curl(yz)«dg = (2 x de) vy

- .‘\ S - 3&’
Yyen ds 5n ds,

where d& and ds are the vectorial and scalar infinitesimal
arc elements, we see that the circulations around (aD)i,
i=0, ..., g have the expressions

e wares| B

by, T J<ao)].

gle
=

In a bounded domain D, given the scalar vorticity , the
stream function ¢ is uniquely determined by the elliptic
problem

-Vzw = w \

u;l(aD)0 = 0

¥; = v|(3D); = constant, =1, ..., g .2
{

e - 2 4s = constant,
(3D);
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Applying the operator i-cuﬂ to the momentum conservation
equation in (1.1) written in the form

/ot = v X wZ - z(% lv1? + p),
yields the vorticity equation
aw/at = {y,w}, (1.3)

where {y,ul=¢ v -V w is the usual Poisson bracket
. 2 1 X Y yY s X
in R

Fix the vectors ¥ = “”1' s V) and T = (1‘0, ees )y
and consider the following space of vorticities (with appropriate
smoothness properties):

Fw rc {w:D » R| there exists a function ¥:D + R
== satisfying (1.2) with the constants
wl, N wg. Tgs ==e» I‘g}.

For w € Fw pr we will write ¢ =-(V2)-]w for the unique
X

solution of {1.2). On this space, the total enmergy takes the

form

{
H(w) =%J I_\le dx dy'-'-]z-J IZ‘HZ dx dy
D D
VU pudxdy + 3 [ v Ten d (1.4)
=5 wdX ay = *n as .

{ -
s J o(-72) Ve dx dy - —]2- § Ty
D i=]

N

In addition to this conserved energy, from (1.3), the identity
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It
J f{g,h} dx dy = f {f,g}h dx dy - J fhvg-ds ,
D 3ap

and the fact that « and ¢ satisfy (1.2), it follows that the
functionals

Cylu) = jD olw) dx dy (1.5)

are also conserved, for any ¢:R - R

2. VARIATIONAL PRINCIPLE FOR THE CAT'S EYES. Stationary solu-
“tions we» ¥, Of (1.3) are characterized by having W, and
Yo, parallel. A sufficient condition for this to hold is the
functional relationship

Ve = W(we)- (2.1)

The stationary solution treated in this paper is the Kelvin
[1880]-Stuart [1967] cat's eyes solution given by

we(x.y) = log[a cosh y +./a2-1 cos x1, (2.2)

in the domain 0 < x < 27, - < y < =, where a is a real parameter
satisfying a > 1 (a =1 gives a shear flow). The streamlines

¥ = constant have the form shown in Figure 1. The vorticity

is given by

-2u
welXsy) = -Vzwe(X.y) =.e ¢ (2.3)

so that ¥ in (2.1) is given by

Y(2) = - % log{-1), A < 0. (2.4)
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Figure 1. Computer plot of the cat's eyes streamlines for
the stream function y{(x,y) in (2.2) with a = 1.175,

The components of the velocity are

vy, ® a sinh y

Y a cosh y +,fa2-1 cos x ’
\)ai-l sin x

2
a cosh y +./a%-1 cos «x

(2.5)

Vo =tV T

so that Vo 0 as y -+ =, whereas Vi $1  as y -+ i,
j.e. in the limit, the velocity is a shear flow in each half-
plane in the opposite direction. We shall consider in this
paper only domains bounded by a pair of streamlines below the
upper separatrix and above the lower separatrix, i.e. we shall
require that the finite domain D be givenby 0 < x < 27
and y bounded by the streamlines ¢ = ¢ loglac +a +Ja2_-l]
for some ¢ > 0. The reason for this restriction is that the
infinite domain allows arbitrary wave numbers, which prevent
the estimates below from being carried out.
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In the domain D, we shall seek the stationary solution

w, as a critical point of the conserved functional

H¢(w) = JD {% w(-Vz)-]w + {w)] dx dy

§our,. (2.6)
=1 11

ro—~

Integrating twice by parts andusing the fact that 6w|(3D)i =0,
3(éy)/ands =0, i =0, ..., g, we get

DH¢(we)-6w = JD (lpe + @‘(we)éw dx dy

| (8u,) + 00,160 ax ay.
D e e
By (2.4), the function ¢ equals {up to a constant)

A
®(x) = -JO ¥(s) ds

A
= 12, Jo log(-s) ds (2.7)

= 3 AMlog (-3) -1).

This function has the graph shown in Figure 2. The function is
concave since

(1) =% <0 for A<0.

Bounding the domain in the y direction will keep w away from
the bad point X =0 in Figure 2, where ¢" 1is unbounded below.
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Figure 2. The Casimir function ®() in equation (2.7) is
convex downward.

3. STABILITY ESTIMATES. To study the stability of the Cat's
Eyes solution in a finite domain, consider a finite perturbation
Aw. The quantity

n

ﬁo(Am) 1= Holug + 0w) - Holw,) - DH (w, ) +Bw

[i]

jn 2 2l-2) T + ol + ) - 0lw,)
- 0'(we)Aw] dx dy (3.1)

is conserved since DHQ(we) =0 for ¢ given by (2.7)

To establish nonlinear stability, we shall bound the con-
served quantity (3.1) above and below, in a way that implies
bounds on the L2 norm of the vorticity perturbation for ail
time. To get this stability estimate, we modify ¢ to a func-
tion &, in such a manner that ¢" is bounded above and below
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and DHg(w ) = 0. For these bounds on ¢, we first compute
min mb(x.y) and max ub(x,y), where D = {(x,y) € RZ[O < x<

/.2

-1 -

2n, |y| < cosh ]lc +1 4 5;—1 (1 - cos x)], c>0}is the
- J

domain bounded in the y-direction, by the two streamlines
we(x,y) = +log{ac + a +V/a2-1) and over a 2n-period in x.
Since

"2‘1" (X:)‘) -
“%(x‘y) =-e ¢ = -[a cosh y i-daz-l cos xJ] 2 (3.2)

the critical points of the stream function and, thus, of the
vorticity are at x =0, 7, 2n and y = 0. The critical
values of vorticity are

-[a +J2° 112, for x =
-[a - Ja21T2, for x =

The value of ub(x,y) on the y-boundary is

-[ac +a + \/az-ll-z

1
o
-
~n
E]

and

1
=

and on the vertical boundaries x = 0, 2n is

-[a + .Jaz-l]'2 < - [a cosh y +-Ja2-l]-2 < -lac +a +4a 1772,

Consequently,

-[a -~}a2-1]'2
-fac + a +~/a2-1]'2.

"

min w {x,y)
D ©
(3.3)

X 0, (x.3)
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Thus, on the interval [min we(x,y), ma x we(x,y)] the function
D D

¢ has its second derivative bounded by

] " - ] ]
Zmaxmlx,yif°(we) e ~ 2 min w (X.¥) < 0.
D e e D e

How define the following Cz-function:
-3 2y Z 02 4 (el -a-at g
for A < - (a - Jat1)72
o) = 5 Alog(-1) - 1),

P = .- ..
o(A) for -(a -Ja -1) 2 <X<-lac +a +,\ia2-1) 2

-%(ac +a +4a -1)2)\2 - (ac + a +.fa2-l - 1)) + 8,

for A > -{ac +a +Ja -1)'2

where a = (a - fa -\)'2 (log {a -J?:) +2) +-12- (a -\/ra—z—-T)'2

+ (.}a 1) -a - 1)a - Ja -”-2:

and
B=(ac +a -h/az-‘l)'z(log(ac +a + Ja"-1) +2)

1 2 1y-2
+-2(ac+a+ act-1)

- (ac + a +Ja2-1)(ac +a +Jaz-1 - 1)-2.

Since ¢ and ¢ coincide on the interval [min we(x.y).
D
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max w (x,y)], it follows that ODHz(w ) = 0. But unlike ¢, ¢
D

has its second derivative bounded on the entire axis, namely
—]2- {a -Jaz-l)2 < () 5% (ac +a +4a’-1)2 (3.4)

for all - o < A <4=, Consequently, the function -& is convex,
i.e.,

% (a -Ja -1 )Z(Am)2 < -5(we+ Aw) + E(we) + -‘5'(we)Aw
_57} (ac + a +Jaz-l)2(m.:)2 . (3.5)

Considering the negative of (3.1) with ¢ replaced by 5
we get from (3.5) the estimates

fizlow) <3 J [} (ac +a +J2Z1)? (au)? + 2o( 92) Vo] ax oy
D
“Hglow) >3 Jn [ (a - JaZ) 2 (00)? + 20(¥)) N u] dx gy,

Let Ama denote the value of the perturbation Aw at t = 0.
Then by conservation of -ﬁa we get

[ 5 ta - aZ)2e0? ¢ sw (7)) Taulax dy < -2 o)
0

= -2ﬁ5(Aw0) < JD [12 (ac +a +-\/a2-1)(Aw0)2
+ (g (7P) N (awg)? 1 ax dy

5[[12 (ac + a +Ja2-1)2(Aw0)2 dx dy,
o]
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2,-1

since (97) is negative. Thus we have the a priori estimate

-12— (a - Ja -1)2Aw“22 + J Aw(VZ)-]Aw dx dy
L D
(3.6)
1 2 2
<G (ac +a +Ja"-1) ]UAub“Lz-

To prove nonlinear stability, we still need an estimate in terms
of the Lz-norm of Aw for the second (negative) integral on
the left hand side of (3.6). This will be done by using the
following Poincare type inequality.

Egﬂﬂﬁ' Let kmin be the minimal eigenvalue of -Vz in the space
ﬁ, r on the domain D, Then

j Aw(VZ)-1Aw dx dy > -k;n;"n “Amuzz.
D L

PROOF. Let kf be the eigenvalues of -vz, i=20,1, .vus

with kg = kiin and let 43 be an l.2 orthonormal basis of
eigenfunctions, i.e.

2. _ .2 -
-v Q.i = k‘i¢i' ID ¢'I¢J dx dy = é‘ij.
-2 . 2.-1 .
Then -ki are the eigenvalues of (v°) ', i.e.
21, L 2, s .
(08) Yo, = k%0, 1 =0, 1, Len
setting &w = ] c.6;, we have

i=0
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( .
J 2al9%) Va0 dx dy
D

-

-2 for all

. -2 .
since kj < kmin J
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H 2,-1
1 c.c. j 0, (V5) "¢, dx dy
i3 i) p ! i

-2
=-} cc.k J ¢.6. dx dy
'i,j‘Jj D‘J
T ,-2.2 J 2
a - k.c%
iZO VI PR
> -k;fn E c§ j 62 dx dy
i=0 p J
-2 2
= 'kminuAuﬂLZ
=0,1,2, ... B

This lemma, and (3.6) yield the estimate

1 2 -2 2
LE (a - Jaz-l) - kmin]ﬂAwULz

< E% (ac +a + az-])z]ﬂAwoﬂ2

(3.7)
LZ

The fina) requirement for nonlinear stability is to ensure the
positivity of the coefficient in the left hand side of (3.7).

According to the characterization of the minimal eigenvalue
of the Laplacian on bounded domains by the Rayleigh-Ritz

quotient, we see that this minimal eigenvalue is a
function of the size of the domain,

2
kmin
0<x < 2m,

~

ly| < &:= cosh-][c +1 4

decreasing
Thus, we shall replace

with the first eigenvalue of the Laplacian on the rectangle

—
2 "] . (3.8)



NONLINEAR STABILITY OF THE KELVIN-STUART CAT'S EYES FLOW 183

i.e. the height of the rectangle is the distance between the
highest points of the streamlines ¢ = ¢ log (ac +a +Ja7:).
The minimal eigenvalue of -Vz on the space of functions van-
ishing on the boundary and having zero circulations on each
component of the boundary belongs to the eigenfunction

cos x sin % and is 1 +"—2. Thus, for (3.7) to provide a

A
meaningful estimate, we need to satisfy the inequality
(a - a2 5 2 1+“—z]- 22
a -na - / 12' = ;f—:—zz (3.9)
J

Solutions of this inequality exist, since, for example, the pair
a=1,c =1 satisfies it, but there is clearly an implicit
trade-off between a and £ in (3.9), by virtue of (3.8).

We study inequality (3.9) for ¢ = 0, i.e. we take the
y-boundary of the demain to be the separatrix. The inequality
becomes

I—z— 2

( J_z_ » Zl-iosh'] [1 + E_aa-_j_J]- ( )

a -Aa-1)°> — . 3.10
7+ [cosh'] [] + 2———“‘5:'])]2

Numerically one verifies that this inequality holds for
1<ac<1.175 ... ; see Figure 3.
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Figure 3 Graghs of fla) = (a -V al - 1)2 and g(a,c% =

29.2/(1'2 + 22), where 2(a,c) = cosh~1l[1 + ¢ + 2a-1/a¢™-"1]
for a between 1 and 1.2 and ¢ = 0,1,2,3. The inequality
(3.9) is satisfied, so that the cat's eyes flow is stable,
for values of (a,c) such that f{a) > g(a,c).

We summarize our results in the following.

THEOREM. The Kelvin-Stuart cat's eyes solution (5£.72) of the
Euler equation (1.1) is nonlinearly stable in the L2 rorm on
vorticities for perturbations of the inttial vortieity whick
preserve the flow rate (Y = constant on the bowndaricc) and
the circulations, in a region bounded by the streamlinec

Y, =t Joglac + a +Ja2-l]. provided a and ¢ satisfy (2.8)
and (3.9}, For 1 <a <1.175, ..., this region containe a

separatrix in the cat's eyes flow.
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Note that in the special case a =1, the cat's eyes solu-
tion reduces to the v, = tanh(y)shear flow, which is stable
according to the present analysis, provided the domain is 1imited
in the y direction by |y| < cosh™ (1 + c) where (using 3.9),

¢ < cosh n2-1 = 9,665.8 ... (3.11)

4. FURTHER REMARKS

(i) variants of the basic flow can be treated by the same
method. For example, consider

*g = logl a cosh y +'Ja2-1 cos x]

as before, but on [0,4r] rather than [0,27); i.e. include
two "eyes" rather than one. The same analysis shows that {3.9)
is replaced by

(a - a2 > 2 (a.1)

T
+
P

Hl—

This restricts the stability reg}on somewhat, but by considering
a =1, it holds for ¢ < cosh[ﬁg— -1 =139.7 ... (the analogue

of (3.11))}, and so (4.1) holds for a nontrivial range of a > 1
and ¢ >0 and again we get stability on a region containing
the cat's eye separatrix. (These results are consistent with
known linearized and nonlinear results; cf. Stuart 971}).

(1) Although the computations are more complex, in
principle, the method applies to the sinh-Poisson solutions of
Ting, Chen and Lee [1984].

(iii) Cat's eye solutions provide interesting equilibria
for a plasma confining Grad-Shafranov solution of reduced mag-
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netohydrodynamics (where the current and magnetic potential
replace the vorticity and stream function). The present method
applies directly to give a nonlinear stability result in that
case; see Hazeltine, Holm, Marsden and Morrison [1984]. The
known coalescence instability for magnetic islands in that case
is avoided by having sufficient transverse constriction for the
Poincaré inequality to ansure positivity in (5.7).
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