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Temporal and Spatial Chaos in a van der Waals
Fluid Due to Periodic Thermal Fluctuations
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The Mel'nikov technique is applied to prove the existence of deterministic chaos
in two problems for a van der Waals fluid. The first problem shows that temporal
chaos results as a result of small time periodic fluctuations about a subecritical
temperature when the fluid is initially quenched in the unstable spinoidal rcgion. The
second problem shows that spatial chaos arises [rom small spatially periodic
flunctions in an infinite tube of fluid if the ambient pressure is appropriately chosen.
© 1985 Academic Press, Inc.

(" 0. INTRODUCTION

In recent years several papers and monographs have discussed the appli-
cation of the Mel'nikov [26] technique to establish the existence of determin-
istic chaos in periodically forced evolution equations. In this regard we
mention the work of Greenspan and Holmes [10], Gruendler [11],
Guckenheimer and Holmes [12], Holmes [15-17], Holmes and Marsden
[18-21), Kirchgraber [23), Lichtenberg and Lieberman [25], Moser {27], and
Nicolaevsky and Shchur [29]. The purpose of this paper is to show how the
Mel'nikov method can be used in analyzing two problems arising from
van der Waals’ [34] theory of phase transitions.
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The first problem concerns the dynamics of spinodal decomposition.
Assume we have a van der Waals type fluid with isotherms as shown in Fig.
1. We will consider a general class of constitutive functions with properties
motivated by the specific van der Waals constitutive relation (see, for
example, Fermi [9])

RO a

p(w,0)=—w_b~w—2, (0.1)

R, b, a are positive constants, p is the density, w = 1/p is the specific
volume, and 4 is the absolute temperature. Figure 1 sketches isotherms of p
for 8 above, equal to, and below the critical temperature 8, = 8a/27bR.
For 6, < 0_;,, p(w,8) has the features

(i) pu(w,8,) <0  on (b,a)U(B. ),
(i) pu(w,8)) >0  on (a,B), (0.2)
(iii) p,(a,b) = Pw(ﬁ’oo) =0.

The domain (b, &) corresponds to the fluid being liquid; the domain (8, )
corresponds to the fluid being vapor; the domain (a, 8) is the unstable
region and is referred to as the spinodal region. We have also noted the
point w, where p,, = 0 on the graph of the 8, isotherm (w, is the zero of
ROw* + a(w — b)® = 0). r%‘\

9'>8

erit.

90< gﬂ".

O e e ——— ——_——

w=p™!

F1G6. 1. Van der Waals isotherms.
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The fluid flow is thought of as taking place along the (Eulerian) x-axis in
a tube of unit cross section of fixed volume. If 8, > 6_;, then w = w;, will
describe a stable homogeneous configuration for the dynamic equations
discussed in Section 1. We then instantaneously quench the fluid by
reducing the temperature to 6, < 6. The homogeneous state w, will now
be in the unstable spinodal region of the 8, isotherm. The first part of this
paper examines the effect of a small time-periodic fluctuation of the ab-
solute temperature about 6,. Specifically we show how the loss of stability
of w, is accompanied by temporal chaos in that the first two hydrodynamic
modes of w possess a Poincaré-Birkhoff-Smale horseshoe in their dy-
namics (see Smale [32}]).

Crucial to our analysis is the presence of a small viscous contribution to
the stress. This does not mean that we expect the inviscid problem not to
contain horseshoes but only that the comparatively straightforward
Mel'nikov method used here is inapplicable. Inviscid problems will need
methods involving exponentially small Mel’'nikov functions and Arnold
diffusion. Such work is currently in progress [22].

Also, as noted above, we work with a finite-dimensional approximation to
the governing equations of hydrodynamics (actually a finite-dimensional
Hamiltonian structure with a viscous damping contribution adjoined). As
Holmes and Marsden [18) have already presented an infinite-dimensional
Mel'nikov theory, it is not the infinite-dimensionality of our problem that
forces us to make the finite-dimensional approximation. The difficulty arises

(,m;[rom the fact that their theory requires the existence (and rather specific

. .nformation regarding) a homoclinic orbit lying in a two-dimensional mani-
fold for the inviscid, unperturbed, infinite-dimensional problem. While
Holmes and Marsden were able to exhibit such an orbit for the vibrating
beam problem they considered, the corresponding existence question of a
homoclinic orbit for the van der Waals fluid is as yet open.

The second problem considered is the effect of a small thermal perturba-
tion of the form #(x) = 8, + € cos gx, € small, on the equilibrium configura-
tion of an infinite tube of fluid under a given applied load. We shall show
that in this case there are solutions with the features of both metastable and
co-existing phases that exhibit spatial chaos.

The paper is divided into four sections. The first section recalls the
one-dimensional Lagrangian description of compressible fluid flow and
shows how the governing hydrodynamic equations can be written in a
perturbed Hamiltonian form. The second section presents a finite mode
approximation to the original Hamiltonian, develops the finite mode
approximation to the evolution equations, sketches the relevant
Holmes—-Marsden—Mel’nikov theory, and shows how it applies to the first
problem of temporally chaotic solutions for the van der Waals fluid. The
third section considers the equilibrium states of a van der Waals fluid and



138 SLEMROD AND MARSDEN )

the chaotic solutions formed as a result of spatial thermal perturbations.
Finally in the fourth section we show that van der Waals fluid theory is
directly applicable to an elastic bar model of Ericksen [6] where a nonmono-
tone stress—strain constitutive relation is used.

1. ONE-DIMENSIONAL LAGRANGIAN DESCRIPTION OF
CoMPRESSIBLE FLUID FLow

The Holmes and Marsden {18] theory depends heavily on the evolution
equations possessing a perturbed Hamiltonian structure. For this reason it is
advantageous to use a Lagrangian description of the fluid motion. Since the
motion is assumed to be planar so that the flow depends only on the one
cartesian coordinate x and the time s a Lagrangian description is particu-
larly simple (see, for example, Zel’dovich and Raizer [37, p. 5] or Courant
and Friedrichs [5, p. 30]).

Let us denote the Eulerian coordinate of a reference fluid particle by x,.
Then the mass X of a column of fluid of unit cross section between the
reference fluid particle and the Eulerian coordinates of a general fluid
particle x is

X= [:p(f.t)df- (1.1)

Here p(x,1) is the fluid density at position x and time ¢. Relation (l.lj/%\
defines for each fixed (X, ) the values of x(X, ¢) implicitly. Furthermore,
differentiation of (1.1) shows 1 = x y( X, 1)p(x( X, 1), 7). Set p(x( X, ),1) =
P(X, 1), w(X,t)=p(X,1)"! = x4(X, 1) (the specific volume), and u( X, ¢)

= x,( X, 1) (the velocity). In this case the equations of balance of mass and
momentum are, respectively,

dw  du
E = 'a—X, (1.2)
du ar
3% (1.3)

where 1 is the Piola stress. We have assumed there are no body forces. In
addition, as we will be varying the temperature of the fluid, we assume the
equation of balance of energy is identically satisfied via immersion of the
fluid in a “heat bath.”

Balance law (1.3) must be supplemented by a constitutive relation for 7.
We assume the fluid is thermoelastic, slightly viscous, isotropic, with an
additional stress component given by the van der Waals—Korteweg theory
of capillarity. (A discussion of the van der Waals-Korteweg theory may be
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found in van der Waals [34), Felderhof [7], Widom [35], the monograph of
Truesdell and Noll [33], and the paper of Aifantis and Serrin [1].) Specifi-
cally we write

r=—p(w,8) + puy — Awyy (1.4)

where w = 1/p as before, p is the pressure, 4 is a positive constant (for
simplicity), and p > 0 is an assumed constant viscosity (again for simplicity).
The term —Awyy is the van der Waals-Korteweg addition to usual
visco-thermoelastic stress.

We now substitute (1.4) into (1.3) and find that x(X,r) satisfies the
equation

Xy = -p(xy, 0)x + px,xx — AX xxxx- (1.5)

We now wish to consider a finite tube of unit cross section which contains
a total mass 27 /q of fluid in a volume (27/g)w,. Here g > 0 is a constant
which we shall subsequently restrict. From the incremental relation wdX =
dx of (1.1) we see that this constraint may be written as

27w,

fo 29(X,1) dX = (1.6)

We now introduce the change of variables X = ¢X, 7 = g1, X)) =
gx( X, t) so that (1.5) becomes (with overbars deleted)

x,= —p(xx.0) y+ €pogx,xx — Aq*x xxxx (1.7)

where we have set p = epg, ¢, po positive constants. The mass-volume
constraint (1.6) becomes

[w(X, 1) dx = 27, (1.8)
0

Next we note (1.7) has the “dissipative” Hamiltonian structure
x,= D, H(x,u;8),
u,= —D H(x,u;8) + epoqu xx, (1.9)

where

- 2 2
H(x,u;8) = %j;z [52- + ¢ (xy.8) +A—g-x}(x dx,  (1.10)
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D,, D, denote the variations with respect to u, x, respectively, and
3
¥(£,0) = —f p(s,0)ds.
Wy

2. TEMPORAL CHAOS ARISING IN THE SPINOIDAL REGION

Assume we have a van der Waals fluid with constitutive relation for p
given in (0.1). (In fact, we only used the properties of p described in (0.2)
and the usual graphical features of the van der Waals isotherms shown in
Fig. 1.) We will now study the behavior near the “quenched” equilibrium
solution w = wy, u = 0 of (1.5) (i.e., xx = wy, x, = 0) where the absolute
temperature & is given by the relation

6(X,1) = 0, + eycoswtcos X (2.1)

where ¢, X represent the new scaled variables introduced in Section 1. To
perform the perturbation analysis we expand p(w,8) about (w,,8,) in a
Taylor series and truncate at cubic terms. In this manner we set

p(w,8) = p(w,,8,) + AW, 8 )(w — Wo) +p,(wo,00)(0 - 6y)

+Pu (o, Bo)(w = wo)(8 = 8) + 22 (6w — g )’

+ B2 (o, ) (w = ) (68— ) 22

where pgy(wy, 65) = P,.og(Wn, 85) = Paag(Wo, 8p) = 0 by (0.1) and p,,,,(1y, 8,)
= 0 by the definition of w,. As w, is in the spinodal region we see

pw(WO’oﬂ) > 0’ pwww(WO’oo) <0. (2'3)

We expand w, u in Fourier sine and cosine series, respectively, on [0, 27]
and use (1.8) to obtain

w(X,t)=xy(X,1)
= wy + x,(1)cos X + x5(#)cos2X + x;(t)cos3X + ...
u(x, 1) =x,(X,t) = u,(t)sin X + u,(¢)sin2 X + u;(¢)sin3X +....

(2.4)
If we substitute (2.1), (2.2), (2.4) into (1.10) we find that
H(x,u) = Hy,(x,u) + R(x,u),
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where H,(x, u) is given by

2 2
Hy(x,u) == ﬁ—-&(w 0,)(x2 + x3)
2 ’ 2 2 2 0> Y0 1 2
- p“"“ (w(,,ﬂo)(xl + x3 + 4xix3) — py(wy, 0y) eycos wix,
pw0

> (wy, ;) eycos wix x, — -%(wo. ;)

2
X (3eycoswix} + 6eycoswix,x3) + 4iq—(x,z + 16x2), (2.5)
and R(x,u) is a remainder term which vanishes when x, = u, =0, n = 3.
If we neglect the effect of the higher modes n = 3, (1.9) becomes the
following two-degrees-of-freedom Hamiltonian system.

v =
1 9u, r

o=
2 auz 29

- 3H,

pWWW
= et = (2. 00) = Ag%)x, +

(w58 )(4X1 + 8x1x2)

1
(«m\ +e{ Po( Wy, 85) ycos wt + Epw,,(wo,00)}'coswtx2

4 Swwd p“w” (W0s0 )(9ycosw:xl + 6ycoswtx2)} — €foguy,

aH Ww W
=~ Tax_ = (Pu(w5,8y) — 444%)x, + £ (4x3 + 8xix,)

+e{£§—0(w0,00)ycoswtxl ”wo(w0,0 )(12ycos wtx,xz)}

—depoqu,. (2.6)
If we set z = (x,, X5, Uy, t5)7, (2.6) has the form
2:1) = fo(2) + efi(z,1) (2.7)
where f, is 27 /w periodic in ¢ and the unperturbed (e = 0) system
(1) = fo(2) (2.8)

is Hamiltonian.
If we linearize the undriven system ((2.7) with y = 0) about z = 0 we
obtain

2(e) =Lz, (1) (2.9)
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where L is given by

0 0 1 0
0 0 0 1
L= p. — Ag? 0 —€poq 0
0 p. — 44q* 0 —depnoq (wo.60)

The eigenvalues of L are given by

A —ep 1 2
Al} = Toq' + ilczu%qz - 4(Aq2 - pw)](‘:o-eo)’
2
A
A:} = —25Poq + [452#6112 _(4Aq2 - pw)]x:.%)‘ (2'10)
We thus see that when
Pw(Wo’oo) 2 pw(WO’ 00)
Ny < g*< R (H.1)

and ¢ > 0 is sufficiently small the first mode is unstable with Al >0,A,<0
and the second and higher modes are stable with

A
A:} = +ilddq® - p, (w0, 8)]"* - r(e), 211)

where r(¢) > 0 and r(¢) = O(¢). We shall assume from here on that (H.]) '
holds.

When ¢ = 0, the linearized system (2.9) possesses two imaginary eigenval-
ues given by (2.11) with » = 0. We now make the nonresonance hypothesis

w? # 449 — p,(w,,6,). (H.2)

In this case (2.6) possess a nontrivial 27 /w periodic solution P.(1). (See,
for example, Hale {13, p. 154]. The analogous infinite dimensional result is
more delicate; see Holmes and Marsden [18, Appendix A].) If we linearize
(2.6) about p (1), the linear variational equation has the form

N1 =0y,

0 = (pw(WO'OO) ‘qu)}’x + %(wo,ﬂo)(ycoswt)yz
—epoqu, + O(€?)

N =10,

0y = (P (g, 8;) ~ 449%)y, + ‘];_wo(“’o’ao)('}‘wsw’))’l
—depgqu, + O(€?) (2.12)
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where the O(e?) terms have coefficients that are 27/« periodic in ¢. If we
make the change of dependent variables

T e = o« o \T
(y1,010 32,02) " = E(J1. 8y, 7,8,)

where
1 1 0 0 def 1,2
s —a 0 0 a={p.(w.8) — 4¢*) ",
E= 0 0 i —-i ) def 12
0 0 —Wy T w0=(pw(w0’00) —44q ) ’

so that the columns of X are the eigenvectors of (Df,/Dz)(p(1)) (a
constant matrix) then % = (J,,8,, j», 0,)7 satisfies the “diagonalized” sys-
tem

I=Cz+e®,(1)z + 20,(1)2

with
C = diag(a, —a, —iwy, —iwp),
27 Yar
+ =)= 27\ _
(I)l(t " ) @1(:), d)z(t + ° ) (1)2(:)’
and
20,(¢)
[ ip,gYCOS Wl ip,.eYCOS w! -|
~Hod koq P - 3
ip,gYCOSWI  ip,.aYCOS w!
Kod —Hhod - p 5
- _ Pug¥COSW! p,gyCOSwI -4 4
2uy, 2w, Bod Koq
PeYCOS w! PaY COS w! 4
- - ~4poq —4peq
| 2awy 2a, o 0 |

We then apply standard perturbation of spectra results (for example, see
Exercise 1.10 of Hale [13, p. 267]) to conclude the characteristic multipliers
of (2.12) p,(¢) have the form p,(¢) = "7 with T = 27 /w and

Hof

m(9) = aT = T+ o(e),

pa(e) = —aT + E 1 o(e),

py(e) = +iwT — 2epoq + o(e),

pale) = —iw,T + 2epqq + o(e). (2.13)

This is illustrated in Fig. 2.
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FIG. 2. The location of the characteristic multipliers for (2.12).

In summary we record the following observations regarding (2.6), (2.7):

(O.1) The system 2(t) = f,(z) is Hamiltonian.
(0.2) (2.7) possesses a nontrivial 2« /w periodic solution p (1) of order

¢ for ¢ small.

(0.3) The characteristic multipliers p, for (2.7) linearized about p,(r),

i.., the characteristic muluphers for

(1) =

(p.(!)) -2(1) +¢

(P<(f) 1) z(t)

are of the form p,(¢) = e*(“7 where p,(¢) are given by (2.13).

We also note

(0.4) The unperturbed (e = 0) system () = f,(z) has a two-dimen-
sional invariant symplectic manifold = containing the homoclinic orbit

connecting the origin to itself:

z4(1) =

2a
(= Puww)

(=Puw)

0

1/2
0

1/2

sech at

sech ar tanh ar

o (Wo-oo)

Now let z(1, 15, 24, €) denote the solution of (2.7) satisfying z(to. 74, 2o, €)
= 2o and define the Poincaré map P by Pz, = z(1 + 23/w, 1y, 2y, €). The
periodic solution p,(t) corresponds to a fixed point p,(t,) of the Poincaré
map. The linearization of P: at p(i,), denoted by DP (Pt;)). has
eigenvalues equal to the charactensuc multipliers p; given by (2 13).
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LEMMA 1. Corresponding to the characteristic multipliers p,, p, there are
unique invariant manifolds W"( p(1,)), W *( p(ty)), the unstable and strongly
stable manifolds, respectively, of p(1,) for the map P such that

Q) WU(p (o)), WS(p 1)) are tangent to the eigenspaces of p, p,,
respectively, at p,(t,);

(ii) they are invariant under P ;

(i) if z € W“( p(1o)) then lim,_ (P:)"z=pJty) and if z €
W(p(1,)) then lim, _ (Py)""z = p(to)-

(iv) For any finite t*, W*(p(1,)) is C" close as € — 0 to the homoclinic

orbit z24(t), — o0 <1 < t,, and for any finite t*, W*(p(1,)) is C" close as
€ = 010 zy(1), t* <t < co. Here r is any fixed integer 0 < r < o0.

Proof. Since the unperturbed € = 0 system of (2.7) possesses a two-
dimensional center manifold the standard stable manifold perturbation
theorem does not apply directly. Instead we use a result from the theory of
p-pseudo hyperbolic maps of Hirsch, Pugh, and Shub [14, Sect. 5] though
the result also follows from the paper of Sell [31].

DEFINITION. A linear map 7 :R" — R" is called p-pseudo hyperbolic if
its spectrum lies off the circle of radius p.

Corresponding to the spectral decomposition is a J invariant splitting of
R", R" = E, & E,. The spectrum of , = J|E, lies outside the radius p,
while the spectrum of 7, = 7| E, lies inside.

THEOREM HPS. Let F:R" > R" be a C" map, r > 1, F(0) = 0 with
DF(0):R" — R" p-pseudo hyperbolic. Then the sets W, W, defined by

W, = F"s, S, = {(x,y) € E\Ey; |x| 2 |yl},

nz0

W,= ) F"S, S, = {(x,y) € E\Ey; |yl 2 x|},

ns50

are the graphs of C* maps E, = E,, E, — E,. They are characterized by

z & W, < there exist inverse images F~'z such that |F"z|/p" — 0
asn— —oo,

zE€ W, = |F"z|/p" > 0asn > +co.

If 197 WITall < 1,1 <j < r, then W, is C" and if
T T < 1,1 <j <r, then W, is C".

The manifolds W,, W, depend continuously on F in the C’ sense.
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We now return to the proof of Lemma 1. If F corresponds to the Poincaré
map P° then spectrum of DF(0) is given by (2.13) with ¢ = 0. So DF(0) is
p-pseudo hyperbolic for both p, < p <1 and 1 < p < p,. By smoothness
results for ordinary differential equations, F is C* for any finite » > 0. For
py < p <1, W, corresponds to the homoclinic orbit z4(7) and for 1 < p <
py, W, also corresponds 10 zo(). The map P isa C” perturbation of F and
Lemma 1 follows from the continuous dependence of W), W, on ¢ as given
by the HPS Theorem. O

LeMMA 2. Corresponding to the characteristic multipliers p,, p;, and p,,
there is for € > 0 a unique invariant manifold W*(p(1,)) for Py, the stable
manifold of p,(1,), which is tangent to the eigenspace of p, py, ps @t pt,). If
zE Ws( Pc(’o))’ then hmn—'w( )" = P«(’o)

As e = 0, W3(p1,)) converges Yol (in a neighborhood of {z,(t); —o0 <t
< 1*}) to a manifold W*(py(1,)), a center stable manifold for P?, for any
Sixedr,1 < r < oo; W*(py(t,)) is an invariant manifold for P° correspond-
ing to the eigenvalues p,(0), p;(0), and p,(0).

Proof. The existence of W?*(p(t,)) follows from Hirsch, Pugh, and
Shub [14] as in Lemma 1. To prove the convergence statement as ¢ — 0, we
consider as in bifurcation theory (cf. Carr [3, Sect. 1.4]) the suspended
system

P (z,6) = (Pi(2).¢)

in (z, ¢)-space. By the results of Section 5A of Hirsch, Pugh, and Shub [14],
the suspended system has a C” center manifold W*° through ( py(z,),0).
This contains the orbit zy4(#), —o0 <t < ¢*. Since W*¢ contains all the
local recurrent and stable orbits, it also contains (pJ(fy) €) and
(W?*(p(t5)) €). Now the three manifold W*( p(¢,)) contains W*( p(t,))
which, by Lemma 1, converges to {z,(¢)} as € —» 0. Near such points,
(W3(p(1p)), €) belongs to W*° and since W*° is C” in all variables, and
W3( p(1,)) must converge C’ to the center stable manifold at ¢ = 0. O

Remark. 1t follows that in regions where one knows a priori that the
stable manifold of the approximating system persists, the center stable
manifold of the limiting system must be unique. Compare Hirsch, Pugh, and
Shub [14, Theorem 5A.3] and Fenichel [8].

LEMMA 3. Let

def Lop
M(’o)=f_w9[fo(zo(’ = 1)) fi(zo(r - ’o)v’)] dr
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where Q[u,v] = u'Jv, u, v € R*, and

OO
COO -
- oo
O=OO0

Suppose that M(t,) has a simple zero as a function of t,. Then for € > 0
sufficiently small the unstable manifold W*( p(t,)) and the stable manifold
Ws(pty)) intersect transversally. M(1,) is called the Mel'nikov function.

Proof. We sketch a proof similar to Lemma 4 in Holmes and Marsden
[18].

Choose a point z;(0) on the homoclinic orbit for the ¢ = 0 unperturbed
system, 2 = f,(z). Choose a codimension one hyperplane H orthogonal to
the homoclinic orbit through z4,(0). Since the curves W*(p/(t,)) and
Wh(p(ty)) are C’ close to z,(0), they intersect H in unique points
235(¢q, tg) and 22(#g, 1) (see Fig. 3). The line through the point z(¢,, t,) in
the direction of the vector Jfy(z4(0)) (which lies in = N H since H is
orthogonal to f,(z,(0)) and 2 is symplectic) meets W3( p,(t,)) in a unique
point, since W?*(p(1,)) is C close to W>( p,(2,)) by Lemma 2 and the
persistence of transversality. Call this point z3(z, f4).

Define zJ(¢,1,),22(¢,¢;) to be the solutions of (2.7) passing through
23(2g, to), 28(2os tp) At 1 = 1, respectively. We note that z3(1,, y) = 24(0) +

(M*‘\ v, + O(€?), 22 = 24(0) + ev, + O(€?) for fixed vectors v, v, and z5(¢, 1)

wilp (1)
witp, (1) m/unpenurbed homoclinic orbit
H

2:’“0 |°}' l
0:1g !
w*p, (15 ‘-lt\
|
|
\ |
|

( ' z
—e 4, (2,(0D

Zglto 1)
% )

FIGURE 3
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= z9(t = to) + €z{(t, 15) + O(€?), z8(1,t0) = zo(t — ty) + €2)(t. 1p) +
O(€?) where both z;, z}' satisfy the variational equation

%le(‘»’o) = dFy(zo(1 = 19)) - z§(1, 1) +1i(z0(1 = 1p),1),

and z{(¢g, o) = ¥, 211, 20) = U,
Let d (4, 15) = 25(1, 1) = 221, 15). The vector d (14, 1,) is parallel to
Jfo(24(0)) by construction. Thus the oriented length of d (1,, t,) is given by

def

A =d (15, 1y) - Ifo(24(0)) = Q[f(zo(O)), d:(’o»’o)]-

If A (1,) has a zero, then W*( p (1)) and W *( p (1,)) intersect. If the zero is
simple, then the intersection is transverse; this follows by noting that
changing ¢, can be done by moving the base point z,(0) along the
homoclinic orbit.

To effectively compute A (1,) we note that

'Q[fo(zo(’ - ro))~d¢("’o)]
= Q[fo(zo(t - 1,)),€z{(1,15) — ez}(t, ’0)] — 0(¢€?),
so that

%Q[fo(zo(f - 10)),2,5(;,(0)] = Q[fo(zo(’ = 1)), filzo(t - ‘o)s’)],
%Q[fo(zo(’ - 'o))’zr(”‘o)] = Q[ fo(zo(t - 20)), fizo(t = 15),1)],

Now integrate the first equation from ¢, to + o, the second from — oo to
5. We then find

A (1) = _ff:cﬂ[fo(zo(’ = 15)), i zo(1 = ’o)v')] dr + 0(¢?)

and the lemma follows. O

That W*( p(1,)) and W"( p(¢,)) intersect transversally implies the ex-
istence of a horseshoe now will follow from the following extension of
Smale [32).

THEOREM S (Holmes and Marsden [18, p. 151]).  If the diffeomorphism
PL:R* = R* possesses a hyperbolic saddle point p(t,) and an associated
transverse homoclinic point h € W'( p (1)) O W2(p(1,)), with W,( PA1))
of dimension 1 and W(pt,)) of codimension 1, then some power of Py
Ppossesses an invariant zero dimensional hyperbolic set A homeomorphic to a
Cantor set on which a power of P, is conjugate to a shift on two symbols.
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COROLLARY S (Holmes and Marsden [18, p. 152]). A power of P,
restricted 10 A possesses a dense set of periodic points of arbitrarily high period
and there is a nonperiodic orbit dense in A.

In the spirit of Li and Yorke [24] we shall consider (i) the existence of an
infinite number of periodic points of different periods and (ii) the existence
of an infinite collection of points which are asymptotically aperiodic (as
described in Corollary S) to be an indication of chaos. Furthermore, we note
that the A-Lemma of Palis (see, e.g., Palis and de Melo [30] or Newhouse
[28, Sect. 2]) implies that the stable and unstable manifolds accumulate on
themselves. In addition, the shadowing lemma of Anosov and Bowen (see,
e.g., Newhouse [28, Sect. 3]) shows that, roughly speaking, an approximate
orbit is shadowed by a true orbit.

Now for (2.6) a direct calculation using residues shows that

M(ty) = (ywsinwty)J + 8qp K

where

def 12
J= 4P0(W0' 00)( —waw( Wos 00))

mexp(—wn/2a)
1 + exp(—7w/a))

+ 3 (= Puww(wo, 00))4/2(“’2 + a?) {

and

defl 3

-4
3pwww(u’ ] 00) |

Hence M(1,) will have a simple zero as a function of ¢, if

K

8qp K

Yol |51 (2.14)

We can now state the following theorem.

THEOREM 1. If (H.), (H2), and (2.14) hold, where J and K are as
defined above, then for € >0 sufficiently small the stable and unsiable
manifolds of (2.6) intersect transversally. Furthermore, the conclusions of
Theorem S and Corollary S hold so that there exists ““temporal chaos.”

For example, (2.14) shows that if peg is sufficienty small, M(1o) will
have a simple zero.

Unfortunately, we cannot easily extend our results beyond the two-mode
case since even at n = 3 the six-vector (z,4(),0,0) is not a solution of the
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unperturbed Hamiltonian system. Thus the obvious candidate for a homo-
clinic orbit fails. The existence of homoclinic orbits for higher mode
approximations to the original partial differential equation or for the
infinite-dimensional problem itself remains an open problem.

3. SPATIAL CHAOS IN EQUILIBRIUM CONFIGURATIONS

In this section we consider the effects of small spatially periodic thermal
variations on the equilibrium configuration of a van der Waals fluid. We
once again constitute the stress (now Cauchy stress) according to the
van der Waals-Korteweg theory as

= —p(w,0) - Aw” (3.1)

where p is as given in (0.1), w(x) is the specific volume, 8(x) is the absolute
temperature, 4 > 0 is a constant, and ‘' = d/dx. In the absence of body
forces the balance of linear momentum is 7’ = 0 which upon integration
yields 7 = B = constant ( B is the stress at |x| = o). Substitution into 3.1
yields

Aw” + p(w,8) = B, -0 < X < 00. (3.2)

Hence for solutions possessing limits as |x| = oo, B represents the ambient
pressure at the “ends” of the tube.
Denote by w,,, w, the values of w that determine the Maxwell equal

area construction, i.e.,

fw"_'";{p(w,ﬂo)-p(w;,ﬂo)}dw=o (3.3)

(see Fig. 5).

Equation (3.2) describes a one-degree-of-freedom Hamiltonian system
with independent variable x.

For any fixed 8 = 6, < 6,;, (3.2) will yield three different types of
portraits in the w — w’ phase plane. These are given as follows:

Case 1. The constant B is such that P(w,..6,) < B < p(B,8,). In this
case the w — w’ phase portrait of (3.2) for B fixed is shown in Fig. 4 while
the values w,, w,, w; so that P(wy,8,) = p(wy,8,) = p(wy,8,) = B are shown
in Fig. 5.

Case 2. The constant B is such that p(a,8,) < B < p(w,.,0p). Again
in this case the w — w’ phase portrait is shown in Fig. 6 while the values
Wi, Wy, w3 so that p(wy,8;) = p(w,, 6y) = p(w;,6,) = B are shown in Fig. 7.
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F1G. 4. The w — w’ phase plane for Case 1.

Case 3. Here B is the Maxwell stress B = p(w,,8,) = p(w,,,0;). In
this case the w — w’ phase portrait is shown in Fig. 8 while the values
wy, Wy, Wy such that w, =w,, wy=w,., and p(w,,8)=p(w,,6)=
p(wy, 8,) = B, are shown in Fig. 9.

In all three cases w,, w; are saddles and w, is a center with respect to the
(m\ differential equation (3.2).

ptw, 6§

R N \\ S

- 8 T S atd

[+ ———
“

bt ™

F1G. 5. The p(w.6,) isotherm, 8, < 8, for Case 1.
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FI1G. 6. The w — w’ phase plane for Case 2.

If we consider the van der Waals-Landau-Ginsburg potential (see
Widom [35])

. " . def
f {A‘zv —/ p(s,8,)ds + B(w — Wl)} dx=(w),
— 00 w

the following is true: In Case 1, w(x) = w, is the absolute minimizer of @,
w(x) = w, is unstable in that the second variation of ® is positive there,
w(x) = wy is a local (metastable) minimum. Case 2 is the same as Case 1 if
we reverse w; and wy. In Case 3 the solutions w(x) = w, and w(x) = w, ™
both minimize ®, and w(x) = w, is unstable. Also in Case 1 there is a

]
plw, 8,)

it
7/
/

[~ J X S,

F I et B

[} N

o
Wheemeeaand]
£

Fi16. 7. The p(w, &) isotherm, §, < 4., for Case 2.
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1\

b W3 w

Fi6. 8. The w — w’ phase plane for Case 3.

homoclinic orbit W(x) connecting the metastable state w, to itself, i.e.,
W(x)— wy as x = +o0, W'(x) — 0 as x = +oo0. A similar homoclinic
orbit exists in Case 2. In Case 3 there is a heteroclinic orbit Z(x)
connecting the states w; and wy, i.e.,, Z(x) > w, as x = —o0, Z(x) = wy
as x = +o0, Z'(x) = 0 as x = +o0; Z(x) is the van der Waals solution
representing the interfacial transition from one phase to a second coexisting
phase.

Now we consider the effect of a small spatially periodic perturbation in
the absolute temperature of the form

6(x) = 6, + ecosgx.

plw, 90)‘

A&\‘@m\

Ol ————
[T ISP

i
3
~

FiG. 9. The p(w,0,) isotherm for 8, < 8_,,, for Casc 3.
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According to the van der Waals equation of state (0.1),

eRcosgx
p(w,0) = p(w,8) + 20 (3.4)
and (3.2) takes the form
Aw” + p(w,0,) + %‘ﬁcfs;’x = B. (3.5)

But this equation is a perturbed Hamiltonian system of the type consid-
ered by Holmes [16, 17]. In fact, Lemma 2 of Section 2 immediately applies
where we replace R* by R 2. (In this one-degree-of-freedom case we have no
higher modes to consider so standard Mel'nikov theory applies.) The
Mel'nikov function in all three cases is of the form

= Y'{x — x4)cosgx
—oo (Y(x = xp) - b)

where Y(x) denotes either the homoclinic or heteroclinic orbit. So we see
immediately that

dx

M(xo) =

M(x,) = —RLcosgx, + RNsingx,
where

_ [ Y'(x)cosgx _ (= Y(x)singx
lLam-a® ML oo™ ™
If L+0, N+0, M(x,) has a simple zero at gx, = arctan (L/N); if
N =0, L+#0, M(x,) has a simple zero at gx, = 2m + D#/2, m any
integer; and if L =0, N # 0, M(x,) has a simple zero at 9xg=mam, m
any integer. Hence M(x,) always possesses simple zeros and in Cases 1 and
2 the perturbed system (3.5) has transversal intersections of the stable and
unstable manifolds given by the Poincaré iterates P;. In Case 3 the
transversal intersection will be of Poincaré iterates of a stable manifold
originating near w; and an unstable manifold originating near wy. In all
three cases Theorem S and Corollary S apply when ¢ is sufficiently small. In
fact the earlier Mel'nikov theory as given in Guckenheimer and Holmes [12),
Greenspan and Holmes [10], and Holmes [16] yields the transverse intersec-
tion and Smale’s [32] theorem proves the existence of horseshoes. We
summarize in the following theorem.

THEOREM 2. Consider the equilibrium configurations of a van der Waals
fluid undergoing thermal variations 8(x) = 8, + €cos gx, 0, < 8,,;,. Then for
an applied stress B, p(a,8,) < B < p(B,8,), an equilibrium configuration
will exhibit spatial chaos in the sense of possessing horseshoes.
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We also note that the results of Greenspan and Holmes [10] show that the
periodic orbits surrounding the center undergo subharmonic bifurcations
with the addition of the perturbation and that these subharmonic bifurca-
tions accumulate in a complex way in the horseshoe chaos found near the
homoclinic orbit by Mel'nikov’s method in Theorem 2.

One possible implication of the above result falls within the realm of the
classical theory of interfaces. According to the 1893 van der Waals theory
(and many others since), the heteroclinic orbit Z(x) represents the profile of
the specific volume joining coexisting phases. We see from the above result
on the existence of horseshoes that small spatially pericdic perturbations in
temperature drastically change the interface profile Z(x). Specifically, for
large values of |x| the solution of (3.5) can have chaotic behavior. The
physical meaning (if any) of W(x) is less obvious. Aifantis and Serrin [1]
have termed such solutions “thin films” as their profile in x resembles a
thin film. In any case we see that small spatially periodic perturbations in
temperature destroy the film solution and the perturbed solution exhibits
spatial chaos.

4. APPLICATION TO THE ERICKSEN BAR

Consider the extension of a one-dimensional isotropic thermo-viscoelastic
bar. Assume the bar is of length 2#/¢ and unit density in its deformed
reference configuration, 0 < X < 27 /9. We let x( X, 1) denote the point in
the deformed configuration which was originally at X at time ¢ = 0.

As a model for a “shape memory” material, Ericksen [6] suggested
choosing the Piola-Kirchoff stress of the form

o= —p(xx,0)+p(1,0)

where p has a graph similar to the one shown in Fig,. 1, i.e., p satisfies (0.2).
If we assume the total stress is the sum of o, a small viscoelastic contri-
bution proportional to x,y, and a higher gradient term proportional to
X yxx» We recover (1.5) from the balance of linear momentum. Also if we
deform the bar so that its deformed length is 27w,/q (a “hard” loading
device), then the integral constraint on w(X, 1) = x,( X, ) is recovered.
Hence the results of Section 2 are directly applicable to Ericksen’s bar.
Specifically we can state the following theorem.

THEOREM 3. Consider the thermo-viscoelastic constitutive relation T =
—p(x%0)+ p(1,8) + epox y, — Axyxx for a material in a “hard” loading
device, i.e., fixed length 2ww,/q, undergoing thermal variations 8( X, t) = §,
+ eycoswqrcos gX, 0, < 8., w, such that p,, (w,,6,) = 0. Then if (H.1),
(H.2), and (2.14) hold and if € > O is sufficiently small, the two-degrees-of-
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freedom approximation to the balance of linear momentum given by (2.6)
possesses temporal chaos in the sense of having horseshoes.

Similarly, the results of Section 3 are applicable to an infinite bar with a
prescribed stress B as | X| — 0.

THEOREM 4. Consider the equilibrium configurations of the material de-
scribed in Theorem 3 undergoing thermal variations 0( X)) = 6, + ecos qX,
0y < 8., Then for p(a,8,) < B < p(B,8,), an equilibrium configuration will
possess spatial chaos in the sense of having horseshoes.

Finally we make three observations regarding Ericksen’s bar. First, unlike
the van der Waals fluid, there is little doubt about the validity of the
continuum mechanical balance laws in describing the evolution of the bar.
Secondly we note that Dr. L. Zapas [36] of the National Bureau of
Standards has observed a spatially distributed “sickening” of certain poly-
meric materials at what he believes is the load yielding coexistence of
phases. Such a sickening may be related to the spatial chaos predicted at the
coexistence Maxwell load. Finally, we note the role of stabilizing higher
gradient terms in elasticity has been considered by Ball, Currie, and Olver
[2] and Coleman [4].
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