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Abstract:

The Liapunov method for establishing stability has been used in a variety of fluid and plasma problems. For nondissipative systems, this stability
method is related to well-known energy principles. A development of the Liapunov method for Hamiltonian systems due to Arnold uses the energy
plus other conserved quantities, together with second variations and convexity estimates, to establish stability. For Hamiltonian systems, a useful
class of these conserved quantities consists of the Casimir functionals, which Poisson-commute with all functionals of the given dynamical variables.
Such conserved quantities, when added to the energy, help to provide convexity estimates bounding the growth of perturbations. These estimates
enable one to prove nonlinear stability, whereas the commonly used second variation or spectral arguments only prove linearized stability. When
combined with recent advances in the Hamiltonian structure of fluid and plasma systems, this convexity method proves to be widely and easily
applicable. This paper obtains new nonlinear stability criteria for equilibria for MHD, multifluid plasmas and the Maxwell-Vlasov equations in two
and three dimensions. Related systems, such as multilayer quasigeostrophic flow, adiabatic flow and the Poisson-Vlasov equation are also treated.
Other related systems, such as stratified flow and reduced magnetohydrodynamic equilibria are mentioned where appropriate, but are treated in
detail in other publications.

1. Introduction

The aim of this work is to establish explicit sufficient conditions for the nonlinear stability of
equilibrium solutions of a variety of fluid and plasma problems in one, two, and three dimensions. As
we shall explain below, many of the results in the literature only establish conditions for linearized
stability or instability. The method we use is a variant of the Liapunov technique due to Arnold [1969a].
Recent advances in the Hamiltonian structure of field theories have set theé stage for the new
applications.

For example, the Grad Shafranov solutions of the Strauss equations for reduced MHD in the low 8
limit are shown in section 5 to be nonlinearly stable if the equilibrium current is a strictly monotone
decreasing function of the equilibrium vector potential (see also Hazeltine, Holm, Marsden and Morrison
[1984]).

Another example is three-dimensional adiabatic multifluid plasmas. Here the nonlinear stability
conditions include the requirements that each fluid species be subsonic, and that the velocity, the gradients
of specific entropy and generalized potential vorticity form a right-handed triad; see section 10 for details.

The classical Liapunov method finds criteria for stability of an equilibrium solution of a conservative
dynamical system by seeking a constant of the motion with a local maximum or minimum at the
equilibrium. In many examples, the constant of motion is the energy. An important development for the
applicability of the Liapunov method to fluid dynamics is Arnold’s [1965a, 1969a] nonlinear analysis of
the stability of planar ideal incompressible fluid motion, providing nonlinear stability results that extend
the classical linear theory of Rayleigh [1880]. Arnold adds to the energy H a conserved quantity C
which corresponds to the symmetry under Lagrangian relabeling of fluid particles (in geometric language,
the system in Lagrangian representation is right invariant on the cotangent bundle of the group of
area-preserving diffeomorphisms). Underlying this method is the fact that the Eulerian equations of
motion are Hamiltonian with respect to a certain noncanonical Poisson bracket, now called a
Lie-Poisson bracket. The added constants of the motion are kinematic in the sense that they will be
conserved for any system which is Hamiltonian with respect to the Lie-Poisson brackets; in fact, C
Poisson commutes with all functionals; as such, it is called a Casimir. The functional C is chosen such
that H+ C has a critical point at the stationary solution. Arnold employed convexity properties of
H+ C to find an explicit norm and a priori estimates needed to limit the departure of finite
perturbations from equilibrium. In this way, nonlinear stability was established.

In this paper, we apply the same technique to a number of other conservative systems arising in the



4 Darryl D. Holm et al., Nonlinear stability of fluid and plasma equilibria

physics of fluids and plasmas. Each example will be treated according to the general procedure alluded
to above and which is detailed in section 2. The result in each case will be that if certain inequalities (the
stability criteria) are satisfied for an equilibrium solution, then a priori estimates will guarantee
Liapunov stability relative to an explicitly constructed norm for as long as the solutions of interest
continue to exist.

Four interrelated concepts of stability, often encountered in the literature, will be of concern to us.

(1) Neutral or spectral stability. For a dynamical system # = du/d¢ = X (u), an equilibrium point . satisfying
X (ue) = Ois called spectrally stable, provided the spectrum of the linearized operator DX (u.) has no strictly
positive real part. A special case is neutral stability, for which the spectrum is purely imaginary. This
corresponds to the time evolution of normal modes being purely oscillatory. For Hamiltonian systems
spectral stability and neutral stability coincide.

(2) Linearized stability. The equilibrium solution u. is called linearized stable or linearly stable relative
to a norm |du|| on infinitesimal variations 3u provided for every & >0 there is a 6 >0 such that if
[Bul| < & at t =0, then ||dul| < & for >0, where du evolves according to (5u) = DX (u.) " du.

Linearized stability implies spectral stability (since, if the spectrum had a strictly positive real part, there
would be an unstable eigenspace). The converse is not generally true (e.g., the equilibrium solution (p.,
ge) = (0, 0) for the dynamics generated by the Hamiltonian H = p*+ ¢* is neutrally, but not linearized
stable). In finite dimensions, a sufficient condition for linearized stability is that DX (u.) have distinct
eigenvalues on the imaginary axis. In infinite dimensions, it is sufficient for DX (u.)to have a complete set of
eigenfunctions with purely imaginary eigenvalues of multiplicity one. In the case of repeated roots on the
imaginary axis, instabilities can occur with linear growth rates of a resonance type. There is an extensive
theory dealing with this case going back to Krein [1950] (see also Arnold [1978]); this theory gives precise
spectral conditions for linearized stability in finite dimensions. See also Levi [1977]. In finite dimensions, the
spectral approach may encounter functional analytic difficulties requiring considerable effort to overcome,
and the resultsin the literature are often only indicative of linearized stability, with no rigorous proof given.
See, for example, Penrose [1960], Jackson [1960], Chandrasekhar [1961], Drazin and Reid [1981], and
Friedberg [1982]. Another effective method to prove linearized stability is to look for a positive definite
conserved quadratic quantity, which serves as the square of a norm. This leads to what we call “formal
stability”.

(3) Formal stability. We say that an equilibrium solution u, of a system & = X(u) is formally stable if a
conserved quantity is found whose first variation vanishes at the solution and whose second variation at
this solution is positive (or negative) definite. Since the second variation provides a norm preserved by
the linearized equations (see appendix A), formal stability implies linearized stability. Again the converse is
not generally true (e.g., the equilibrium solution (pie, gie, P2e; g2c) = (0, 0, 0, 0) for the dynamics generated
by the Hamiltonian H = (p7+ q3)— (p3+ ¢3) is linearized stable for the Euclidean norm in R*, but is not
formally stable).

Formal stability of fluids and plasmas has been considered by a number of authors, such as Fjortoft
[1946] Eliassen and Kleinschmidt [1957], Bernstein et al. [1958), Kruskal and Oberman [1958],
Newcomb (see Appendix I of Bernstein [1958]), Fowler [1963], Gardner [1963], Rosenbluth [1964, p.
137ft.], Dikii [1965a], Herlitz [1967], and Davidson and Tsai [1973]. More recently, formal stability has
been established by several authors who employ some aspects of Arnold’s method (but not the
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convexity analysis). See for example Blumen [1968], Zakharov and Kuznetsov [1974], Sedenko and
Tudovich [1978], Benzi et al. [1982] and Grinfeld [1984].

(4) Nonlinear stability. An equilibrium point u, of a dynamical system is said to be nonlinearly stable if
for every neighborhood U of u, there is a neighborhood V of u. such that trajectories u(¢) initially in V
never leave U. This definition presupposes well-defined dynamics and a specified topology. In terms of a
norm || ||, nonlinear stability means that for every £ >0 there is a § > 0 such that if |u(0) — || < 8, then
llu(t) - uel| < & for t>0.

Many authors use the term “stability” in one of the weaker senses (1), (2) or (3) above; here we will
subsequently use the term stability to mean nonlinear stability, in the sense of (4).

For conservative systems, it is well-known that even in finite dimensions, spectral stability is necessary
for nonlinear stability, but is not sufficient (since, if the spectrum had a strictly positive real part, the
nonlinear dynamics would have an .unstable manifold; see, e.g., Marsden and McCracken [1976]).
However, neither formal nor linearized stability is necessary for nonlinear stability. (Both counter examples
above are also nonlinearly stable.) Linearized stability does not imply nonlinear stability either as shown by
the following counter example discussed by Pollard [1966, p. 77] (see also, Siegel and Moser [1971, p. 109)).
The dynamics generated by the Hamiltonian

H=3(q}+p}) - (g53+pd) +3p:(pi— 90— 91921

has equilibrium (pie, Gie, Paes G2e) = (0, 0, 0, 0) which is linearized stable in the Euclidean norm of R*. A
one-parameter family of solutions for this system is, for any fixed value of the parameter 7,

—sin(t— 7 sin2(t— 7 —cos(t— 7 cos 2(t —
plz\/z% p2=___(—_) ql_:__\/z__J:)’ q2:—(___7;)_.

t—-7 i—r t—t

The distance of time ¢ from the equilibrium is V/3/(r — t), which by choosing 7, can be made as small as
desired at ¢ = 0 and which blows up at ¢ = 7. Thus, the equilibrium solution of this system is linearized stable,
but nonlinearly unstable in the Euclidean R* norm. Also, for a Hamiltonian system with at least three
degrees of freedom, an equilibrium solution can be linearly stable but nonlinearly unstable, because of the
phenomenon of Arnold diffusion; cf. Arnold [1978, Appendix 8], Chirikov [1979] and Lichtenberg and
Liebermann [1982]. Thus, for a Hamiltonian system, spectral analysis can provide sufficient conditions for
instability, but it can only give necessary conditions for stability. In this paper we provide sufficient
conditions for stability.

In finite dimensions, formal stability implies stability, a classical result of Lagrange. (Indeed, if the
equilibrium X, = 0 is a nondegenerate minimum of the conserved quantity F, the set {x| |x| < ¢, F(x) < u},
where u is the minimum of F on the sphere of radius ¢, is invariant under the flow; ¢ is chosen such that for
all x satisfying |x| < & we have F(0) < F(x); See also Siegel and Moser [1971, p. 208]). However, in the
infinite dimensional case of concern to us here, formal stability need not imply stability; indeed, physically
realistic examples from elasticity show that an equilibrium solution can have positive second variation of the
energy and still have an infinite number of unstable directions (see Ball and Marsden [1984].) Formal
stability is a step toward stability, but a further argument is needed. Arnold [1966b] provided a framéwork
for such arguments based on convexity estimates using several quantities related to the degeneracy of the
Poisson brackets describing the system (or, equivalently, to the symmetry of the system written in
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Lagrangian coordinates under relabeling of fluid particles). The papers of which we are aware that actually
prove nonlinear stability for conservative fluid and plasma systems are Arnold [1969a], Benjamin [1972],
Bona [1975], McKean [1977], Laedke and Spatschek [1980], Holm et al. [1983), Bennet et al. [1983), Wan
[1984], Wan and Pulvirente [1984], Hazeltine et al. [1984], Holm [1984], Holm et al. [1985], Abarbanel et al.
[1985] and the present work.

For dissipative systems, there is a number of general results that show that linearized stability implies
stability; see for example, Marsden and McCracken [1976] and references therein, and for bifurcation
results see, e.g., Crawford [1983] and references therein. In the limit of zero dissipation, these methods
seem to give little, or no information on the stability of the corresponding conservative system. Since
conservative systems are the concern of this paper we shall not discuss dissipative systems further.

The main results of the paper give sufficient conditions for stability of equilibria for various two- and
three-dimensional models of plasma physics: magnetohydrodynamics (MHD), multifluid plasmas
(MFP), the Poisson—Vlasov, and Maxwell-Vlasov equations. In section 2 we start by explaining the
general procedure we shall employ for proving stability. To illustrate this procedure, we present in
section 3 four known examples: the free rigid body, the Lagrange top (see also Holm et al. [1984]),
two-dimensional planar incompressible Euler fluid flow (Arnold [1965, 1969a]), and planar barotropic
fluid flow (Holm et al. [1983b}]). The first two examples are classical, and the known stability conditions
are rederived using the stability algorithm presented in section 2. Next the example of planar
incompressible homogeneous fluid flow is given, following Arnold’s papers, which were crucial in our
understanding of the general procedure and the geometric ideas underlying it. These ideas are applied
to planar barotropic fluid dynamics in the fourth example.

Part I of the paper concerns various two-dimensional fluid systems. Due to its similarity to Arnold’s
original example and relative simplicity, we begin in section 4 with the study of multilayer quasigeo-
strophic two-dimensional incompressible fluid flow. We refer the reader to Abarbanel et al. [1985] for
the cases of two- and three-dimensional inhomogeneous incompressible flows, including a Richardson
number criterion for the stability of shear flows. Sections 5, 6 and 7 deal with magnetohydrodynamics
(MHD) and multifluid plasmas (MFP) in the plane.

The second part of the paper treats three-dimensional examples. We start with adiabatic fluid flow.
This is then generalized in two different manners, to MHD and MFP. Finally, the third part of the paper
discusses the Poisson-Vlasov and Maxwell-Vlasov plasma equations in one, two, and three dimensions.

We have not been exhaustive in our choice of models. In the first two parts, treating fluid-like
systems, we shall always present, where appropriate, an incompressible and compressible model, but
emphasize the incompressible homogeneous case (i.e., constant density) over the inhomogeneous one,
and we leave out completely the Boussinesq approximation. The inhomogeneous cases can be treated
by introducing certain modifications, as in Abarbanel et al. [1985]. There are numerous other models to
which the methods apply. For example, Hazeltine, Holm and Morrison [1985] use these methods to discuss
stationary solutions for the Hasegawa—Mima-Hazeltine models. One can also use the methods here, with
some additional help from Sobolev inequalities to prove the stability of a single KdV soliton (see Benjamin
[1972] and Bona [1975]), or of the N-soliton (see McKean [1977].

In many of the examples, the methods of this paper are capable of establishing a priori estimates on
some, but not all, of the variables. For example, in three-dimensional adiabatic flow, stability estimates
are obtained only as long as solutions remain smooth, the density remains bounded: 0 <ppi, <p <
Pmax <, and the gradient of perturbations of the entropy is bounded in terms of the perturbations of
the entropy itself. This is consistent with the fact that shocks could form from initial data near a
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“stable” equilibrium, and that when this occurs, the density and entropy gradients can develop
singularities. This kind of stability is called conditional stability; it requires that one “monitors” some of
the dynamic variables. As long as these monitored variables remain under control, the equilibrium will
be stable. As we shall see, the method enables one to identify these variables explicitly in each case and
determine their stable range, in terms of equilibrium values.

2. The stability algorithm

We now present the algorithm that will be used in each of the examples. Some of the steps are
facilitated and put into a larger context by the use of a Hamiltonian structure (Poisson brackets); this is
explained in remarks following each step.

A. Equations of motion and Hamiltonian
Choose a (Banach) space P of fields 4 and write the equations of motion on P in first-order form as

u=X(u) (EM)

for a (nonlinear) operator X mapping a domain in P to P. Find a conserved functional H for (EM),
usually representing the total energy; that is find a map H :P—R such that dH(u)/dt =0 for any C!
solution u of (EM).

Remark A. Often P is a Poisson space, i.e. a linear space (or more generally a manifold) admitting a
Poisson bracket operation {, } on the space of real valued functions on P which makes them into a Lie
algebra, and which is a derivation in each variable. There are systematic procedures for obtaining such
brackets; these procedures are not reviewed here, although we shall give references relevant to each
example.* The equations (EM) can then be expressed in Hamiltonian form for such a bracket structure:

F={F, H}, (PB)

where H is the Hamiltonian, F is any functional of u € P, and F is its time derivative through the
dependence of u on ¢

B. Constants of motion

Find a family of constants of the motion for (EM). That is, find a collection of functionals C on P
such that dC(u)/d¢ = 0 for any C' solution u of (EM).

Remark B. Unless a sufficiently large family is found, the next step may not be possible. A good
way to find conserved functionals is to use the Hamiltonian formalism in Remark A to find Casimir**
functionals for the Poisson structure, i.e. functionals C such that {C, G} =0 for all G. One may find
additional functionals associated with symmetries of the given Hamiltonian.

* As noted in Weinstein [1982], the general notion of a Poisson manifold goes back to Sophus Lie around 1890.
** This term was used in the same context as here by Sudarshan and Mukunda [1974].
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C. First variation

Relate an equilibrium solution u. of (EM) to a constant of the motion C by requiring that
Hc:= H+ C have a critical point at ..

Note: C may or may not be uniquely determined. Keeping C as general as possible may be useful in
step D. Moreover, if C retains some freedom at this stage in terms of unspecified parameters or
functions, critical points of Hc will correspond to classes of equilibria.

Remark C. If Remarks A and B are followed, then such a C can often be expected to exist. Indeed,
level sets of the constants of motion define certain “leaves” in P; if C is a Casimir, they are the ““symplectic
leaves” of the Poisson structure {, }. Equilibrium solutions are critical points of H restricted to such leaves.
If the Casimirs are functionally independent, the Lagrange multiplier theorem implies that H + C has a
critical point at . for an appropriate Casimir function C. One cannot guarantee that such functions can be
found explicitly in all cases: however, they are found in the examples we consider. These points are
discussed further in appendix B.

D. Convexity estimates
Find quadratic forms Q; and Q; on P such that*

O:(Au)<H(u.+Au)— H(u)— DH(u.) Au, (CH)
Q:(Au) < C(u.+Au)~ C(u.)—-DC(u.) - Au, (CO)
for all Au in P. Require that

O:(Au)+ Qx(Au)>0 for all Au in P, Au+# 0. (D)

Remark D. Formal stability — second variation. As a prelude to checking conditions (CH), (CC) and
(D), it is often convenient to see whether the second variation D*Hc(u,) is definite, or when feasible,
whether D*H (u,) restricted to the symplectic leaf through u. is definite. This property, called formal
stability, is a prerequisite for step D to work, but it is not sufficient (see Remark (2) below).

If formal stability is established, then the zero solution of the equations (EM) linearized at u. are stable
since D*Hc(u.) provides a conserved norm under the linearized dynamics (see appendix A).

E. A priori estimates
If steps A through D have been carried out, then for any solution u of (EM), we have the following
estimate on Au = u — u,.:

Qi(Au(r) + Qx(Au(r)) = Ho(u(0)) ~ Hc(ue) (E)

(this is proved below).

* Here Au — u — u, denotes a finite variation of the solution. To avoid confusion, we shall use V2u for the Laplacian of u.
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F. (Nonlinear)stability
Stability theorem. Suppose that steps A through D have been carried out. Set
[olf = Qu(v) + Qx(v) >0 (for v # 0) (N)
so ||v|| defines a norm on P. If Hc is continuous in this norm at u., and solutions to (EM) exist for all
time, then u. is stable. Should solutions to (EM) not be known to exist for all time, we still have
conditional stability: stability for all times during which C' solutions exist.

A sufficient condition for continuity of Hc is the existence of positive constants C; and C, such that
H(u.+Au)— H(u.)— DH(u.)  Au < C\JAulf, (CHY
C(u.+Au)— C(u.)~DC(u.) - Au= ClAu|f . (ccy

In this case there follows the stability estimate:
lAu() = Oi(Au(®) + Q:8u(n) = (Ci + G)|Au(O), (SE)
for all Au in P (these assertions are proved below).

Proof of a priori estimate (E). Adding (CC) and (CH) gives
O:(Au)+ Qx(Au) = Ho(u. + Au)— Ho(u.) - DH(u.) - Au = He(ue + Au) — He(u.),

since DHc(u.) = 0 by step C. Because Hc is a constant of the motion, Ho(u. + Au)— Hc(u.) equals its
value at ¢ =0, which is (E). B
Proof of the assertions in step F. We prove (Liapunov) stability of u. as follows. Given £ >0, find a 8
such that [|v — u.|| < § implies |[Hc(v) — Ho(u.)| < &. Thus, if [Ju(0)— u|| < 8, then (E) gives
ll(r) = uell = |H(u(0)) - He(ue)| <&

Thus, u(7) never leaves the e-ball about u, if it starts in the & ball, so u. is stable. To see that (CH)' and
(CCY suffice for continuity of Hc at u., add them to give, as in the proof of (E),

Hc(ue + Au)— He(ue) < Cil|AulP + ClAul? = (G + C)|Au|?,
which implies that Hc is continuous at u.. This proves the stability estimate (SE). W

Further remarks

(1) In some examples, Q; and Q, are each positive (so H and C are individually convex). Then (D)
is automatic. However, as already noted by Arnold [1969a] (and recalled in section 3), there are some
interesting examples where Q; is positive, Q, is negative and yet the sum Q, + Q, is positive and (D) is
valid. If the sum Q; + Q; is shown to be negative, then one can replace Hc by —Hc to obtain (D).
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(2) It has been presumed that P carries a Banach space topology (although one could merely assume
P is a Fréchet space) relative to which the symbols 4 and DH(u.) are defined, and steps A, B and C are
admissible. The norm ||-|| found in step F is usually not complete; relative to the functions H and
C need not be differentiable. (This fact is related to the difficulty one encounters when trying to deduce
stability from formal stability.) A sufficient condition for (CH) is that inequality

0:(v) = D*H(u)- (1, ) (CHY

holds for all ¥ and v in P. The sufficiency of (CH)" follows from the mean value theorem. There are
similar assertions for C and Hc. Note that

lol” = D* He(u)(v, v) (CHc)'

is considerably stronger than formal stability: D*H(u.)(v, v) positive definite. Indeed, (CHc)" is a global
convexity condition which reflects the additional hypotheses involved in step D.

(3) As already noted, in systems with a finite number of degrees of freedom, formal stability implies
stability. This fact was used by Arnold [1966a] to reproduce the well-known results on stability of rigid
body motion; see section 3.1. See Marsden and Weinstein [1974] for the relationship of the formal
stability ideas to the stability of relative equilibria and reduction. (See also Abraham and Marsden
[1978], Sections 4.3 and 4.4 and Arnold [1978], Appendices 2 and 5.)

(4) In many examples, such as compressible flow, there is no global existence of smooth solutions.
This paper does not address weak solutions or solutions with shocks. The results will apply only to
sufficiently smooth solutions. Moreover, one or more of the steps may require assumptions about some
of the variables. For example, in two-dimensional compressible flow, (section 3.4), we obtain our
estimates only under the assumption that the density satisfies 0 < pmin = p < pmax < @ for constants pp;,
and pmax. (The necessity of such assumptions is revealed by the convexity analysis; formal stability does
not reveal this and would tempt one to make unjustified claims in this regard.) This type of stability,
which requires one to monitor some of the variables will be called conditional stability.

(5) For Hamiltonian systems with additional symmetries, there will be additional constants of the
motion besides Casimirs. These are to be incorporated into the functional C in step B. This is needed in
fluid examples with a translational symmetry, for example, and in the stability analysis of a heavy top;
see section 3.

Scheme: The energy-Casimir stability method

A. Equations of motion and Hamiltonian. Write the equations of motion (EM) on P and find the conserved energy H.
[Determine the Poisson bracket and Hamiltonian on P.]
B. Constants of motion. Find as many conserved quantities C as possible for (EM).
[Determine the Casimirs of P.]
C. First variation. Let Hc:= H + C and u, be a stationary solution for (EM). Relate C and u, by the condition DHc(u.) = 0. Keep C as general as
possible.
D. Convexity estimates. Find quadratic forms Q; and Qz on P and conditions on . such that (CH), (CC), and (D) hold.
[Formal stability. Show that D?Hc(u) is definite and conclude linearized stability.]
E. A priori estimates. Write out the estimate (E).
F. Stability. Find sufficient conditions on u. to guarantee that Hc is continuous in the norm (N), or prove the estimates (CH)', (CCY, and conclude
conditional stability of u. subject to these conditions. In the presence of a long-time existence theorem, conclude stability.
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(6) For two-dimensional incompressible flow, the appropriate Casimir function is the generalized
enstrophy. This suggests, following Leith (cf. Bretherton and Haidvogel [1976]), that the Casimir
functions may play a role in the “selective decay hypothesis” when dissipation is added.

For the convenience of the reader, we summarize schematically the procedure just explained, with
the optional but useful steps in square brackets. In all examples, we shall follow this procedure and
carry out each step explicitly.

For finite dimensional systems, formal stability implies stability. Thus, the energy-Casimir method in
this case requires only steps A, B, C, and the formal stability argument in step D.

3. Background examples

In this section we discuss four examples to illustrate the stability algorithm given in section 2. These
are: section 3.1 the free rigid body, section 3.2 the Lagrange top, section 3.3 ideal incompressible planar
flow and section 3.4 ideal barotropic planar flow. The results for the first two examples are well-known,
although they are not usually proved by this method. We follow Holm et al. [1984]. The third example
follows Arnold [1969a] and the fourth is based on Holm et al. [1983b].

3.1. The free rigid body

A. Equations of motion and Hamiltonian
The free rigid body equations of motion are

m=dm/dt=mX w, (3.1IEM)
where m, w € R>, w is the angular velocity and m is the angular momentum, both viewed in the body.

The relation between m and @ is given by m; = Lw;, i = 1, 2, 3, where I = (I,, I, I5) is the diagonalized
moment of inertia tensor, I, I, I, >0. A conserved quantity for (3.1EM) is the kinetic energy,

3
Hm)=3m- -0 =32 mil. (3.1H)
i=1

Remark A. This system is Hamiltonian in the Lie~Poisson structure of R* considered as the dual of
the Lie algebra of the rotation group SO(3). Explicitly, for F, G:R*->R,
{F, G{m)=—m - (VF(m)X VG(m)), (3.1PB)
where V; = /dm; in (3.1PB). With respect to this bracket, (3.1EM) is easily verified to be Hamiltonian
in the sense that (3.1EM) is equivalent to F = {F, H} where H is given by (3.1H).*

* The first reference we know of where this is explicitly written is Sudarshan and Mukunda [1974]. The result is suggested in Arnold
[1966a].
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B. Constants of motion
For any smooth function ¢ :R - R, the function

Cs(m) = ¢(m[*/2) (3.10)
is a constant of motion for (3.1EM), as is easily verified.

Remark B. In fact, using (3.1PB) it is easily seen that C, are Casimir functions. These are seen to be
all the Casimirs, since their level sets determine the symplectic leaves of R?, which are concentric
spheres and the origin.

C. First variation

We shall find a Casimir function C, such that Hc:= H + C, has a critical point at a given

equilibrium point of (3.1EM). Such points occur when m is parallel to w. We shall assume, without loss

of generality, that m and @ point in the x-direction. Then, after normalizing if necessary, we may even
assume that the equilibrium solution is m. = (1, 0, 0). The derivative of

Hc(m):=% Z m3i/L+ ¢(Glm[*)

DHc(m)-dm = (@ + m¢'(m[*/2))-5m . (3.1C1)
This equals zero at m. = (1, 0, 0), provided that
¢'G)=-1/1. (3.1C2)
Thus ¢ and m, are related by (3.1C2).
D. Second variation
Since the system is finite dimensional, it suffices to check the second variation. Using (3.1C1) and (3.1C2),

the second derivative at the equilibrium m. = (1,0, 0) is

D?*Hc(m.): (dm) =8¢ - 3m + ¢'(|m.|*/2)|dm|* + (m.. - Sm Y’ ¢"(|m.|/2)

= Z ®m I — 1dm P/ 1 + ¢"G)Bm, )

= (1 L—-1L)®m.)*+ (/- 1/1,)(®ms ) + ¢"(G)(dm, ). (3.1D1)
This quadratic form is positive definite if and only if
") >0, (3.1D2)

L>1, IL>1. (3.1D3)
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Consequently, ¢(x)=(-2/I)x+ (x —3)* satisfies (3.1C2) and makes the second derivative of Hc at
(1,0, 0) positive definite, so stationary rotation around the longest axis is stable.
The quadratic form (3.1D1) is indefinite if

L>L, L>1L or §L>1I, L>1. (3.1D4)

This method correctly suggests (but does not prove) that rotation around the middle axis is unstable.
This may be shown by a linearized analysis. Finally, the quadratic form is negative definite, provided

$"()<0, (3.1D5)
and
L<L, L<I. (3.1D6)

It is obvious that we may find a function ¢ satisfying the requirements (3.1C2) and (3.1DS5); e.g.,
¢(x) = (—-2/1,)x — (x — 3)>. This proves that rotation around the short axis is stable.
We summarize the results in the following well-known theorem.

Rigid body stability theorem. In the motion of a free rigid body, rotation around the long or short axis
is stable.

Remark (1). It is important to keep the Casimirs as general as possible, because otherwise (3.1D2)
and (3.1D5) would be contradictory. Had we chosen ¢(x)=—(2/I,)x + (x —3)* for example, (3.1D2)
would be verified, but not (3.1D5). It is only the choice of two different Casimirs that enables us to prove
the two stability results, even though the level surfaces of these Casimirs are the same.

Remark (2). The same stability theorem can also be proved by working with the second derivative
along a coadjoint orbit in R>; i.e. a two-sphere; see Arnold [1966a]. This coadjoint orbit method has the
deficiency of being inapplicable where the rank of the Poisson structure jumps (see Weinstein [1984]).

3.2. The Lagrange top

A. Eguations of motion and Hamiltonian
The heavy top equations are

dm/dt=m X @ + Mgy X x, (3.2EMa)
dy/dt=yX w, (3.2EMb)

where m, y, @, Yy ER>. Here m and w are the angular momentum and angular velocity in the body,
m; = Loy, I, >0, i=1, 2, 3, with I = (I, I, I5) the moment of inertia tensor. The vector ¥ represents
the motion of the unit vector along the z-axis as seen from the body, and the constant vector y is the
unit vector along the line segment of length ¢ connecting the fixed point to the center-of-mass of the
body; M is the total mass of the body, and g is the strength of the gravitational acceleration, which is
along Oz, pointing downward. The total energy of this system is
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H(m,y)=3m-w+ Mgty x, (3.2H)

as can be easily verified.
Remark A. This system is Hamiltonian in the Lie—Poisson structure of R* x R* regarded as the dual
of the Lie algebra of the Euclidean group E(3)=SO(3) ® R’ (® denotes semidirect product). The

Poisson bracket is given by
{F, G}{(m,y)=-m-(V,FXV,G)-y-(V,FxV,G+ V,FXxV,G). (3.2PB)

The Hamiltonian is given by (3.2H) above. (See Sudarshan and Mukunda [1974], Vinogradov and
Kupershmidt [1977], Ratiu and Van Moerbeke [1982] and Holmes and Marsden [1983]).

B. Constants of motion
It is easy to see that the functions m -y and |y |* are conserved for (3.2EM). Consequently, for any

smooth function @, the quantity
C(m, y)=@(m-y,|v[) (3.2C)

is also conserved.

We shall be concerned here only with the Lagrange top. This is a heavy top for which I, = I (i.e. it is
symmetric) and the center of mass lies on the axis of symmetry in the body, i.e. xy = (0,0, 1). This
assumption implies from the third equation of motion in (3.2EMa) that dm,/d¢ = 0. Thus m; and hence
any function ¢(ms) of mjs is conserved.

Remark B. Using the Poisson bracket (3.2PB) it is easy to check that (3.2C) is a Casimir of the
Poisson structure. In fact, the family described by (3.2C) forms all the Casimir functions, since their
level sets determine the generic four-dimensional orbits {(m, y)&€R>XR? m -y = constant, and
| ¥ [> = constant}.

C. First variation

We shall study the equilibrium solution m. = (0, 0, ri3), y. = (0, 0, 1), which represents the spinning of
a symmetric top in its upright position. To begin, we look for conserved quantities of the form
He=H+ ®(m - vy, |y *)+ ¢(m3) which have a critical point at the equilibrium.*

The first derivative of Hc is given by

DHc(m, y)- (8m,3y) = (w + d(m - v, |y[)y) - 3m + [MGex + D(m - v, |y[)m
12&(m -y, |y [)y] Sy + @'(ms)dms, (3.2C1)

where dot and prime denote differentiation with respect to the first and second arguments of @. At the
equilibrium solution m., ., the first derivative H¢ vanishes, provided that

(!_)3 + (13(1’713, 1)+ ¢,(n_13) = O 5 a_)3 = n_'l3/I3 5 Mg€+ d)(n—'l:;, 1)”'_l3+ 245'(”_’13, 1) = O .

* We could have chosen the forms H + @(m - y, |y [?, m3) or H = &y(m -y )+ Dy [*) + d3(ms) for He just as well. The form we use, however,
is Casimir plus conserved quantity, consistent with the philosophy of the general energy-Casimir method.
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(The remaining equations involving indices 1 and 2 are trivially verified.) Solving for @(ss, 1) and
®'(m5, 1), we get the conditions:

(s, 1) = - (,13+ BUis) s, B, 1) = %(11—3+ &'(07) )3~ Mgt (3.2C2)

Thus @, ¢, and the equilibrium m., . are related by (3.2C2).

D. Formal stability. Since the system is finite dimensional, it suffices to verify formal stability. We shall
check for definiteness of the second derivative of Hc at the equilibrium point m. = (0,0, mis), y.=
(0,0, 1). To simplify notation we shall set

a=@"(ms), b=4@"(Ai5, 1), =0, 1), d=2d"(ms,1).

With this notation, (3.2C1), and (3.2C2), we find that the matrix of the second derivative of Hc at m.,
Ye IS

— -

I 0 0 D(rhis, 1) 0 0
0 I, 0 0 d (s, 1) 0
0 0 (/L)+a+c 0 0 D13, 1)+ 2misc + d
D@, 1) 0 0 20'(ms,1) 0 0
0 d(ms, 1) 0 0 20 (113, 1) 0
0 0  &(hs, 1)+ 2msc+d 0 0 20'(is, 1)+ b+ 3¢ + 2risd ]

(3.2D1)

If this form is definite, it must be positive definite, since the (1, 1) entry is positive. The six principal
subdeterminants have the following values, (recall that I, = I):

ynL, un, (Uhkta+o)li,

1 /1 2 . 2 . 2/1
—|—=ta+c)|—D(ms, 1)— D(mis, 17 — @'(mi3, 1)— DP(ms, 1)) (—
I, (13 @ C><11¢(m3’1) ‘p("“’l))’ (114)('"3’1) ¢(m3’1)><13+“+c>’
2 1= ¥/ — P vy — - _ 1 .
<1_ &' (13, 1) — Dy, 1) )[(245(m3, 0+ b+ i+ 2m3d)<7+ a+ c) — (D(r5, 1)+ 2isc + d)z] .
1 3

Consequently, the quadratic form given by (3.2D1) is positive definite, if and only if

Vlita+c>0, (3.2D2)

/1) (i3, 1) - Dz, 17 >0, (3.2D3)
1 .

Q' (15, 1)+ b+ ride + 2rﬁ3d)(};+ a+ c) — (D(rfis, 1)+ 2iitsc + dY>0. (3.2D4)
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Conditions (3.2D2) and (3.2D4) can always be satisfied if we choose the numbers a, b, ¢, and d
appropriately; e.g., a = ¢ = d =0 and b sufficiently large and positive. Thus, the determining condition
for stability is (3.2D3). By (3.2C2), this becomes

1 1 ~ _ 1 2

- [(—+ ¢’(m3))m§- Mgf] - <—+ ¢’(n‘13)> m3>0. (3.2D5)
Il 13 13

We can choose ¢'(#13) so that 1/, + ¢'(713) = e has any value we wish. The left side of (3.2D5) is a
quadratic polynomial in e, whose leading coefficient is negative. In order for this to be positive for some
e, it is necessary and sufficient for the discriminant

(77_13/11)2'_ 4’7_1:2;Mg€/11
to be positive; that is,
m3>4Mgtl, ,

which is the well-known stability condition for a fast top. We have proved the following.

Heavy top stability theorem. An upright spinning Lagrange top is stable provided that the angular
velocity is strictly larger than [ 3'VaMgdl,.

Remarks. (1) The method suggests but does not prove that one has instability when m3<4Mg¢l,. In
fact, an eigenvalue analysis shows that the equilibrium is linearly unstable and hence unstable in this
case. (2) When I, = I, + ¢ for small &, the conserved quantity ¢(ms) is no longer available. In this case,
a sufficiently fast top is still linearly stable, but true stability can only be established by KAM theory.
(3) In Holmes and Marsden [1983] it is shown that if I, = I; + ¢ with ¢ sufficiently small, the phase portrait
of (3.2EM) has Poincaré-Birkhoff-Smale horseshoes (see also Ziglin [1980, 1981]).

3.3 Two-dimensional incompressible homogeneous flow (Arnold [1965a, 1966b, 1969a])

A. Equations of motion and Hamiltonian

Let D be a domain in the xy plane bounded by smooth curves (D), i =0,..., g. We may take
(8D), to be the outer boundary, so (3D),, ..., (dD), must encircle g holes in D. Denote by v the
spatial velocity of the fluid moving in D. If the fluid is incompressible and homogeneous, and v(x, ¢)
denotes its spatial velocity, the equations of motion are Euler’s equations:

v .
PRl (0 Vo=-Vp, divv=0, o(x0)= o), (3.3EM)
where the initial condition vo(x) is a given divergence free vector field on D, and the pressure p is a

real-valued function on D determined (up to a constant) by the condition that (v-V)v+ Vp be
divergence free and tangent to dD. In fact, this condition on p is equivalent to the Neumann problem

VZp = —div((v+ V)v), dplon=-n-(v- V), (3.3A1)

where n is the outward unit normal to dD.
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The conserved energy for (3.3EM) is

H(o)=1 f v dx dy. (33H)

D

The space P = Z4.(D), consisting of smooth divergence free vector fields » on D that are tangent to D
can be given several topologies. One choice suitable for bounded regions is H®, s >1 as in Ebin and
Marsden [1970]; another is C***, k =0, 0<a <1 as in Kato [1967]. Corresponding weighted spaces
can be used if D is unbounded, as in Cantor [1975, 1979]. (The topology chosen on P must be strong
enough so that the differential calculus methods employed in steps B and C are justified. This means in
effect here that the vorticity @ must be continuous and vanish at infinity. In particular, vorticities that
are merely in L™ require a modified treatment, as in Wan and Pulvirente [1984] and Tang [1984]).
Remark A. If F, G:P—R, define their Poisson bracket by

{F, G)}v) = - j 0- [—Zf BS—G—] dx dy, (3.3PB)

D

where the functional derivative 8 F/dv € P is defined by
DF ()80 = <— 80> f—— 50 dx dy

for any dv € P, and

[E SF] (SF )86 (SG V)§£
dv’ dv Y) dv Sv Sv

is the Lie bracket of the vector fields 8F/dv and 8 G/dv. (The bracket (3.3PB) is the Lie-Poisson bracket
for the group of volume preserving diffeomorphisms and comes from the canonical bracket in the
Lagrangian representation; see Arnold [1966a] and Marsden and Weinstein [1983].) The equations of
motion (3.3EM) are obtained from the Poisson bracket (3.3PB) in the following manner. First note that
3H/dv = v. Integrating by parts and taking into account v-n|,p =0 (where n is the unit vector
normal to the boundary) and the L>orthogonality of 8F/dv with the vector space V#(D) of gradient
vector fields, we get

{F,H}=—fv-[§,v]dxdy =—j{v-(aiv)v—v-(v-V)-zg}dxdy

oo
[ ey~ )

where P maps Z(D) the space of all vector fields on D to P by L? orthogonal projection. Thus the
equations of motion defined by H via (3.3PB) are v+ P((v: V)v)=0. To determine P((v- V)v)
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explicitly, write (v* V)o = P ((v- V)v)— Vp, take the divergence of both sides and the dot product with n
to get eqs. (3.3A1). This says that p is the pressure and that P ((v- V)v)= (v - V)v + Vp, thus yielding
egs. (3.3EM).

There is another way to describe the Hamiltonian structure of the incompressible homogeneous
two-dimensional Euler equations, starting with the vorticity equation

12
—a‘;lm. Vo =0, (3.3VE)

where w = Z - curl v is the scalar vorticity. We shall denote by Z the unit vector of the z-axis, pointing
upward. The vorticity equation is obtained by applying the operator 2 - curl to (3.3EM). For regions in
the xy plane, any v which is divergence free and parallel to the boundary can be written uniquely as

= curl(yz)

where ¢ is constant on (dD); and zero on (8D),; ¢ is called the stream function. To show the existence
of ¢, we note that the integral of i,(dx A dy) around each (dD); is zero since v is tangent to dD); since
div v = 0, one concludes that the integral around any closed loop is zero. Hence by elementary vector
calculus, i,(dx A dy)= dy for some ¢. Since v is tangent to 3D, ¢ is constant on each (4D);; adding a
suitable constant to ¢ makes it zero on (3D),. The following argument shows that v is uniquely
determined by w and by the circulations Iy, ..., I,. Indeed, it suffices to show that if the stream
function ¢ satisfies V¢ =0, @[(dD)=0, ¢l(dD);=c, a constant for i=1...,¢g and
$ony; (0|on) ds = 0, then v = 0. But this follows from Green’s identity:

O=J'¢V2¢dxdy=ic,- § —ds—J|V¢|2dxdy

(3D);

Thus the space P can be identified with F(D)x R# = {vorticities} X {circulations}. This point of view,
adopted in Marsden and Weinstein [1983], is especially useful for simply connected domains. The
Hamiltonian is seen to be

g
H(w,]’l,...,Fg)=—%j powdxdy+>, al;,
i=1

where ¢; are the constant values of ¢ on (dD);; note that if D is simply connected the last sum is
omitted.

For simply connected D, the Lie-Poisson bracket in terms of vorticity equals (see Marsden and
Weinstein [1983])

{F. G)(w) = J {ﬁlﬁ S-G—} dx dy, (wPB)

xy

where {, },, is the canonical (x, y)-Poisson bracket. The symbols 8 F/dw in this formula must be interpreted
with care, as in Marsden and Weinstein [1983]. If 8F/dw is interpreted as the usual functional derivative,
(wPB) is incorrect; to correct it a boundary term must be added as in Lewis et al. [1985].
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B. Constants of motion
For any smooth function @:R =R the vorticity integrals

Cy = f ®(w) dx dy (3.3C)

D

are easily seen to be conserved using the vorticity equation (3.3VE). Here C, is regarded as a function
of v for (3.3PB) and of w for (wPB). Let 4D consist of g + 1 components (D), i=0, ..., g and let

(o) = 3@ v-de. (3.3r)
(3D);

Conservation of I'; is Kelvin’s circulation theorem.
Remark B. The coadjoint action of Diff,.i(D) on Z4,(D) is given by

n+v=(Tyn ") opon*,

where (Tn~')" is the adjoint of Ty~ pointwise on D, with respect to the Euclidean metric on R?. It is
easily verified that both C, and I are invariant under this action, i.e., are Casimir functions. If D is
simply connected then the Poisson bracket (3.3PB) of C, with any functional of @ vanishes. We hasten
to add, however, that if D is not simply connected, the functional derivatives of Cp and I; involve delta
function distributions, so one has to interpret the bracket of C, and I; with any other function on
Za(D) with care. Also note that velocity fields corresponding to point vortices and vortex patches are
not representable as smooth elements of Z4,(D).

C. First variation
Let a = (ao, . . ., a;) be a vector of constants and let

Hc(v)= H(v)+ Co(v) + }E a;l;(v)

g
=[[§lvlz+ (D(a))]dxdy+2a,- f v-df.
i=0
D

(8D);i

(The terms Cp and =4-, a;]; are not all independent, but this form proves to be convenient here and in
later examples as well.) The first variation is

g
DHc(v.) - 80 = f [ve- 80 + @'(w.)z - curl dv] dx dy + D, a; f dv-df.
i=0

D (8D);i
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Integrating by parts the second term in the first integral gives

f &' (o) - curl 3o dx dy = — j div(®'(.)% X 50) dx dy + j 80 - curl(@'(w.)%) dx dy

D D D

=> % D'(we)dv - df + J dv - curl(®(w.)Z) dx dy .
= (8D); D

Thus, since w, is constant on every component (3D);, i =0, 1,..., g, we get

DH(ee)80 = [ [o0+ curl(@/(w)2)] b0 dx dy+ S (a+ @'(w(3D)) $ so-ae.

i=0
D (@D);

Thus DH(v.) = 0 provided
a,~=—¢'(we|(0D),~), i=0,...,g,

v+ curl(@'(w.)2)=0.

(3.3C1)

(3.3C2)

The relations (3.3C1) give the numbers a;, once @ is determined by (3.3C2). In order for (3.3C2) to yield
a differential equation for @, one needs a functional relation between v, and w. which can be found in
the following manner. (Here we use a method a bit different from Arnold’s, to facilitate the subsequent

exposition.) The equations of motion (3.3EM) can also be written as

a
El;: —wXv-V(p+|v]2),

so that applying the operator Z - curl gives the vorticity equation
dw/dt=-vVo.

For stationary flows we thus have from (3.3C4) and (3.3C3)
ve: Vw.=0,
wez X v = — V(v J*/2+ pe) .

Taking the dot product with v, gives

ve* V(o 72+ p.)=0.

(3.3C3)

(3.3C4)

(3.3C5)

(3.3C6)

(3.3C7)

A sufficient condition for (3.3C5) and (3.3C7) to hold is the functional relationship (Bernoulli’s Law)
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lve[*/2+ p. = K(w.) , (3.3C8)

where K is called the Bernoulli function. Taking the cross product of (3.3C6) with 7 on the left and
taking into account (3.3C8) gives for w. # 0

v =L X VK(w2). (3.3C9)

We

Thus @ is determined via (3.3C2) and (3.3C9) by

- we curl(P'(we)2) = £ x VK(we) . (3.3C9)
This holds if

0. P"(we) = K'(w.), (3.3C10)

ie.,

D(A)= A (f Kt(:) de+ const.) .

We have proved the following.

Proposition. Stationary solutions v, of the two-dimensional, homogeneous, incompressible, Euler flow with
w. # 0 are critical points of H+ C® + Z5_, a,l';, where

d(A)= A (f Kt(zt) dr+ const.) ,

K is the Bernoulli function for the stationary solution v., and
a; = —@'(wJ(ﬁD),) .

If ¢ denotes the stream function for v, i.e. v = (¢, —¢,), then proceeding as before, the condition
v.* Vw. = 0 becomes {¢., w.} = 0 which holds if . and w, are functionally related. Thus, if w. # 0, there
exists a function ¥ such that ¢. = ¥(w.). On the other hand, v, is a critical point of H-(g = 0 in this
case) if ¢ + D'(w.) = 0, i.e., if @' = -V, and one could now state the above proposition in this case, in
the form given by Arnold [1965a, 1969a].

Remark D. Formal stability. The second variation of Hc = H+ Co + Zf-0 ail; is

D2Hq(v.) - (80, 50) = j (o] + B"(w)Bw)?) dx dy.

D
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If the domain is simply connected, this expression equals

f [~50(V2) "8 + B"(w.)(dw)?] dx dy,

D

where ~8¢ = (V?) 8w denotes the unique solution of the problem —V23¢ = 8w, 3¢|(4D), = 0. This
quadratic form is positive definite if @"(w.)>0. If ®"(w,) is sufficiently negative (as determined from
the Poincaré inequality for the domain D), this form is negative definite. (In the latter case, the
conditions for formal stability are weaker than those given by the convexity analysis, as noted in the
final remark of Arnold [1969a].) Linearized stability follows now from definiteness of D*Hc(v.) * (8v, 3v)
when either @"(w.) >0, or ®"(w,) is sufficiently negative. As will be clear below, this linearized stability
condition slightly generalizes Rayleigh’s result [1880] that a plane-parallel incompressible shear flow
requires an inflection point in its velocity profile in order to be linearly unstable.

D. Convexity estimates
Since H is quadratic, condition (CH) from section 2 is trivially satisfied with Q, = H. For (CC), we

require

0x(Aw) = f [B(w. + Aw) ~ D)~ D' (w.)- Aw] dx dy.

D

This holds with Qx(Aw)— ¢2 [p (Aw)* dx dy, where ¢, is a constant, provided ¢, < @"(A) for all A.
Condition (D) requires

J |Av[*dx dy + ¢, J (Aw)y dxdy >0

D D
for all Av # 0. This holds, for example, if ¢, >0. This quadratic form can be negative definite in certain
cases where ¢, <0 because of the Poincaré inequality, as shown by Arnold [1965a]. Thus, there are two

cases to consider for stability: @"(A)=¢,>0 and ~®"(A)=—¢,>0. By (3.3C9) and (3.3C10) these
conditions translate into conditions on the flow velocity profile at equilibrium, since

D"(we) = K'(we)/we = ve* 2 X Vo /| Vel .
For example, plane-parallel incompressible flows along the x-axis in the strip 0=y <Y have
ve=xu(y), we=-u(y), verZX Vo/|Vwl) = u(y)u"(y).
Consequently, for such flows the requirement for stability in the first case above becomes ®@"(w.(y)) =
u(y)/u"(y)= c,>0. Thus, when the sign of u is everywhere the same as the sign of ", all flows having

no inflection points will be stable. Existence of an inflection point, however, does not necessarily imply
instability. Consider stationary plane-parallel flows in the second case, with —u(y)/u"(y)=—c,>0.
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Then one bounds —H¢ to find
~(Qi+ Q)= f [(A0)(V) ' (Aw)— cx(bw)?] dx dy = ] (—k22 - co)(Aw) dx dy,
D D

where kZ, is the minimum eigenvalue of minus the Laplacian (-~V?) in the domain D. Consequently,

stationary flows with min |®"(w.) > k3 and thus, (Q,+ Q,) negative definite, will be stable. For

example, sinusoidal plane-parallel flows u(y)=sin(ky) with k2> k2, are stable. (This statement is a

bit imprecise: if the region is a strip 0 <y =<4d and periodic in x, then one must confine oneself to
perturbations which preserve the circulations and flow rates in the x-direction. The reason is that it is
only for such perturbations that the kinetic energy has the form —[p w(V?)'w dx dy; see Holm,
Marsden and Ratiu [1985] for details).

E. A priori estimates
For ¢, >0, the estimate (E) from section 2 gives the following estimate on the growth of pertur-
bations:

J|Av|2dx dy+c2j(Aw)2dx dy S%f |Avo* dx dy+j D(wo) dx dy—%j |Av > dx dy
D D D D

- j ®(w.) dx dy, (33E)

where wo = /|, and Aw = @ — w. depends on time.

F. Nonlinear stability
For ¢, >0, we set

lAo|E = f AoPdx dy+ ¢, j (Aw) dx dy. (3.3N)

D D

This norm is equivalent to the H' norm on Av, so we get stability estimates from (3.3E) that are H' in
v. [If ¢, <0, the estimates are only L? in o, as noted by Arnold [1969a).] With ¢, >0, (CH) holds, and
(CCY holds provided K'(A)/A = @"(A)=< G, for some C, <. If one works in terms of a stream function
for the velocity field, this condition becomes

V=-C,.

Results of Wolibner [1933], Iudovich [1963] and Kato [1967] show that global solutions exist in the
space P. Thus we can state the following result of Arnold [1969a]:
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Rayleigh—Arnold stability theorem. Stationary solutions v. of the two-dimensional homogeneous
incompressible Euler flow with w, # 0 are (nonlinearly, Liapunov) stable in the norm (3.3N) provided
the equilibrium solution satisfies

0<c=K(w)/w.=C, <,

where K is the Bernoulli function. Equivalently, this condition can be replaced by
0<C25.=5 C2<°°.

Example (Kelvin-Stuart cat’s eyes).* In addition to the shear flow example already discussed, we
show now that the methods can be applied to a stationary flow due to Kelvin [1880] in the linearized
case and Stuart [1967] in the nonlinear case. The linear stability analysis for this example and an
analysis of nonlinear terms were given by Stuart [1971].

The stationary solution of the two-dimensional Euler equations we consider is given in the xy-plane
by

we = —exp(—2¢.) = —[a cosh y + (@~ 1)"*cos x] >, a=1.

The streamlines are the familiar pattern in fig. 1. In this case w. <0 and @'(w.) = 2w.) " <0, so Q; and
Q. have opposite sign. To get stability we use the Poincaré inequality and require min |®"(we)| > kmin
(see the discussion in remark D above). This requires a bounded region, so we limit our flows to be 27
periodic in x and bounded by streamlines in y, as in fig. 1. One finds that below a critical value of
a<1.175..., the region can be chosen to contain the separatrices in fig. 1 and so produces nonlinear
stability for the cat’s eyes, as long as perturbations are initially chosen to have the same circulation as
the cats eyes, and zero net flow rate in the x-direction. See Holm, Marsden and Ratiu [1985] for further

details.

T —— T T T ———— T

Fig. 1.

3.4. Two-dimensional barotropic flow (Holm et al. [1983b], Grinfeld [1984])

A. Equations of motion and Hamiltonian
Let D be a domain in R? with smooth boundary. The evolution equations for the velocity field

v(x, y, f) and density p(x, y, t) are

)
Do Vo= -Vh(p), L+ div(pn)=0, (34EM)

* We thank John Gibbon for pointing out this example.
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where v is parallel to 4D and h(p) is the specific enthalpy, a given function of p >0, satisfying
p'(p) = ph'(p), where p is the pressure.

We choose P to be a space of v and p that are C' (say H®, s > 2) and tending to a fixed vector field
and density at  if D is unbounded (in the weighted spaces as in example 3.3 say), or with v parallel to
dD. We shall also need to exclude from the beginning of the discussion certain important features over
which the present methods have no control. These are as follows, taken as part of our definition of P;

(a) shocks; solutions considered are C';

(b) cavitation and extreme compression: the density satisfies 0 < pmin < p < Prmax <, Where pmin and
Pmax are constants (that will shortly be required to satisfy certain inequalities involving other constants
in the problem).

The conserved energy is

H(v,p)=J [zp|of + £(p)] dx dy,

D

where ¢(p) is the internal energy per unit area, related to the specific enthalpy by £'(p) = h(p).

Remark A. The equations of motion (3.4EM) are Hamiltonian. The configuration space of com-
pressible fluid motion is the group of diffeomorphisms of D whose Lie algebra consists of the space
Z(D) of all vector fields on D. Z(D) is represented on the vector space F(D) of functions on D by
minus the Lie derivative, i.e.,

X f:=-X[f]=-df(X), for XEZX(D),

f € &(D). On the dual of the semidirect product #(D)® F(D) with variables M = pp and p, the eqs.
(3.4EM) are Hamiltonian (i.e. (PB) section 2 holds) relative to the Lie-Poisson bracket

61 [ (5507 s~ aaa ) v ) =

+JP[ Bp) %-(V%g)]dxdy.

This bracket is found in Iwinski and Turski [1976], Morrison and Greene [1980] and Dzyaloshinsky and
Volovick [1980]; see also Dashen and Sharp [1965] and Bialynicki-Birula and Iwinski [1973]. The
bracket was derived from Clebsch variables by Enz and Turski [1979], Greene, Holm and Morrison
[1980], by Morrison [1982] and Holm and Kupershmidt [1983]. This bracket is the Lie-Poisson bracket
for a semi-direct product. This is noted in Marsden [1982], where it is also pointed out that the bracket
could be obtained as an instance of the abstract results concerning the Lagrange to Euler map of Ratiu
[1980] and Guillemin and Sternberg [1980]. Holm and Kupershmidt [1983] also showed that other
interesting systems, such as MHD are Lie-Poisson for semi-direct products. These and related brackets
are derived from canonical brackets in Lagrangian representation in Marsden, Weinstein et al.
[1983], Holm, Kupershmidt and Levermore [1983a] and Marsden, Ratiu and Weinstein [1984a,b].
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B. Constants of motion
From (3.4EM) one finds that o/p is advected by the flow, i.e., d(w/p)/dt+ v+ V(w/p) = 0. Thus, for
any function @:R - R, the quantity

Co(w.0)= | p®(alp)dx dy

D

is a constant of the motion, where w = 2 - (V X v) is the scalar vorticity. Similarly, by Kelvin’s circulation
theorem the quantities

I(v,p)= § v-df, i=0,...,¢

(8D)i

are conserved, where (D), are the connected components of the boundary.

Remark B. The functions Cp are Casimirs for the Poisson structure in remark A. This can be
checked directly, or it can be proved by noting that Cg, as a function of (M, p), is invariant under the
coadjoint action of Diff(D)® %(D) (semidirect product of the group of diffeomorphisms and functions)
on P. For (», f) € Diff(D) ® (D), this action is

(n.f) Mp)=m0 M-dfQn,pn,p)

where p is regarded as a density. Similarly, all I; are invariant under the coadjoint action, but they do
not have functional derivatives in the usual sense of the formal calculus of variations. Thus, their
brackets with arbitrary functionals require care in interpretation; see Lewis et al. [1985].

C. First variation

Let (v.,p.) be an equilibrium solution of (3.4EM). Then Hc(v,p)= H(v,p)+ Co(v,p)
+ 3% o a.l;(v, p) has a critical point at (v, p), provided the following holds for all 8v, 3p (such that
(ve + v, p. + 8p) lies in P):

0= DHc(v., p.) - (30, 8p)

g
= j [peve 80 + D'(w./pe)z - (VX v)]dx dy + D, a Sg dv-df¢
i=0

D (8D);

+ f ["’;'2+ h(p)+ 4;(%) - % GD'(%)]B;J dx dy.

Integrating the second term in the first integral by parts gives
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0= f{['“ + hip )+(p(p>—;:¢(pe)]8p+[peve ix w(i’f)]-av}dxdy

4
+> ¢ o= )av ie+S a § 50+ 5¢.
i=0 Pe i=0
(8D); (8D);

€

(3.4FV)

For stationary solutions, w./p. is constant along streamlines, so the 2(g + 1) boundary terms cancel,
provided a; = — ®'((w./p.)|(8D);). From (3.4EM), stationary flows satisfy

v V(o 2+ h(p)=0, 0. V(we/pe)=0. (3.4C1)

This is consistent with assuming a Bernoulli Law

0.2+ hlp) = K(22), (34C2)
P

e

for K a smooth function of a real variable. The condition 0= DH(v., p.)* (8v,8p) holds if the
coefficients of 8p and 8v vanish. For 8p this is

K()+o(0)-{P'({)=0,

which uniquely determines @ (up to a constant):

)

An important point is that the coefficient of 8v in (3.4FV) also vanishes by virtue of the expression for
@. Indeed, from Bernoulli’s Law,

4
K(?)
t2

2()=1¢(

V(o2 + h(p.)) = VK(wclpe) ,
so that for stationary solutions, (3.4EM) gives
0= v/t = = V(ve]*/2+ h(p.)) + ve X w2,

and hence

VX weE = VK(&) or pew.=23x VK( )-2x V«p'(&),
Pe Pe

€ (l)e

using the relation K'({)— {®"({) between K and @. Consequently, we have the following.
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Proposition. Stationary solutions (v., p.) of two-dimensional barotropic Euler flow with p.>0 are
critical points of H + Cp + 25_ a;l;, where @ is given in terms of the Bernoulli function K for the
stationary solution by

D(L)={¢ ( Kt(f) ) a; = —@'(we/p.)|(dD); .

Remark D. The second variation of Hc(v., p.) is computed to be

D*He(v., pE0,59) = | {' O ey 12 '](a pook(2)o(%)[Jorar. Gasv

D

where 8(pv) := v.8p + p.dv and 8(w/p) := (pdw — wdp)/p3.

Expression (3.4SV), suggests that conditions for stability are p. >0 and £"(p.)p.> |ve]* (the latter
meaning that the stationary flow is subsonic), and (1/w.)K'(w./p.)>0. This is the condition for
linearized stability, but the nonlinear theory requires more stringent conditions. (The second variation
calculation has also recently been done by Grinfeld [1984].)

D. Convexity estimates
We have, after a short computation,

H(v.+Av, p.+ Ap)— H(v., p.)— DH (v, p.) : (Av, Ap)

= j {lA(pv)lz ‘ve|2(AP)2+[ (pe+Ap)— E(Pe)_s(pe)Ap]}dx dy,
2p 2 p

D

where A(pv):=(pe+Ap)(v.+ Av)— pev.. Assume e"(7)=c2;,/7 for all 7 and a constant Cmi, (the
minimum sound speed). Then we get (CH) with

2
0,(8(e0),8p) = j{ fon P} aray,

where 0 < pmin <P =< Pmax <®. Note that Q; is a quadratic form in the variables (pv, p) rather than

(v, p).
If the Bernoulli function K satisfies

1
aSZK'({)=¢”({),
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then one finds (CC) with a quadratic form in A(w/p):

Q:A(p0), Ap) = 2apm | [A(wlp)F dx dy. (o)

D
where A(w/p) := [we + Aw)/(pe + Ap) — w./pc]. Thus, (D) holds provided
a> O and crznin/pmax > lve|2/pmin .

E. A priori estimates
The estimate (E) of section 2 holds where Q, and Q. are as above.

F. Nonlinear stability
If we have

8”(7-) = Cl?nax/pmin for all T, min = 7 = Pmax

and

1
-K'{({)sA<wo,
[ ({)

then (CH) and (CC)' hold for arguments similar to those given in step D. Thus, with this hypothesis,
and for solutions in P satisfying pmin < p < Pmax, W€ have Liapunov stability in the norm || |*= Q; + Q,
as long as solutions remain in P. (The existence theory for solutions to these equations is not well
established, except for short-time solutions —see Courant and Hilbert [1962, Vol. II] - so there is little
more one can expect in the present circumstances.)

We summarize our results as follows.

Stability theorem. Stationary solutions (v.,p.) of the two-dimensional barotropic Euler flow which
satisfy the conditions

0 < pmin = pe = pmax < ’ (34SC1)
1

O<asZK’({)sA<oo, (3.45C2)

Cin/ Pmax = €"(T) = Cnax/ Pomin » (3.45C3)

where K is the Bernoulli function for (v, p.) are conditionally stable in the norm on (pv, p) given by
Q: + Q,, that is, perturbations from equilibrium are a priori bounded in time in the norm determined by
Q;+ Q- as long as the solutions satisfy pmin < p = Prmax.

Example A. Shear flow. A stationary solution of (3.4EM) in the strip {(x, y) ER?|Y, <y < Y.}, is given
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by the plane parallel flows with arbitrary velocity profile v.(x, y) = (u(y), 0) and constant density p. = 1.
We can allow x to be unrestricted in R or to be periodic. In the former case, we require that the
perturbations allowed be initially square integrable. Note that (w./pe)(x, y) = ~u'(y). Let c. denote the
sound speed of this stationary solution. By our earlier analysis this flow is formally hence linearized,
stable if and only if ¢c2— u(y)*>0 and u(y)/u"(y)>0.

The hypothesis on the existence of the Bernoulli function K is in this case #"(y)# 0. In other words,
plane parallel flows with constant density and velocity profile with no inflection point are formally,
hence linearly, stable. This is analogous to Rayleigh’s theorem for the incompressible problem.

We turn now to the study of our a priori estimates for this shear flow. For this, we must compute the
Bernoulli function K from its defining relation (3.4C2) under the hypothesis V(w./p.)= u"(y)y # 0.
Denote by ¢ the inverse of u; we get K()=u[¢({)F/2+h(1) and thus K'({)=

—u(d(O)u (P (NU"(Q) = fu(d(O)u"(@(¢)), so that condition (3.4SC2) becomes 0<a=
u(y)/u"(y)=< A<, To get the a priori estimate (E), one imposes condition (3.4SC3), which bounds

£"(7). Condition (3.4SC3), for example, is satisfied for an ideal gas with y =2, i.e., a monatomic gas in
two dimensions. The a priori estimate (E) then results, with p. = 1 and velocity profile u(y), satisfying

(3.4SC2) but arbitrary otherwise.

For the Mie-Griineisen equation of state e(r)= A7+ B/7+ C, with constants A=apl/2, B=
£'(pe)+ apel2, ¢ = £(pe)— pee'(pe) — ap2, where the constant o satisfies CZin/Pmax < @ < Cimax/Prmins
condition (3.4SC3) is sufficient for the a priori estimate for the “elastic fluid”, again with p. = 1.

Parallel shear flows with one inflection point taking place at y = 0 [#"(0) = 0] can also be considered,
under the assumption that the equilibrium velocity profile is antisymmetric about the inflection point:
u(—y)=—u(y). For the case in which the ratio u(y)/u"(y) is positive and bounded, as in (3.4SC3),
one again obtains a priori bounds. For example, one may take u(y)= arc tanh y, |y|<1.

Compressible shear flow in the plane can also be stationary if v.(x, y) = (u(y), 0) and p(x, y) = f(y),
for arbitrary functions u(y), f(y). In this case, we(x, ¥)/p.= u'(y)/f(y) and the assumption on the
existence of the Bernoulli function K is [u'(y)/f(y)]'#0. This flow is formally stable provided
cX(y)-u*(y)>0and {'K'({)>0, where c.(y) is the sound speed. Thus, the stationary flow must be
subsonic everywhere, and K({) must be increasing as a function of £?/2. The a priori estimate (E) holds,
if £ and K satisfy the inequalities in the theorem.

Example B. Circular flows. To illustrate the effect of barotropic compressibility on stability, we consider
circular flow in an annular domain, so in polar coordinates (r, 8), v. = Ov.(r) where @ is a unit vector in
the azimuthal direction, and p. = p.(r). Because of circular symmetry, there are additional conserved
quantities: namely, the angular momentum [, (pv X r)-Z dx dy and moment of inertia [p pr* dx dy.
Hence, we take

HC=Jdxdy[%p'v‘2+g(p)+p¢(w/p)+%.(2pvxr-i+§.(22pr2+.()]+ 3@ v-de,

D (8D)i

where {2 = constant and (4D); are circularly symmetric. This can be rewritten as

Hc=jdxdy[%p]ﬁ{z-i-e(p)+p(15((c5+.0)/p)]+ § 5-de

D (8D);
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where v = v +342r X z is the fluid velocity relative to a frame rotating with angular velocity (2/2, and
w=z-curl = w— (). Since Hc in these variables retains its previous form, the stability condition
@"(w./p.) > 0 can be written as either

_/d .
ve/alpe (@ +2)] >0,

where @, = r'd(r.)/dr, or, equivalently, using the equilibrium condition dp./dr = peb.(Te + £2r)/rc?
where ¢2 = p.h'(p.), as

peﬁe/ [i (@e+ 2)~ (D + )@, + ﬂ)ﬁe/rci] >0 (3.4BSC)
dr

for stability.* Thus, compressibility can be either stabilizing or not, depending on the relative signs and
magnitudes of 7./r, &., and £, and the magnitude of ¢2. In the limit that ¢;? tends to zero, the second
term in the denominator vanishes in (3.4BSC) and it becomes the counterpart for circular in-
compressible flow of Rayleigh’s inflection point criterion. Of course, this incompressible case could also
be done directly in the context of section 3.3.

For rigidly rotating flows, 0. = @.7/2, . = const, and condition (3.4BSC) becomes

02+ d)(@w.+ 02)<0

for stability, which is satisfied when @.£2 <0 and 2|2|>|@. > |f2|, independently of the domain
considered. For £ =0, homogeneous flows with v.(r) = ve(r/r,)” for constants n, vy, 1y, and vZ/ci=
dlog p./dlog r = m*= const, are stable according to (3.4BSC) for either n>1+m? or n<-1, also
independently of the domain.

Remark. The barotropic equations in a rotating frame are

o=~ V)o-Vh(p)+ 2o xz, dp/dt=—divpd,
which imply
@B+ o-V(w+2)p]=0,

and their corresponding stability criteria discussed here have certain meteorological applications and
also apply to large-scale topographical planetary waves in the ocean when h(p)=gp?/2 and p is
identified with the height of a water surface over a flat bottom (see, e.g., LeBlond and Mysak [1978]). In
the absence of circular symmetry, the nonlinear stability analysis for the barotropic equations in a
rotating frame is an obvious modification of what is presented earlier in this section for the case without
rotation.

* For the homogeneous case, nonlinear stability of circular, elliptical and annular patches of vorticity is studied theoretically by Wan [1984],
Wan and Pulvirente [1984) and Tang [1984), and numerically by Dritschel [1984).
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Part 1. Two-Dimensional Fluid Systems

The examples presented in the introductory sections included two-dimensional incompressible and
compressible flow. In this first part we study quasigeostrophic flow, planar MHD, and planar multifluid
plasmas. The second part will deal with analogous three-dimensional problems.

The examples presented can be read independently. Because of the different nature of the Casimirs
for different problems, approximate equations and two-dimensional equations are not necessarily more
tractable than more exact equations or three-dimensional ones.

4. Multilayer quasigeostrophic flow

In this section we shall apply Arnold’s method to the study of a widely used model in physical
oceanography and astrophysics: multilayer quasigeostrophic flow. This a straightforward extension of
the examples in sections 3.3 and 3.4. (See especially the discussion in example B of section 3.4 of
planetary topographic waves at the end of section 3). This type of example has been of considerable
interest in the literature (see for example, Dikii [1965a,b], Blumen [1968], Pierini and Vulpiani [1981],
Benzi et al. [1982] and Andrews [1983]). However, the stability analyses of stationary flows so far have
only been for formal stability. Here we complete the proofs by providing convexity estimates. This
section also provides a transition between the easier examples in section 3 and the more complicated
case of planar MHD considered in the ensuing two sections.

A. Equations of motion and Hamiltonian

Consider a stratified fluid of N superimposed layers of constant densities p; <--- <py, the layers
being stacked according to increasing density, such that the density of the upper layer is p,. The
quasigeostrophic approximation assumes that the velocity field is constant in the vertical direction and
that in the horizontal direction the motion obeys a system of coupled incompressible shallow water
equations. We shall denote by v; = (~dyu/dy, ds/3x) the velocity field of the ith layer, where ; is its
stream function. Let

N
0 =V+a, S Tyy+f, i=1,...,N (4A1)
j=1

be the generalized vorticity of the ith layer, where

a; = f3lgl(pisr—p)Ipo)D:,  i=1,...,N
fi=fot+ By, i=1,...,N-1
fnv=fot+By+fod(y)/Dn,

fo=20sin¢,, B =(202cos ¢o)/R,

and
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1 10 1
1 -2 1
[7:}]: "..'.'-‘..'._. s i,j=1,...,N-
1 -2 1
0
i 0 1 -1]

The N X N tensor Tj is the second-order difference operator: Ty = (Y1 — ) — (¥ — thi+1), & is the
gravitational acceleration, po = (1/N)(p, + - - - + pn) is the mean density, D; is the mean thickness of the
i-th layer, R is the Earth’s radius, {2 is the Earth’s angular velocity, ¢, is the reference latitude, and
d(y) is the shape of the bottom. With these notations, the motion of the multilayered fluid is given by
(see Pedlosky [1979]):

dwilot+{th, w;}ey =0, i=1,...,N (4EM)

where {,},, denotes the usual xy-Poisson bracket in R The boundary conditions in a compact
domain D with smooth boundary

) D),
j=0

are /o) = constant, whereas in R? they are

lim Py, =0.
(x, y)>xo
The space P consists of N-tuples (wy,...,wn) of real-valued functions on D (the “generalized

vorticities””) with the above boundary conditions and certain smoothness properties that guarantee that
solutions are at least of class C'.
The Hamiltonian for (4EM) is the total energy

|

H(wl,...,wN)=%f [;;wmu 21 (W — thea )] dx dy, (4H)

with ¢; determined from w; by the elliptic equation (4A1) with the boundary conditions discussed
above.
Remark A. The egs. (4EM) are Hamiltonian with respect to the Lie-Poisson bracket on the dual of
iL, (D) given by

(F G}(w,,...,wN)=§jw,.{8F SG} dx dy, (4PB)

—_——
i=1 8(0,' 8(1),' xy
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if D is simply connected. If D is not simply connected, one can proceed as in example 3.3, considering
v; as the basic dynamic variables and 8 F/dw; is interpreted with care (Marsden and Weinstein [1983], Lewis
et al. [1985]).

B. Constants of motion
It is easy to see that the material time derivative of w;(, x, y) along the flow of (4EM) is zero.
Consequently, for every function ¢;: R >R the functional

c,.(w,-)=;l1f j ,(w;) dx dy (4cC1)

D

is a conserved quantity for the system (4EM), provided the integrals exist. (The constant «; is inserted
for later convenience). By Kelvin’s circulation theorem, the following integrals are conserved

Fi(w) = - 39 Vi n ds, (4C2)

(3D);

where n is the outward unit normal.
Remark B. As in example 3.3, the functionals C; and I; are preserved by the push-forward of
functions by area-preserving diffeomorphisms. Thus C; and I'; are Casimirs.

C. First variation

Stationary solutions will be sought as conditional extrema of the energy H at fixed C: = SN, C: and
T; by means of a constrained variational principle. Let Hc:= H+ C+ X, ; A;I; where all the @; and A;;
will eventually be chosen such that the first variation DHc vanishes at a stationary solution

w.:= (05, ..., o%). After integration by parts, one finds
N-1 1
DH(w.)* 50 = f [ VT VBt S (0 WO~ B DR )Bw,]dx dy

i=1 & =14
D

Sk § Poyends

(3D);

- [ [2 2 7u@in)- 4+ 3 67808001~ Bllo) - e @l o) dx ay

i
D

o [weD,

A j: Vw,--ndsJ. (4FV)

(8D);
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In these calculations, we use the relations between w; and ¢;, the form of the matrix T; and the fact that
s is constant on each (4D);.
The equilibrium solutions of (4EM) satisfy

{¥:,05}=0, i=1,...,N, (4S1)
i.e. Vs and Vw? are collinear. Sufficient conditions for this to happen are the functional relationships
yi=V(wi), i=1,...,N, (4S2)

for some real-valued functions ¥, (Note that this is possible since ¢ is constant on the boundary (6D);.)
From (4FV) and (4S2) it follows that at a stationary solution ., DHc(i.) = 0 if and only if ¢§ = ®(w$),
i=1,...,N and hence @;= ¥, i=1,..., N. We have proved the following.

Proposition. A stationary solution of (4EM) is a critical point of He= H+ C+Z,; A;l;; where

N
C=EG, C‘,=(1/a,)J' Q(wi)dXdy, (p:: lI,,', izl,...,N, )x,-,-=(//ﬂ(z9D),-/ai.
i=1
D

Remark D. Formal stability. The second derivative of Hc at w. equals

N

D’H(w.)dw) = j [; i (Vo) + DY wf)(Bw: ) + é By — B:ﬂm)z] dxdy. (4sv)

Thus, if @"(wf)= ¥i(w;)>0, the second derivative is positive for any perturbation 8w;. This proves the
following result of Pierini and Vulpiani [1981]: The stationary solutions of (EM) are formally stable, if
Vi{)>0, foralli=1,..., N. Similar results for special classes of flows can be found in Blumen [1968]
and Andrews [1983]. In particular, the conditions ¥i({)>0 for all i=1,..., N imply linearized
stability.

D. Convexity estimates
Since H is quadratic, condition (CH) from section 2 is trivially satisfied with Q, = H. For (CC) we
require

0:80)= S [ Bwf +Aar)- B(o7) - PfoD)aw] dx dy.

This holds with

N
Q(Aw)=3c; D, | (Aw)*dx dy, where c; is a constant, provided c; < ®%({) for all ¢
i=1

D



36 Darryl D. Holm et al., Nonlinear stability of fluid and plasma equilibria

Condition (D) requires

N1 N N
J (2o 1700+ S @b e X @ dxdy>o,

for all Aw; # 0. If c,>0 this condition is satisfied. This means that for all i=1,..., N and { we have
D)= >0, ie, P z=c>0.

From ¢ = ¥;(w7), it follows that Vi = ¥i(w?)Vws so that
Yi(w?) = Vi Vor .

Thus condition (D) holds if
Vs /| Vws=c,>0

foralli=1,...,N.

E. A priori estimate
Let ;0= ili=0, ¥i0= thi]si=0, Awi = w; — w5, and Ay = ¢, — 5. Then for ()= c,>0 we have
the following estimate:

N 1 N-1 N 1
H[SoIv0P+ S @h-d0af+ 3 @ axdy

i=1 i=1 &
D

N1 N-1
<t [ [ 1780+ S Qo= B dx

i=1
D

N
1
; j S S [0 + Awio) - Bilwf) - Plwd)Aw, o] dx dy. (4E)
i=1 Qi
D

F. Nonlinear stability
For ¢, >0 we set

Ay

N-1 N 1
170 = | [SI7a0F+ S Qo= 20iP+ e 3~ @orF | drdy. (4N)
i=1Q; i=1 i=1Q;

Then (CH)' and (CC)’ hold provided
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V{)=C<+x

for all £. Then we get the following.

Stability theorem. Assume that
°°>C22W:'(£)->—C2>0, i=1,...,,N,

for all values of {. Then the stationary solution . of (EM) is Liapunov stable (as long as solutions
remain C').

Example. Shear flow in a two-layer system. Consider N = 2 in (4EM) and the steady solution
vi=Uy, i=1,2, where U, >0 is a constant ,

studied by Pierini and Vulpiani [1981] with periodic boundary conditions in a finite x and y interval. The
derivatives ¢, ¢ are easily seen to equal

1= Ul/[Ch(Uz“ U1)+ ,3] s 2= Uz/[az(U1 - U2)+ B +f0d'()’)/D2] .
Hence, the hypotheses of the stability theorem are satisfied and the two-layer flow is stable if
U,-U,>-Bla;,
and the shape of the bottom is such that
C>a)lUi— Ux)+ B+ fod'(y)/ D> ¢ >0,
for some constants C, and ¢, > 0.
The case when both U, U,<0 can be treated similarly, by passing to a moving reference frame
x=x'tkt,y=y',t=t,for k>-U, -U..
Remark. The same considerations apply for the Liapunov stability of a uniform one-layer quasi-
geostrophic motion considered by Benzi et al. [1982). The rigorous convexity argument alters their

sufficient condition by placing a positive lower bound on the derivative of . With this modification, the
applications given in the aforementioned paper have obvious changes.

5. Planar MHD with B in the plane

In the barotropic (resp. incompressible) magnetohydrodynamics (MHD) approximation, plasma
motion in three dimensions is governed by the following system of equations:
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J d oB
;’t):—div(pv), pd—l;=—Vp+JxB, ~=-arlE, and divB=0, (3dMHD)

where

p=p(p) [resp.divo=0], J=curlB and E=-vXB.

In the barotropic case, the pressure p is a given function of the mass density p: p=p(p). In the
incompressible case p is determined, as usual, by the condition div v = 0. In (3dMHD), E is the electric
field, v the fluid velocity, B the magnetic field, J the electric current density, d/d¢:=d/dt + v - V is the
material derivative, and the equations are written in rationalized Gaussian units. The conditions under
which these equations are an appropriate physical model are discussed by Bernstein et al. [1958] and
Freidberg [1982]. The boundary conditions we assume are those of a fixed, ideally conducting interface;
i.e. the velocity v, and magnetic field B, are tangential to the boundary.

In this section we consider two-dimensional incompressible and barotropic MHD taking place in a
domain D in the xy plane with B parallel to the plane. We shall begin with the incompressible case.
This case is of interest since it corresponds to the equations of reduced magnetohydrodynamics
(RMHD) in the low B limit and with a helical symmetry imposed. In particular, we determine the
stability of Alfvén solutions and Grad-Shafranov equilibria.

5.1. Homogeneous incompressible case

Some of the key features of this example are discussed in the context of RMHD in Hazeltine et al.
[1984]. Stability analyses for the more complex models occurring in Hazeltine and Morrison [1983] are
found in Hazeltine, Holm and Morrison [1984].

A. Equations of motion and Hamiltonian

We shall assume that the domain D containing the fluid has a smooth boundary and lies in the xy
plane. Since the Eulerian velocity field v and magnetic field B are in the xy plane and satisfy div(B) = 0,
B-n=0,div(t)=0 and v+ n =0 (n is the unit outward normal to dD), there exist functions A and ¢
on D (the scalar magnetic potential and stream function) such that B = curl(AzZ), v = curl(¢£) and A
and ¢ are constant on connected components of dD. Thus, the current has the expression

J=2-(VxB)=-V*A.

To simplify matters, we shall assume that D is simply connected, so we can take A and ¢ zero on dD.
The equations of motion (3dMHD) become

6 ={ w0ty +{ Aky, A={y AL, (5.1EM)

where { , },, is the canonical Poisson bracket in the xy plane. The space P consists of pairs of functions
(w, A) on D with appropriate smoothness properties. The total energy

[ GoF+1BF) ax ay

D
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has the expression

Hiw, A)=1 j [0(=V2) 0 + A(-V2)A] dx dy, (5.1H)

D

and represents the conserved Hamiltonian for the egs. (5.1EM).

The egs. (5.1EM) coincide with the RMHD equations in the low A limit with a helical symmetry; see,
for example, Morrison and Hazeltine [1984].

Remark A. Poisson bracket. The eqs. (5.1EM) are Hamiltonian with respect to the following
semidirect product Lie-Poisson bracket

SF G SF 8G 5G SF

0 [[E9) a2 -0 Yrar

{F.G) “Vs0’ 30 ) o A<8w8Axy awany>xy (5-1PB)
D

the functional derivatives 3F/3w and 3F/3A must be interpreted carefully as in Marsden and Weinstein
[1983] and Lewis et al. [1985]. The verification that F = {F, H} for any F with {, } given in (5.1PB) uses the
following integration by parts formula:

j{f,g}hdxdy=jf{g,h}dxdy+ jl;fhxg-nds,

oD

where X, = Vg x 7 is the divergenceless vector field with stream function g. The Poisson bracket (5.1PB)
coincides with the Lie-Poisson bracket on the dual of the semidirect product Lie algebra of the Lie group
Diff,(D) ® #(D). The Poisson bracket (5.1PB) is obtained from canonical brackets in Lagrangian
coordinates under reduction and an assumption of helical symmetry (see Marsden and Morrison [1984]).

B. Constants of the motion
For arbitrary real valued functions @ and ¥ of one variable, the functional

Co o, A) = f (@B(A)+ P(A)) dx dy
D
is preserved by the equations of motion.
Remark B. These functions are Casimirs for the Poisson bracket (5.1PB). This may be checked

either by direct verification, or by checking that Cg ¢ is invariant under the coadjoint action of
Dift, (D) ® F(D):

1) (@ A)= 1,0+ {n A fln A).
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C. First variation
The derivative of He:= H + Cg, v at an equilibrium (w,, A.) is given by

DH(wr, ANG0.54)= [ [ e+ SN0+ [ [ 11+ 0040+ ¥1(A)] 54

D D
where ¢ = (-V*) ', and J. = —=V?A,. Thus (w., A.) is a critical point when

Yo+ P(A)=0, (5.1FV),
and

Jet w.D'(A)+ V'(A)=0. (5.1FV),
From the second equation of (5.1EM), it follows that Vi, and VA, are collinear in the plane. A
sufficient condition for this to hold is the functional relationship 4. = (A.) which, in turn, determines
@ = —¢ from (5.1FV),. From the first equation of (5.1EM) we have

{lpe’ we}xy + {Jea Ae}xy = 0 ’
so using (5.1FV), we get

{we¢'(Ae)’ Ae}xy + {Jea Ae}xy = O )

so the vectors V(J. + w.®'(Ac)) and VA, must be collinear in the plane. A sufficient condition for this
collinearity is the functional relationship

J.+ 0.8'(A) = G(A.) (5.1G)

for some function G; thus ¥ is determined by (5.1FV), and (5.1G) to be

¥(a)=- f G(s)ds.

Proposition. Stationary solutions (w., A.) of the planar homogeneous incompressible MHD equations
with B in the plane in a simply connected domain D satisfying the functional relationships

¢e = ‘;E(Ae) y Je - weJ’(Ae) = G(Ae)

for some real valued functions of a real variable «,/7 and G, are critical points of H + Cg4 _y, Where

®=—-y and 1I’(a)=—fG(s)ds.

(Conversely, if (¢, A.) is a critical point of H + Cg, 4, then it is an equilibrium solution of 5.1EM).
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Remarks:

(i) For any #., the choice A.= cy. gives an equilibrium solution; these are Alfvén solutions (see
Chandrasekhar [1961, §113]). Here @(a) = —a/c. From (5.1FV), we see ¥'(a)=0, so ¥ is constant.

(i) If ¢ =0 (so @ = 0) then we have a static equilibrium and (5.1G) reduces to

Je = G(Ae)

for a function G. These are Grad—Shafranov equilibria (cf. Chandrasekhar [1961, §115]).
(iii) A particular solution of J, = G(A.), —V?A. = J, is given by the Kelvin-Stuart cat’s eye formula

J.=~[acosh y+Va?-1cos x] >

(see example 3.3). Using a Poincaré-type inequality, [|VSA] dx dy = kmi, [ |SA] dx dy, one gets a
stability estimate similar to the analysis of the cat’s eye solution in fluid mechanics if 4 <1.175. .. (Holm,
Marsden and Ratiu [1984]). We note that the magnetic field lines in this case are such that they are confining
for the plasma. In the literature (Finn and Kaw [1977], Pritchett and Wu [1979], and Bondeson [1983]) these
magnetic island solutions are shown to be unstable; this can happen only if one allows arbitrary distrubances
in the y direction — transverse to the eyes. Our approach gives stability since our disturbances are confined
to a finite extent in that direction.

Remark D. Formal stability. As a prelude to the convexity estimates, we determine conditions
under which the second variation of H- = H + C¢, ¢ is definite. Integrating by parts, using the boundary
conditions ¢|dD = 0, A|aD = 0, regrouping, and using . = —P(A.), we get

D?He(w., A.)- (3w, SAY = j [3o(=V?) 80 + SA(-V2)BA + 20'(A)dw SA

D

(0. D"(Ae) + P'(A))(BA)] dx dy

= | VB0 PO AN+ (1- DA TAR + (0 (49

+ V'(A)+ D'(A)V*D'(AL))(BA)] dx dy.
Thus, sufficient conditions for formal stability are

@) [P(A) =1,
(i) w.P"(A)+ V' (A)+ P (A’ P'(A) =0,

where @ and ¥ are determined in the proposition. Notice that from ¢.=—-®(A.), we get Vi =
-P'(A)VA, and so v. = —P'(A.)B.. Thus, condition (i) may be phrased: v. and B, are collinear with
|vll <|IB.|l. Likewise, (ii) says VJ. and VA, are parallel with VJ, a negative multiple of VA.; in other
words, (i) says that VJ. and B. if not zero, form an orthogonal basis in the xy plane with the same
orientation as the x and y axis; i.e. VJ, and B, form a right-handed system (VJ, being zero is allowed).
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D. Convexity estimates
Since H is quadratic, we choose Q, = H. Next, consider

C=Co o (wetAw, A+ AA)~ Co, p(we, A)— DCo p(we, A)Aw, AA)

- j {(we + Aw)B(A. + AA) + V(A +AA) — 0. B(A) - P(A) - BAJAw - w B (AJDA

D
~ V' (AJAA}dx dy

= J {w(P(A.+AA)— D(A)— D'(AJAA) + Aw(P(A.+ AA)— D(AL))

+ V(A +AA)- W(A.)- V'(A)AA} dx dy.
Suppose that
®'(a)=q, 2®"(a)=r,
and
2¥"(a)=s, ie., G'(a)=-s/2
for constants ¢, r and s. Then

2= j j [roAAY + gAwAA + s(AAY] dx dy: = OxAw, AA).

D
Now we consider Q, + Q-:

(01 + Q)Aw, 8A) =7 J {A0)-V?)"(Aw) + (AAY-V*)(AA)} dx dy

D

+ j {(ro. + s)AAY + gAwA A} dx dy

D

i

L[ 1v@9)- qP@ AR drdy+ [ (- g)IP@AN dxdy

D D

+ J (rw. + s)(AA)Y dx dy.

D
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This is positive if:
@ lq]=1.
and
(b) rw.+s5s=0,

and is definite if at least one inequality is strict.
The two special cases of Alfvén solutions and Grad-Shafranov equilibria deserve special note:
() If ¥ is constant and @ is linear (®@(a) = —a/c), then r=s =0 and g = —1/c. In this case,

C= f Aw-(—%)(AA)dxdy,

and so

0,+C= f [(Aw)(-V?) (Aw)+AA(-V?)AA - %AwAA] dx dy

D

- | {] V(A¢)—%AVA,2+<1—§5)IAAIZ} dx dy

D

which is conserved. Thus, one has Liapunov stability in the above norm if ¢ > 1. If ¢ = 1 this quadratic
form simplifies to

0,+C= f |VAY - VAAP dx dy

D

which is a “degenerate” norm (a semi-norm). In this case one has an a priori bound on the difference
A —AA (i.e. ¢ must remain close to A) but of the perturbations each may grow.

(ii) In the Grad-Shafranov case, @ = 0 so we take g =r=0 and the condition (b) above becomes
5 >0, i.e., J. is a decreasing function of A..

E. A priori estimates
If we set

IAw, AA)P = (Q: + Q:)Aw, AA)
and (a) and (b) above hold, then estimate (E) from section 2 gives

”(Aw, AA)”2 = Hc(we + A(l)lt=o, Ae + AAI;=0) - Hc((l)e, Ae) .
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F. Nonlinear stability .
Sufficient conditions for stability in the norm || - || are obtained by bounding Q, + C above, in addition

to (a) and (b). One gets:

g=®'(a)=Q, r=20"(a)=R, s=2¥"(a)=S$,
where

lg|<1 and rw.+s>0

(if one inequality becomes an equality, then one uses the earlier arguments special to the Alfvén and
Grad-Shafranov cases).

Remark. The above analysis does not reduce to the Arnold case in the sense that an equilibrium of Hc
for the 2dMHD equations (5.1EM) with A, = 0 does not give the same stability conditions as in example
3 in section 3. The reason is that the Casimirs for the two problems are rather different. In particular, a
2dMHD equilibrium of Hc is static, and the functional relations assumed above become trivial in the
case A, = 0.

We summarize our findings:

Stability theorem. Let (w., A.) be an equilibrium solution of (5.1EM). Assume that
Ye=~P(A), Jetw.P'(A)=G(A,),
for functions @ and G. Moreover, assume @ and G satisfy
—o<lg=@P'(a)=0<w, -—w<r=2@"(a)sR<w, -wls=-2G'(a)<S<x,
for all a, where g, r, s, O, R, S are constants satisfying
lg|<1 and rw.+s>0.
Then (w., A.) is (nonlinearly) stable relative to the norm

Ay AA)R =2 j IV(Ay)— g VAP dx dy + j (1- ¢?)|VAA)P dx dy + f (rwe + s)[AAP dx dy

D D D

as long as solutions exist and are C'.
The Alfvén solutions, with . = A, and G = 0, are stable as a family,* relative to the semi-norm

6w 840 = [ P@y-aa)Rdxdy.

D

Grad-Shafranov solutions, with @ =0 and J. = G(A.) which satisfy

* That is, with stability defined in terms of neighborhoods of sets of equilibrium solutions, rather than individual equilibria.
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0<s=-2G'(a)=S<»

are stable relative to the norm

Ay, A4 =2 f (V@A) + V@A) +sIAAF?) dx dy.

D

Finally, we remark that the global existence of smooth solutions is not known (to us) for the system
(5.1EM), so the stability has to be conditional: it is valid for times as long as smooth (C") solutions exist.

5.2. Compressible case

A. Equations of motion and Hamiltonian
Just as in incompressible planar MHD with B in the xy plane, the relations

V.-B=0, B-z2=0, and B-n=0

in a simply connected domain D C R? imply the existence of a function A such that
B=curl(A2)=VAx2, and A|dD=0.

As in section 5.1., let the current be given by
J:=Z-curlB=-V’A.

The compressible MHD equations for this situation are, with w = 2 - curl v,
. . . A 1 2 ] H
p=—divpy, o=-wiXv-ViEof+h(p)+-VA, A=-v-VA, (5.2EM)
p

where h(p) is specific enthalpy, obeying 4'(p)=p~'p'(p) where p(p), the pressure, is a function of
density p. The space P consists of triplets (v, p, A), lying in appropriate function spaces, and sufficiently
smooth in the domain D C R?. The conserved Hamiltonian is

H= [ (oloP+ (o) +3PAP) dx dy, (5.2H)

where £(p) is the internal energy density, satisfying ¢'(p)— h(p).

Remark A. The equations of motion (5.2EM) are Hamiltonian with respect to the Lie—Poisson
bracket on the dual of the semidirect product Lie algebra Z(D) ® (¥(D) x A*(D)), where the action of
the vectorfields (D) on the functions (D) and two-forms A?(D) is by minus the Lie derivative. The
dual spaces of (D) and (D) are identified with themselves by the L*-pairing, whereas the dual of



46 Danyl D. Holm et al., Nonlinear stability of fluid and plasma equilibria

A%(D) consists of functions on D. The dynamic variables in (Z(D)® (F(D)x A*(D))* = Z(D)x
F(D)x F(D) are (M = pv, p, A), with M = pv the Eulerian momentum density of the fluid. With these
notations, the Poisson bracket of two functionals F and G of (M, p, A) is given by

(F G}(Mp,A)-:j{M[(f’g— V)_SE_(_ 7) SGJ [E.(Vﬁf)_i.(véﬁ)]

oM am oM sm TP lam " 5p) "M\ 5y
D
3G /_OF\ oF /_5G\ 8F . 8G 3G _ oF
+A[ (V——~>————- p ) 2 gy 22 oY ——]} . .
sM \"34) oM ( sa) oA em 5a W oarl XY (5.2PB)

This bracket is related to the MHD bracket in Morrison and Greene [1980], is derived from Clebsch
variables in Holm and Kupershmidt [1983], and is obtained from a canonical bracket via the Lagrangian
to Eulerian map in Holm, Kupershmidt and Levermore [1983], Marsden et al. [1983], and Marsden,
Ratiu and Weinstein [1984a, b].

B. Constants of motion
Applying the operator Z - curl to the motion equations (5.2EM) and using the identity

div(gz x Vf)=(Vfx Vg)-z = —div(fZ x Vg) (5.2vD)
for any functions f, g depending only on x and y we get the vorticity equation
o = —div(wo — AZ X V(Jp)). (5.20)

Consider the quantity

Ca w0, A)= | [0®(A)+ p¥(A) dx dy (5.20)

D

for arbitrary smooth real valued functions of a real variable @ and ¥. Taking into account (5.2w) and
the first and third equations in (5.2EM), the time derivative of (5.2C) equals

%Cazp(v, p, A)= —J div[(@(A)w + ¥(A)p)v] dx dy + J div(AZ x V(J/p))P(A) dx dy

_ §§ (D(A)w+ W(A)p)o - n ds + §3 %db(A)(VAx £)nds

upon applying the identity (5.2VI). Both terms vanish provided v-n =0 and B-n =0, where B=
VA X 2. 8o Cg, ¢ is conserved.
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Remark B. The coadjoint action of the semidirect product Diff(D) ® (¥(D) x A*(D)) on the dual of
its Lie algebra is given by

(n, f,adx ady)- (M, p, A) = ((pon ") xv + aV(Aon™") = (pen ")V, (pon ') f, Aen™"),

where J is the Jacobian of » and M = pv. A straightforward computation shows thatif v-n=B-n =0,
the quantity Cg v is invariant under the coadjoint action and consequently it is a Casimir for the
Poisson bracket (5.2PB).

C. First variation
The stationary solutions (., pe, Ae) Of (5.2EM) and (5.2w) obey

div p.v. =0, (5.281)
~wet X e — V0L + h(p) + (J/pe) VA. = 0, (5.252)
ve- VA.=0, (5.283)
div(weve — Aez X V(J./pe))= 0. (5.254)

Taking the scalar product of v. with (5.252) and using (5.2S3) gives
v VGlo+ h(p)) =0, (5.2B1)

so that the gradient vectors V(3|v.]>+ h(p.)) and VA, are collinear in the plane. A sufficient condition
for this collinearity is the functional relationship

o2+ h(p.) = K(A.), (5.2B2)

for a function K, called the Bernoulli function. Taking the cross product of the unit vector z with (5.252),
applying (5.2B2) and assuming that w,. # 0, we get

o=+ (£ - K’(Ae)>Be , (5.2B3)

€

where B, = VA, x 2. Thus for stationary solutions, the magnetic field B. is collinear with the velocity v,
in the xy plane with coefficient given in (5.2B3). Equation (5.2B3) agrees with (5.254) and together
with (5.2S1) implies that B. . V[(J. — p.K'(Ac))/w.] = 0. Thus by (5.283) and (5.2B3) the vectors VA.
and

V[(pe/we)(K' (Ae) - Je/pe)]

are collinear in the plane. A sufficient condition for this to hold is the functional relationship

(Pl ) K'(Ae) =~ Jo/pel = L(A.) . (5.2IL)
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This relation is analogous to Long’s equation in stratified fluid flow (see Drazin and Reid [1981] and
Abarbanel et al. [1985]).

Let He(v, p, A):=H(v, p, A)+ Csp w(v, p, A)+ A [pwdxdy. The first variation vanishes at an
equilibrium (v, pe, Ac) when the functions @, ¥ and the constant A satisfy certain conditions, to be
determined now. Integrating by parts gives

DHc(ve, pe, Ac)- (30, 8p, 8A) = J dx dy {[peve - 80 + D(AJw]+ [3vel* + h(pe) + Y(AL)]Sp

D

Pt 0 (A + p P (AJBA}+ A j 5w dx dy

D

= [ dx dyllpuoe+ P'(ABI 80 + o + (o) + PANBp

D

F o+ 0. @A) + p T(AJPA} + 3@ SAVA,-n ds

oD

T+ BA)p 35 50+ d+ A 3€ S0+ de.

oD oD

Using A,|dD = 0, the first derivative of Hc will vanish at the stationary solution, provided

peve + D'(A)B. =0, (5.2FV1)
HooP+ h(pe)+ P(A) =0, (5.2FV2)
Jot 0. D' (A + peP'(A) =0, (5.2FV3)
A+ DAl =A+ ®0)=0. (5.2FV4)

Relation (5.2FV4) determines A once @ is known. From (5.2B2) and (5.2FV2), it follows that

Y(A.) = -K(A.). (5.2FV5)
Substituting (5.2B3) in (5.2FV1) and taking into account (5.2L) yields for B, # 0

P'(Ac) = L(A,), (5.2FV6)

which in turn, together with (5.2FV5) and (5.2L) makes (5.2FV3) into an identity. We have proved the
following.
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Proposition. Stationary solutions (v., p., A.) of the planar barotropic MHD equations with B in the
plane and A.dD =0 satisfying w.#0, B.#0 are critical points of H(v, p, A)+ Cs o(v, p, A)+
A [p @ dx dy, provided

W(s)= -K(s), B(s)= f Lw)du, A=-®(0),

where K and L are the Bernoulli and Long functions respectively, given by (5.2B2) and (5.2L).
Conversely, a critical point of Hc is a stationary solution.

Remarks:
(i) Equation (5.2FV3) can also be written as

T+ w.L(A) = p.K'(Ad) . (5.2FV7)

Suppose that —L(A.)=c = constant, ¢#0. Then by (5.2FV1) and (5.2FV6), p.v.=cB., J.=
(pewe+ 2 - Vp. X v.)/c and by (5.2FV7) we have

e e 1,
( 1- %)we P K(A)+ =2 0.x Vp = 0. (5.2FV8)
C C

If in addition p.= ¢?, this class of solutions reduces to the Alfvén or equipartition solution (see
Chandrasekhar [1961, §113]).

(ii) Suppose that L(Ae) = 0, then by (5.2FV1) and (5.2FV6), v. = 0, i.e. we have a static equilibrium.
Relation (5.2FV7) then reduces to

J.= pK'(A), (5.2G)
which is the compressible Grad-Shafranov equation.

Remark D. Second variation. After integrating by parts and using the boundary condition 8A|éD =
0, we find that the second variation of H. at a stationary solution (v., p., A.) is given by
8’Hc := D*He(ve, pe, Ae)* (80, 8p, 8AY

= j [pels0+ 20, - 568p + £"(p)(8p )2+ | VOAR + 29/(A.) 8p BA
+ (@ D"(A) + p V(A)BAY +2(2 x dv) - (V' (A)BA + 2D'(A)(E X dv) - VdA] dx dy.
(5.28V)

Taking as variables the two components of v, 8p, 8A and the two components of V3A, the quadratic
form under the integral sign has the 6 X 6 matrix
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pe 0 ol 4PA) 0 P(A)]
0 Pe ve  —aP'(A) -P(A) 0
ve ve e'(ps)  V'(A.) 0 0
IP'(A) -a.D'(A) V(A a 0 0
0 ~-d'(A.) 0 0 1 0

| 2(A) 0 0 0 0 1 J

where a = w. P"(A:) + p. V"'(A.). The six principal minors of this matrix are:

2.1

Br=Pe,  M2=pi,  p3=pie"(pe) — [velpe,

pa= peae”(pe) = PV (A + (ve* VO'(A)Y = pee(pe)| VO (AP
—pealvel’ = 20. ¥'(Ac)Z - (v X VO'(A.))

ps = pra= P (A (pee”(pe)a = £"(pe)(3, D' (A — V'(Ac)pe — (vefa + 2¥'(Ac)ved, P'(Ae)) »

pe= pst P (AN (ae"(pe)P'(Ac) ~ P(AP V(AL + pee”(pea = 2¥'(AJv2a, D' (Al)
= e"(p)0: P'(A)) - (v3)a — V(AP p. .

The conditions for formal (and hence linearized) stability are
>0,  pee(pe)— vl >0,  ua>0,  us>0, wue>0. (5.2F5)
We examine these conditions of formal stability for the cases of the Grad-Shafranov and Alfvén
solutions.
(1) The Grad-Shafranov solutions are static, i.e., v.= 0 and @' = 0. In this case —K(A.)= ~h(p.) =

~£'(p.) = Y(A.), and —K'(A.) = —J./p. = ¥'(A.). The quadratic form (5.2SV) in this case simplifies
to

| 1odboP + e"(pe)3p )+ | PBAF +20/(A)55A + p. '(ANBAY] dx dy

D
and so the conditions for formal stability in this case become

pe>0,  pee”(pe)=ci>0,  piciK"(A)>JZ, (5.2GS)
where ¢2 = p.£"(p.) is the sound speed. These conditions are equivalent to

Uelpe)* + c2V(Jelpe) VA >0,

if VA, #0.
(it) The Alfvén solutions are characterized by p. = ¢?, v.= B./c, and —®' = ¢, ¢ = constant. Then
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from (5.2FV8) with p, = ¢?, it follows that —¥' = K’ = 0. The quadratic form (5.2SV) simplifies in this
case to
j [8vf + 20, - d03p + "(c*)®p ¥ + |VO AP + 2¢(2 x dv)- VBA]dx dy. (5.2ALF)
D

The quadratic form in 3v, 3p, V3A under the integral sign in (5.2ALF) has the 5 x 5 matrix

2 0 vl 0
0 c? v —c
ve v £'(*) 0
0 -c¢ 0 1
c 0 0 0

—_0 O O

whose principal subdeterminants are c¢2, ¢*, c*(c2— |v]*), —c*(vZ), 0. Thus, the second variation is
indefinite in the case of Alfvén solutions. In fact, grouping together terms in (SALF) that involve 8,
and completing squares leads to

?H¢= j {c*dv + cT'PBA X 2+ v + ¢ Pvdp[* — v + ["(c?) — |ve/c?(3p )Y  dx dy .

D

One can check that, provided £"(c*) - 2|v.[*/c* >0, the minimum possible value of 3*H here is zero,
which occurs for 8p =0 and dv = ~c 'V8A X Z, i.e., precisely for those variations in the class of
incompressible Alfvén solutions. Thus, the incompressible Alfvén solutions are minimum energy
solutions amongst the compressible solutions. Thus, if £"(c*)—2|v.|*/c* >0, the incompressible Alfvén
solutions are formally stable as a class within the compressible solutions. This extends a result of
Hazeltine, Holm, Marsden and Morrison [1984] given above in example 5.1, where stability of this class
among incompressible solutions is shown. (The convexity analysis given below can also be extended to
cover this case.) See also Chandrasekhar [1961, §115].

D. Convexity analysis
Because of the complexity of the general case, we shall confine our convexity analysis to Grad-

Shafranov solutions. With H given by (5.2H) and v, = 0, let

H(Av,Ap, AA)= H(Av, p.+ Ap, A+ AA)— H(0, p., A.)-DH(0, p., Ac)- (Av,Ap, AA)

= | oo+ 8p)180P+ [e(p.+ 4p) - £(p)~ e'(p)Ap] + PN dx dy.

D
Thus, if we assume that ¢ satisfies the stability criterion

e"(ps)=a,  a constant, (5.28C1)
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and we confine our attention to solutions satisfying
P=petAp=pmin>0, (5.28C2)
then condition (CH) of section 2 holds with
Qu40,8p,84) =} [ [prnlbol + a8p ) + | PO A dx dy
D
The conserved quantity used is

Colv, p, A) = j pW(A)dx dy.

D

Let C(Av, Ap, AA) = Co(ve+ Av, pe + Ap, Ac+ AA) — Cp(0e, pe; Ae) — DCy(0e, per A+ (Av, Ap, AA)

= [ oo+ 80)¥(Ac+ 84) - pW(A) - ApW(A) ~p. ¥ (AIAA] dx dy

D

= [ 1pdW(A+8A) - WA - WAL+ [¥(Ac+AA)~ P(AJAp) dx dy.

D
Thus, if we assume

P'(A)=r and V'(A)=s, (5.28C3)
then condition (CC) of section 2 holds with

Ox(Av, Ap, AA) = f (pr|AAP+25AAAp) dx dy .

D

Condition (D) of section 2 holds when Q, + Q, is positive; this holds if p. >0, (5.2SC1-3) holds and
a>0, p.ar—s*>0. (5.28C4)
Thus, in the norm

I(Av, Ap, AA)P =1 j [ Dol ADP+ VA A + alAp 2 + 25ApAA + pr/A AP dx dy (5.2N)

D

we get the a priori estimate (E) of section 2.
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Stability theorem — compressible Grad-Shafranov case. Let (0, p., A.) be an equilibrium solution of
(5.2EM) and suppose the current J, = —V?A, satisfies

JetpV(A)=0
for a real valued function ¥ of one variable. Assume the internal energy satisfies
0<ase"(p)=a<w
for constants a, a, and ¥ satisfies
r<¥'(A)=<R, s=VP(A)=S,
where
pear—s*>0 and p.GR-S*>0.

Then for smooth solutions satisfying © > p., = p = pmin >0, we have stability of the equilibrium in the
norm (5.2N).

Proof. All that remains is to show that (CH) and (CC) of section 2 hold. But this follows from the
upper estimates on ¢”, ¥" and ¥'. R

6. Planar MHD with B perpendicular to the plane

In this section, we consider the two-dimensional cases of incompressible and barotropic MHD flow
taking place in a simply connected domain D of the x, y plane with B normal to the plane. We shall
begin with the homogeneous incompressible case. Here the results are essentially the same as in
Arnold’s case (see section 3.3) for the simple reason that the total energy H is convex in B, B is
advected by the flow, and B enters the evolution equation for the vorticity only in terms of the gradient
of the energy of the magnetic field. Nevertheless, this case is quite instructive to do by the stability
algorithm and will give insight for the compressible case.

6.1. Homogeneous incompressible case

A. Equations of motion and Hamiltonian
The MHD equations for this case are simply

jot+(w-Vo=-Vp-VB?}2; divev=0, (6.1EMv)
oBlot+v-(VB)=0, (6.1EMB)

where the velocity v and the scalar magnetic field B depend only on x and y. The velocity » has no
z-component and the magnetic field B: = Bz is perpendicular to the x, y plane.
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The space P consists of pairs (v, B), with the velocity v divergence free, parallel to the boundary 4D
of the domain D (and tends to a constant at infinity, if D is unbounded).
The total energy of the system is

H(n, B)=%J o] dx dy+%J B2dx dy, (6.1H)

D D

which is easily seen to be conserved by the system (6.1EM).

Remark A. Poisson structure. As in section 3.3, we identify the vector space %4, (D) of divergence
free vector fields on D with itself by the L*-pairing of vector fields. The Poisson bracket is the
Lie-Poisson bracket associated with the semidirect product of &4, (D) acting on the vector space of
functions #(D) by minus the Lie derivative, where Z4,(D) has as Lie algebra bracket minus the Lie
bracket of vector fields. Thus, if F, G: Zs(D) © F(D))* = Za(D) X F(D)-R, their Lie-Poisson
bracket is given by

rotem)= [ [o((5-7) 5~ (7)) 8 Gs(7ap) 50 (72 axor

where 8F/8v, 8G/dv are divergence-free vector fields in the plane and 3F/8B, 8G/3B are functions on D,
As usual, we have identified F(D) with itself by the L*-pairing of functions. As in Marsden and
Weinstein [1983] and Marsden, Ratiu and Weinstein [1984], this bracket may be derived from the
canonical bracket in the Lagrangian representation.

B. Constants of motion
Taking the curl of (6.1EMv) yields the vorticity equation

dwlot+ v+ (Vw)=0, (6.1EM)

where w = Z - curl v is the scalar vorticity. Thus » and B are advected by the flow and hence

Ca(t, B) = j ®(w, B) dx dy 6.10)

is a constant of motion for any function @ of two variables.

Remark B. Casimirs. Although C, is preserved by (6.1EM) for any @, it is a Casimir only when @ is
linear in w: i.e., @(v, B) = wd,(B)+ P,(B). This may be verified directly using the Poisson bracket or
by checking for invariance of Cy under the coadjoint action of Diff,o(D) ® %(D) on the dual of its Lie
algebra; this action is (v, f)- (v, B) = (n .0 — P(n BVf), n ,B) where P projects a vector field onto its
divergence free part which is also parallel to the boundary by the Weyl-Helmholtz—-Hodge decomposition
(i.e. Pu=u+ Vg, with divu =0, ul|dD and the sum is orthogonal). The larger family of conserved
quantities is due to the special form of the equations. [If one enlarged the variables from (v, B) to (v, w, B)
and used the larger semidirect product bracket, the equations would still be Hamiltonian (this is what is
special about the equations) and (6.1C) would appear as a Casimir.)
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C. First variation
As in section 3.3, a stationary solution v., B, with stream function ., (constant on 4D) satisfies

Ye=$(B.) and w.=a(B.).
Consider the conserved quantity

He(v, B): = H(v, B)+ Ca(v, B)+ A f o dx dy,
D
where A is a constant. (Use the circulations around each hole as in section 3.3 if D is not simply

connected.) Then Hc has a critical point at (v, B.), provided

0 = DHc(v., B)* (50, 5B) = f [0.- 80 + B.3B + ®(w., B)dw + ®'(w., B.)5B] dx dy

D

+)tj8wdxdy

D

- f [( + D(we, B))ow + (B. + (., B)ISB) dx dy + 39 v -de+ A 35 Sv-de.

D oD oD

where @ and @' denote the derivatives of & with respect of its first and second arguments, respectively.
Since ¢, is constant on the boundary, the last two boundary integrals will cancel, provided

A+ ¢ loD =0, \)
and thus DH(v., B.) = 0 if

Vet DP(we, B)=0, B+ P'(we,B)=0. (6.1FV)
There is some functional freedom remaining in @ and @', since (6.1FV) specifies the partial derivatives

of & only along the curve where w. and B, are related by the equilibrium conditions. In particular, this
imposes two conditions on the second derivatives obtained by implicit differentiation:

dy . do
+ ey De —+ @’ ey Be :O’ .
dB. P(w B)dBe ?'(w, B.) (6.1C1)
. do
1+ @"(w., B.)+ ®'(w., B.) TR (6.1C2)

these relations will be used in the next step.
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Remark D. Second variation. As a guide to the convexity estimates that follow, we shall find
conditions under which the second variation of Hc is definite. One has

& @’ dw
2 . 2 2_+_ .
D?Hc(v., B.)- (80, 5B) f [yavl (Sw, BB)[ & o 1](83)] dx dy,

D

where &, @', and ®" are to be evaluated at (w., B.). Sufficient conditions for this quadratic form to be
positive definite are

D(we, B)>0 and D(we, B)(P"(we, Bo)+1)— @'(we, B} >0.

Eliminating @"(w., B.) from the second condition by the use of (6.1C2) gives

de P(w., B.)
dB. ¢'(w., B.)

>1,

provided @'(w., B.) # 0. Using (6.1C1) produces
&(w., B.) dw/dB,
®(w., B.)do/dB. + dg/dB.

>1,

1.e.,
dy/dB,
&(we, B.) do/dB.

<0.

Now since ®(w., B.) >0 and w. = —V?¢., this becomes
Y/ VYV >0,

which is identical to the condition for stability of stationary solutions for planar, incompressible,
homogeneous Euler flow, as found by Arnold [1965, 1969a] (see section 3.3). Thus, in this case the
magnetic field does not affect the stability condition. This stability condition implies linearized stability
of (v., B.).

D. Convexity estimates
The choice
&(w, B)= —3B*+ ®,(w)
effectively eliminates the magnetic field in the expression for Hc. Then the only remaining condition for

formal stability is ®(w., B.) = ®,(w.) > 0. With this choice of @ the ensuing steps D, E, F in the stability
algorithm repeat the corresponding steps in example 3, section 3.
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6.2. Compressible case
In this case, the MHD equations simplify to

avfdt=—( - Vo—-Vh(p)—-(1/p)VB?/2, (6.2EMv)
dp/dt = ~div pv, (6.2EMp)
dBJot = —div By, (6.2EMB)

which is a dynamical system for the fluid velocity o(x,y, ), the mass density p(x, y, t), and scalar
magnetic field B(x, y, t). The single component of B is normal to the plane, along the unit vector, Z.
Here h(p), the specific enthalpy, is a given function related to the barotropic pressure, p(p), by
h'(p)=p~'p'(p). Again, the velocity v must be tangential at the boundary dD of the domain D. We
choose P, as in example 4 in section 3, to be an appropriate Sobolev space (weighted if D is
unbounded) of triples (v, p, B) which satisfy the given boundary conditions and have specified asymp-
totic behavior. The egs. (6.1EM) define a dynamical system in P, at least for a short time. As in section
3.4, shocks are excluded by confining our attention to C' solutions, and cavitation and extreme
compression are avoided by confining our attention to solutions with a density satisfying 0 < pin <p <
Pmax <>,
The conserved energy is

H(p, p, B) = j [Bov?+ e(p)+ BY/2] dx dy, (6.2H)
D
where the internal energy £(p) is as in section 3.4. As before, we shall sometimes find it convenient to
work with the variables M = pv, p and B.

Remark A. Poisson structure. The equations (6.1EM) are Hamiltonian relative to the Poisson
structure on P given by the same expression as in remark A in example 3.4, plus the terms

J o5 7(a) a5 |

D

(see Morrison and Greene [1980], Holm and Kupershmidt [1983], Marsden et al. [1983] and Marsden,
Ratiu and Weinstein [1984]).

B. Constants of motion
Equations (6.2EM) imply that B/p is advected by the flow:
(d/de)(B/p)=0,

where d/df = d/dt+ v - V is the material derivative. Thus, the following functional is conserved:
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Colp, B)= | p@(Blp) dx dy. (62C,)

D
for an arbitrary real valued function &. Taking z - curl of the motion equation (6.2EMuv) leads to

p B
. —div(wv += curl 23) . (6.20)
ot p

The circulation C, = J o dx dy will be preserved provided

D
v'n=0 and J-n=0

on the boundary 4D, where J = V X B is the current. With these boundary conditions, we shall prove
that there is another constant of the motion, namely

Ca(v, p, B)= f wA(Blp)dx dy. 62C))

D

Now using (6.2w) and (6.2B/p) yields

% Ca(0, . B) =~ [ [div(wA (Blp)o)+ A(Blp) div(BJlp)] dx dy

D

- - j div[wA(Blp)o +J - VN(Blp)] dx dy,

D

where N'(B/p)= A(B/p). Thus

%CA (v,p, B)=— 35 [wA(Blp)v + N(B/p)J]-n dx,

aD

which vanishes since we assume v+ n =0, and J - n = 0 on the boundary. The condition J - n =0 on D
means that 4D is a fixed insulating boundary (no current crosses D).

Remark B. Casimirs. The functions C, are Casimirs for the Poisson structure in remark A. This may
be checked by direct computation, or by an invariance argument similar to that given in remark B,
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section 3.4 and in part 1. The coadjoint action is as follows: for
(n, £, 8) € DI (D) ® (F(D) D #(D)), (n.f &) (M, p, B)=(n .M~ 0,0V 1,BVg n,p,1,B).

The action defining the semidirect product Lie algebra is minus the Lie derivative.

The functions C, are not Casimirs; their conservation relies on the special fact that dw/dt is a
divergence (see (6.1w)). One could make C, appear as a Casimir by introducing { = B/p as an extra
variable, and adding on a corresponding advected term in the Poisson bracket.

C. First variation

We shall relate the equilibrium solutions v., p., B. of (6.1EM) to critical points of the conserved
functional

Hc(v,p, B): = H(v, p, B)+ Co(v, p, B)+ Cy(v, p, B)+ A J o dxdy.

D

The first variation of Hc becomes, after an integration by parts:

B, e o,
DH(oe pe B = [ {[Ho +£/(p)+ @(Bp) =7 [0/Bp) + 2= 4/ (Blpo) oo

D

+ [Be + '(B.Jp.) + % A ’(Be/pe)]BB T [peve— £ % VA(BJp.)]- 8v}

; 5(3 A(Bup)(30 X 2)- i ds + A 4& sv-de.

aD oD

Since B. and p, are necessarily constant on the boundary, the two boundary integrals cancel if
A(Be/pc)ldD + A =0. (6.21)

With this choice of A, the first variation vanishes at (v., p., B.) provided

B. e
3o+ ¢'(pe) + @(Be/pe) ~ o [db’(Be/pe) + ‘;— A '(Be/pe)] =0, (6.2FV1)

%’SA (B.Jpe)+ ®'(B.Jp)+ B.= 0, (6.2FV2)

and

peve—z X VA(B./p.)=0. (6.2FV3)
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To relate @, A with conditions satisfied by stationary solutions, a closer look at the stationary solutions
is in order.

The stationary equations are

div(p.n.) = 0. (6.251)
oo V(B.Jp) =0, (6.252)
ve X 2w, — V(|v.? + h(p.) + BZ/p.) + B.V(B./p.)=0. (6.2S3)

Taking the dot product of v. with the last equation, we get
ve* V(o[ + h(pe)+ Bip)=0.

This relation and (6.2S2) are satisfied if the following functional relationship, called Bernoulli’s Law,
holds

So.* + h(pe) + Bilp. = K(B./p.) ; (6.2B)

the function K is called Bernoulli’s function. Taking the cross product of Z with (6.253) and applying
(6.2B) leads to

0= div(p.0.) = (X V(Bolpd)- V] 2= (K'(Bulp)~ B |

w

and hence
Pe .., _
D, v[— (K'(B.Jp.) - Be)J 0.
W
For this to hold, another functional relationship suffices,
i—’)ﬁ [K'(B./p.)- B] = L(B./p.), (6.255)

for a function L(B./p.). (This is analogous to Long’s equation in stratified flow; see Abarbanel et al.
[1985].)

Returning to the conditions for the vanishing of the first variation of Hc and comparing (6.2C1),
(6.2C2), (6.2C3) with (6.2B), (6.284), and (6.2S5), we identify

PD(B./pe) = ~K(B./p.) (6.29)

A'(Belpe) = L(Be/pe) - (6.24)
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Summarizing, we have proved:
Proposition. Stationary solutions of the barotropic planar MHD equations with B perpendicular to the
plane and boundary conditions v+ n =0, J-n =0 are critical points of the total energy H constrained
by Ce, C4 and A [pw dx dy, i.e., are critical points of Hc, provided @, A and A satisfy egs. (6.29),
(6.24) and (6.2A).

Remark D. Formal stability. The criterion of formal stability is calculated from the second variation
of Hc, evaluated at the equilibrium point. Letting

3Hc:=D?H(v., p., B.)* (5v, dp, 8B)*

we obtain, after some computation:

H = | axdy{-lpbo+ 0o+ (o) leIp oo
+ (3BY.A [S(B/p) + f—'(BZ—J”e) 8(%)]2 _p W BeJp)) (s(%))z} . (6.25V)

In (6.2SV), A is defined by
We " "
A= p_ A (Be/pe) +¢ (Be/pe) s
and the variation of w/p is given by
1 W,
Bwlp)=—bw - 28p,
Pe pe

with a similar expression for 8(B/p). The quantity 8*H is positive definite, provided the following three
conditions are satisfied

(a) £"(pe)— lvelz/pe >0,
(b) A'(Bclpc)=0,
(©) D"(Belpe)>0.
Since p.£"(p.) = 2, where c. is the sound speed of the equilibrium solution, condition (a) requires the

equilibrium flow to be subsonic everywhere. Condition (b), via (6.24), (6.2B) and (6.2S5), requires the
equilibrium to be static (v, = 0), as well as to satisfy

K'(B.Jp.)-B.=0. ®)
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Condition (c) implies
K"(B./p.) <0,

or, via (b’)

dlog B‘.,<

dlog p.
for formal and hence linearized stability of a static, planar, barotropic, MHD equilibrium, with B
perpendicular to the plane.

Another useful way of stating this, which will facilitate comparison with the three-dimensional case is
as follows. Taking the gradient of (b’), we get

K"(B./pe)V(B./p.) = VB. .

Thus, condition (c) becomes:

Bpy - TBLEX VBp)] VB, |
@"(B./p.) = |V (bl p.)P B V(B./pe) >0 "

(note that this is impossible for constant density solutions).

Additional remarks.

(i) Substitution of the critical point relations (6.2¢), (6.24), and stationary flow relations (6.251, 3)
into He with A'(B./p.) = 0 gives

~Helv pes B) = | [p(p)+ B2 dx dy

D

upon using the thermodynamic relation for the pressure p(p)= pe'(p)— £(p). In fact, the time integral
—[ He(ve, pe, B.) dt is the Lagrangian for the barotropic MHD equations, see Seliger and Whitham
[1968]. Taking variational derivatives gives

~29(Hl] = [ [p"(0)p ) + GBY] dx dy,

D

which is negative definite if p"(p.)> 0. Note, however, that this is not equivalent to (6.2SV), since the
order is opposite: the latter is obtained by taking variations and then imposing equilibrium relations,
while the expression here is obtained by imposing equilibrium relations and then taking variations.
Definiteness of (6.2SV) gives conditions for formal stability. (However, p"(p.)> 0 is the condition for
“thermodynamic stability”, as in Courant and Friedrichs [1948], which is related to well-posedness:
continuous dependence on initial data, not to dynamic stability.)
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(ii) Indefiniteness of the second variation in (6.2SV) does not prove, but strongly suggests instability,
caused by the combined presence of perpendicular magnetic field and heterogeneity of the density
(p # const). Density heterogeneity rather than compressibility is the cause, since heterogeneous,
incompressible, (div v =0), MHD flows with perpendicular magnetic field have the same type of
second-variational features, constants of the motion and stability conditions as in the present case.

D. Convexity estimates
For a stationary solution (v., pe, B.) we have

H:=H(v.+Av, p.+ Ap, B.+ AB)— H(v., p., B.)—- DH(0., pe, B.)* (Av, Ap, AB)

e lA(pv)lz_%,velzp(eAp)z

+l 2+ et - e) ' eA ] ’
2 p.+Ap +4p 2ABY + e(p.+Ap) — e(pe) — €'(pe)Ap | dx dy

where A(pv) = (p. + Ap)(ve + Av) - p.v.. Assume that
O0<e=g"(r)

for all values of the argument 7. Since

O<pmin Spe+[&p Spmax<00’
we have
) 1 |A(pv)P Ap)
Fr= 000000 888 = [ 2L pp o b0 10 pp ] axay. (6:2CH)
D

So we have the inequality (CH) of section 2.
Similarly, we get

Co:= Co(vet Av, p.+Ap, B.+ AB) — Cp(ve, pe, Be)
- DC¢ (ve, Pes Be) : (A}’, AP, AB)

=! (pe+Ap)[¢(B;:iif)—q)(%)—@(%)zx(—?)] dx dy,

where A(B/p)= (B.+ AB)/(p.+ Ap)— B./p.. Now assuming that

0<a<®()

for all values of the argument, we get
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Co = Q:(ABIp)): = § Sapmn(A(BIp)Y dx dy. (6:2€C)

D

The right-hand side of this inequality defines a quadratic form Q,(A(B/p)).
Since the second variation argument suggests we can get stability only for static equilibria, we confine
our attention to this case, taking A’ = 0:

Stability theorem (static equilibria). Suppose (0, p., B.) is a stationary solution of (6.2EM) satisfying
B. = K'(B./p.)
for a function K. Suppose

(=

VB,
I<e<e"(p.)=E <o, O<a=- <A<,
(b PBapy)

For solutions obeying 0 < ppmin < pe + Ap = prmax <=, (0, pe, B.) is stable in the norm given by
(Av, Ap, AB, A(Blp ) = Qu(A(pv), Ap, AB) + Qx(A(Blp)) ,

where Q, and Q, are given by (6.2CH) and (6.2CC) above.

7. Multifluid plasmas

Here we consider the stability of equilibria for two-dimensional charged fluids, following Holm
[1984]. The results will be generalized to three dimensions in section 10.

A. Equations of motion and Hamiltonian

The multifluid plasma equations (MFP) describe the motion of a system of ideal charged fluids,
interacting via self-consistent electromagnetic forces. The fluid species will be labelled by superscript s;
no summation on repeated indices s is imposed in this section. Each species is composed of particles of
constant mass m° and charge g¢°, with charge to mass ratio a*= ¢*/m*®. The dynamical fluid variables in
the Eulerian picture are: fluid velocity »°, mass density p° (with barotropic partial pressure p°*= p*(p°)
and internal energy density &° = £°%(p®), each depending only on p®), electric field E, and magnetic field
B. In this section we consider planar MFP motion in some domain D CR? in the xy plane (simply
connected for simplicity). In order that such motion remain planar, each of the dependent variables v°,
p°, E, B must be functions only of (x, y, #); v* and E must lie in the xy plane, and the vorticity w® of the
species s and magnetic field B must be directed normal to the xy plane, along Z. We define the scalar
vorticity for the species s and the scalar magnetic field by w*= @°Z and B = BZ. The planar (MFP)
equations consist of Euler’s equations for charged barotropic fluids in the xy plane interacting
self-consistently via Maxwell’s field equations, i.e.,
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dv*=—(w*+ a*B) x v*— VG|v*P + h*(p®))+ a°E,  d,p° = —div p*0°

B=—2-culE=E,»,-E;,, E=VBxZ%- Zas p*, divE= Y a‘p*, divBz=0,

(TEM)

where h*(p°®) is specific enthalpy, related to pressure p* and internal energy density £%(p°) by
de*=h*dp®, (7A1)
dh*=(p®) ' dp°. (7TA2)

The boundary conditions are v -n =0, and E X n = 0 where n is the outward unit normal to dD.

For a single fluid species and when E and B are absent, these equations reduce to the equations for
planar motion of a barotropic fluid; the stability criteria for stationary solutions of these equations was
derived in section 3.4.

The Hamiltonian for (7EM) is the total energy:

H(v*,p% E B): = j {E%pslvls+ ss(ps)+%|E|2+%Bz} dxdy. (7TH)

D

The space P consists of the set of pairs (v, p*®) for each species s and (E, B) satisfying div E = Z a*p*®
which is preserved by the dynamics of (7TEM).

Remark A. The dynamic equations (7JEM) are Hamiltonian with respect to the following Poisson
bracket due to Iwinski and Turski [1976], Spencer and Kaufman [1982] and Spencer [1982]; see also
Holm and Kupershmidt [1983], Marsden et al. [1983], Holm, Kupershmidt and Levermore [1983],
Marsden, Ratiu and Weinstein [1984a] and Montgomery, Marsden and Ratiu [1984]. Let M*= p*v
denote the momentum density for the species s. Then

oF (SF. >SG)

tF GXM:. p* E B)= ZHMS((SMS >8M?_ SM* ) M

5G _OF 8F _3G SF 8G 8G OF
o )+ e )

PAoar " sp° M 5p° SM* 3E SM* SE

SF 8G OF 3G
+B - )]d d
(8M§8M§_ sMiom:) ] Y

SF _8G 3G _oF
+ f ; ( xpZ 2%y

d 7PB
6" "sB OE 8B> xdy. (7PB)

D
As identified in Holm and Kupershmidt [1983], the first group of terms is a Lie—Poisson bracket in a

semidirect product. The last four references show how to derive this bracket by reduction from
Lagrangian coordinates and investigate the accompanying geometry.
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B. Constants of the motion
Define the “modified vorticities” {2° by

.= (w*+ a°B)/p®. (74r)
Taking the curl of the first (JEM) equation and using the second leads to the advection of (2, i.e.,
0+ v - Vr=0.

This and the continuity equation for p® imply that for every real valued function of a real variable
®°({), the functional

Corl )= j P &) dx dy (70)

D

is conserved by the planar MFP equations (provided the integral exists and the solutions are smooth; as in
barotropic flow, we presume {2° can be created at a shock discontinuity).

Remark B. By direct computation one may show that the functionals (7C) are Casimirs for the
Poisson bracket (7PB). This can also be shown by proving that the functionals (7C) are invariant under
the coadjoint action of the semidirect product group underlying the first three terms of (7PB) (the last
term plays no role in these Casimirs — it in fact arises from the canonical (E, A) bracket by reduction by
the electromagnetic gauge group.)

C. First variation
The equilibrium states pi, v$, E., B., of the system (7EM) are the stationary, two-dimensional,
barotropic MFP flows. For such stationary flows, one has the relations

divE.=> ap:, E.=-Vo., VB.x %= apivs,
divpivi=0, oi-V[3oiP+h(p)+a‘d]=0, v:-V0R:=0. (7S1)

According to the last two equations in (7S1), the gradient vectors V2% and V(|vif* + h*(p3) + ad.) are
orthogonal to the equilibrium species velocity v:. Consequently, these two gradient vectors are
collinear, provided the velocity does not vanish. A sufficient condition for such collinearity in the plane
is the functional relationship

S0P+ h(p2)+ a*de = K*(127), (7K)
for certain functions K*({) of the real variable {; K* are called the Bernoulli functions and (7K)
represents Bernoulli’s Law for each species. Either applying the operator (£22)'2 X ¥ to (7K), or vector

multiplying by £ the stationary motion equation

(et a*Bo)i X ve= V(o + hi(p2) + a*de)
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we get

K2 1
svs = {g: )ix v: = ?)—:z”x VK123, (7S2)

©

where prime ' denotes derivative of a function with respect to its stated argument. Substitution of (7S2)
into Ampére’s Law (the second equation in (7S1)) leads to another relation for stationary flows, namely,

VB.=- 3~

VK*(12?). 783
> 52 VK@) (753

Let

Hc(v*, p*, E, B) = j { 2 el + e%(p°) + p*@(X) + X°p 0 + pap] + 3| EP + %BZ} dx dy,

D

(THe)

where A® and u are constants multiplying Casimirs that are separated out for later convenience. After
integration by parts, the derivative DHc becomes

DHc(vs, p&, E., B.)* (3v°,8p°, 8F, 3B) = j {Z [3lvs2+ h3(ps) + pa® + @°(£2%) — 2. D% (2¢)]8p°

D

+ 3 [pioi-2x PO*(02)] 30+ | B+ 3 a'0¥(@) o5

+E,- aE} dx dy+ ff S ()50 - df (TFV1)

oD

where d€ is the line element along the boundary 4D. For a stationary solution, the connected
components of the boundary dD are both streamlines and equipotential lines. Thus, {22 and ¢. are
constants on 4D and the last two boundary integrals combine into

S A+ 6¥(025))0)] j Sv°- de,

s
aD

which vanishes when A® is chosen to be A®= —®¥(£27)|,p. The terms involving ua*3p° and E. - 3E in
(7FV1) combine into

Ef,uasSpsdxdy+f¢ediv8dedy— j ¢ SE - n dx dy
: D

D oD

= —¢elop j divdEdxdy+u f Zasﬁpsdxdy+f¢ediv8dedy.

aD D D
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For variations that preserve Gauss’ Law, these terms further combine into

(—@elsp + 1) j div3E dx dy + D, j d.a%dp*®,
D ’ D
and the first term vanishes when y is chosen to satisfy u = ¢.|sp. Thus, (7TFV1) becomes

SHc(v?, p%, E., B.)- (30", p*, 5F, 3B) = f {[2 Yot + h¥(po) + a*de + n;@'(n:)]aps

D
+ [2 pivi—2X chs'({):)] -dv°

+ [Be > asdis’(!):)]SB} dx dy. (TFV2)

In this expression, the 3 p° coefficient vanishes for a stationary flow obeying (7K), provided that @* is
related to the Bernoulli function K* by

¢

K0+ 90~ 1040)=0; ie, o0)=¢([ 2

t2

dr+ const) .

Differentiating this relation with respect to ¢ implies ' K*¥({)— @*'({) = 0. Then the dv° coefficient in
(7FV2) vanishes by (7S2), since V®*(2:) = (£25)' VK*(£2:). Writing 8B = £ - curl 34 and integrating by
parts, the 8B term in (7FV2) becomes

—JSA-z‘x(VBeJrZa‘V *(@2) dx dy,

D

which vanishes for stationary flows by (7S3) and (7FV3).
We summarize our findings as follows:

Proposition. For smooth solutions of (7EM) with boundary conditions v**n=0 and Exn=0, a
stationary solution (vi, p¢, E., B.) is a critical point of Hc given by eq. (7Hc) provided @° satisfies
(7FV3), where K* is the Bernoulli function, determined by eq. (7K). Conversely, a critical point for Hc
for any @ gives a stationary solution satisfying (7K) where K is given by (7FV3).

Remark D. Second variation. The quadratic form defined by the second derivative of Hc at the
stationary solution is



Darryl D. Holm et al., Nonlinear stability of fluid and plasma equilibria 69

D*H(vs, p3, E., B.): (5v°,dp°, 8E, 3B) = J {Z [psdv° + v3dp%/psf

D
+ (10~ 02l DBV + 2 BBV

+(®BR+ 13E[2} dx dy. (75V)

Sufficient conditions for this quadratic form to be positive definite are:
h*(p2) = |viflpe=((cSF — [vef)p >0, (7FS1)

where c¢ is the sound speed of species s for the stationary solution, defined by p$h*¥(p3) = (ct)?, i.e., the
stationary flow is everywhere subsonic; and

(2)7KY(129) = ¢7(27) >0, (7FS2)

i.e., by (7S2), vi-Zx V2:>0 throughout the flow. For a single, incompressible fluid without charge
(s=1,p:=1,8p*=0,8B =0, 3E = 0), formula (7SV) reduces to the second variation formula in example
3.3; for a single compressible fluid (7SV) reduces to the corresponding formula in example 3.4.

D. Convexity estimates
We have, after a short computation

H(Av*, Ap*, AE, AB): = H(v. + Av, p. + Ap, E.+ AE, B.+ AB)~ H(v., p., E., B.)
-DH(v., p., E., B.): (Av, Ap, AE, AB)
_ 2 f {IA(pS S vﬁzéAﬁz

2p¢

#[£'(pe+ Ap) = Xp) - £*(p A p] | dx dy

+ j (AEP+ (ABY) dx dy,

D

where A(p*v®) = (ps+ Ap)(vi+ Av®)~ pive. Assume 2, £¥(7) = ¢/ for all 7 and a constant ¢y,
Then we get '

Qi(A(p*v), Ap®, AE,AB) < H(Av*, Ap*, AE, AB) (7CH)
with
ub(p*0), 8% AE.AB) =1 [ [ S 100 ) fpiunc + (chin = = 02F 1o ) 40"
D

+|AER+ (AB)2} dx dy,

for solutions obeying (as in section 3.4), 0< p 5. <p*=< £ oax < 0.



70 Darryl D. Holm et al., Nonlinear stability of fluid and plasma equilibria

If the sum of the Bernoulli functions K* satisfies
1 st sH
aszzK ()= (),
then one finds
QA7) <> Cor(Ar®, Ap®, AE,AB),
where

0:A0)=1a S piu j (ALY dx dy,

D

and

A= (wi+ a°B.+Aw*+ a*AB)/(pi+Ap®)— (vt a'B.)lp:.
Thus

0.+ 0,>0

holds, provided
a>0 and 2> D, |03/ 5in -

E. A priori estimates
The following estimate holds:

Hc(Av*(0), Ap*(0), AE(0), AB(0) = Qu(A(p*()w*(1)), Ap*(1), AE(), AB(1)) + Q:(AX(r)).

F. (Nonlinear) stability
If we have

2 e¥(1) = chalT,

s

for all 7, and

1
ZEKS'({)5A<°°

(7CC)

(7D)

(7E)
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for constants c..x and A, then as above,
CO:\(A(p*v°), Ap®, AE,AB)= H(Av*, Ap*®, AE, AB), (CH)

and
C:Q:(A) =S CoAv®, Ap®, AE, AB), (CC)
for constants C, and C,. We summarize these results as follows.

Stability theorem. Stationary solutions (v$, p %, E., B) of the planar compressible MFP equations (7EM)
with velocity field tangent to the boundary and electric field normal to it satisfying

0 <pmin = :Spmax < +°°, for all s s

0<cZin/T=>D (7)< chal/T <+, forall 7,

s

and

1
0<asZEKS’({)sA<+oo, for all s and ¢,

where ¢° and K*® are the internal energy density and Bernoulli function for the species s, are stable in
the norm on (A(p®v®), Ap®, AE, AB, Af2*) determined by Q;+ Q, for smooth solutions satisfying

s
min = P = pmax-

When there is only a single fluid species and electromagnetic fields are absent, the result of the
stability theorem reduces to the estimate in example 3.4 for planar barotropic flow. These estimates can
break down when smooth solutions cease to exist; for example, upon occurrence of cavitation, and/or
the formation of shocks from an initially smooth, steady flow. When these phenomena occur, however,
it is questionable whether the barotropic approximation should still be used. One could exclude
cavitation by replacing (CH), (CC), (CHY and (CC)' by an estimate as in Holm et al. [1983], modeling an
elastic fluid.

One can treat the case of incompressible homogeneous multifluid plasmas by the same methods. In
this case the criterion reduces to the same one as in Example 3.3 with the vorticity w replaced by {2
defined by (7£2°). One can also treat incompressible inhomogeneous MFP by combining the techniques
here with those of Abarbanel et al. [1985].

Example. Subsonic shear flows. A stationary solution in the strip {(x, y) CR% Y, <y =< Y,} is a plane
parallel flow along x, admitting arbitrary velocity profile v(x, y)= (7°(y), 0), electrostatic potential
d(x,y)=&(y), and density p3(x,y)=p(y). The density profile is subject only to the subsonic
conditions (7FS1), expressible as

dp® v
;L(y)—(«?(y»z>0, (7E1)

d
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and depending on the barotropic relation p* = p*(5°). In this domain, the independent variable x can be
either unrestricted on the entire real line, or periodic. The former case requires that initial perturbations
be sufficiently integrable for H-(Av*(0), Ap*(0), AE(0), AB(0)) to be bounded above.

To determine the limits of stability for subsonic stationary planar MFP flows, we proceed as follows. (i)
Choose profiles 7°(y), ¢(y), and p%(y), satisfying the subsonic condition (7E1). Relations (7S2) and
(7S3) then imply y-dependence only, for the magnetic field and modified vorticity: Be(x, y)= B(y),
Ni(x,y)=L(y). (ii)) Use Ampere’s Law in the form (7S3) to determine B(y) from 5°(y) and #%(y),
then compute 5°(y) from its definition in terms of 5°, 7*, B. (iii) Solve for an expression for the quantity
({2°)7'K* (£2°) appearing in the stability theorem and consider its sign, thereby determining the limits of
stability in terms of the profiles p(y), 7°(y), B(y).

Given the profiles 7*(y), 5*(y), and ¢(y), one finds @*(y) and 2°(y) from their definitions

wi=Z-curlvi=-0"(y)=:0%(y), (7E2)
and

2:=(p2) (@it a’B)=(p°(y)) ' (-0"(y)+ a*B(y))=:2(y). (7E3)
Equations (7S2) and (7S3) give the relations

PO == K@), (7E4)
and

B(y)=2 ap"(y)o'(y), (7ES5)

which determine B(y) and (£2°)*K*(¢2°). Solving (7E4) gives the formula

JAKP) _ p()R()

(2% =
do d2¢/dy

_ (5°V " _ 7E6)
7 — (ﬁs’/ﬁs)ﬁs’ + asg(ﬁsr/ﬁs_ BI/B) ’

where, e.g., 7' = d*5°(y)/dy2, B' = dB(y)/dy, etc. Thus, control of positivity of (2%)'K*¥({2*) in the
stability theorem and, hence, of stability for MFP involves an interplay among velocity, density and
magnetic field profiles, through the positivity condition,

-5%(y)/2*(y)>0. (7E7)
Given that condition (7E7) holds, planar MFP flows will be stable, provided

2¥(y)#0. (7TE8)
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We consider several cases.

Case A. In the case of neutral fluids (a° = 0) and stationary flows with constant density (5%(y)= 0),
positivity of (£2°)"'K*(£2%) in (7E7) reduces to

o:(y)o"(y)>0. (7E9)

Provided (7E9) holds throughout the domain D, one recovers Rayleigh’s criterion (see example 3.3) for
stability of shear flows: all flows in this case with no inflection points in their velocity profile are stable.

Case B. For the case of charged fluids (a°#0) at constant density (5*(y)=0), positivity in (7E7)
reduces to

(p°)?0°/[0> - a*B']>0. (7E10)
Provided (7E10) holds throughout D, one obtains the following criterion for stability in this case,
5*"(y)# a°B'(y). (7E11)

Case C. In the general MFP case, with charged, compressible fluids, (a*# 0, p*(y) # 0), (7E7) holds,
the stability condition (7E8) becomes

§" # (p—sl/p—s)(ﬁsl__ asE)+ asB'l’ (7E12)

which involves all three stationary profiles.

Note that the conditions obtained in these examples by Arnold’s method are sufficient for stability. Thus,
violation of these conditions would be necessary for the onset of instability but not necessary and sufficient,
except in the fortunate event where they coincide with instability conditions found by linear analysis.

Part II. Three-Dimensional Fluid Systems

The results of Arnold [1965b] and Dikii [1965b] suggest that it may be difficult to extend the
two-dimensional results to three dimensions. For incompressible homogeneous flows in the Eulerian
representation this indeed seems to be the case because of a lack of Casimirs. However, for
three-dimensional systems with sufficiently rich Casimir structures, we will show in this part that the
stability methods are indeed applicable and give conditional stability results. As we shall remark in the
MHD section (section 10), the methods are compatible with the 8 W method of Bernstein [1958, 1983]. Here
we shall treat only the compressible case; for the inhomogeneous incompressible case of interest in
stratified flows, see Abarbanel et al. [1985].

We shall begin with three-dimensional adiabatic flow. This will be crucial to the following two
sections for, as we shall see, the computations needed for MFP and MHD essentially reduce to the
adiabatic case.
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8. Three-dimensional adiabatic flow

The stability algorithm we are using depends on a good supply of Casimir functions for its
application. In this regard, the three-dimensional situation is rather different from the two-dimensional
one. In particular, for ideal, homogeneous, incompressible flow in the Eulerian representation, we know of
only a relatively trivial three-dimensional version of example 3.3. The difficulty is that the only known
Casimir is the helicity, [ v - curl v d’x. The corresponding equilibrium states are the Beltrami flows (see,
e.g., Arnold [1966b] and Holm [1984]). However, if density, or entropy variations are also allowed, we
recover abundant Casimirs and the method again applies. The results of this section will be generalized in
the next two sections to MHD and multifluid plasmas.

Three-dimensional adiabatic flow was studied using Amold’s ideas in Dikii [1965b]. There, an
expression for D’H and hence an implicit condition for formal stability was given; however, no
workable hypotheses for stability were found. We shall see that if we limit the range of the density p (as
in section 3.4) and the size of Vy compared to 7, then we can get explicit expressions for definiteness. In
addition, we obtain rigorous a priori stability estimates using the convexity method and obtain thereby,
a (conditional) stability result.

As usual, we follow the algorithm in section 2.

A. Equations of motion and Hamiltonian

Let D be a fixed domain in three dimensions and x =(x, y, z)€ D CR?® The adiabatic fluid
equations define a dynamical system in terms of the spatial fluid velocity v(x, f), mass density p (x, ¢),
and specific entropy 5 (x, #), with v tangent to the boundary oD:

do 1 dp : dn
_—:——-V s s — I — d s —:O, SEM
a5 p(p,m) 5~ pdive i (8EM)

where d/dt = 8/at+ v+ V is the material derivative. The adiabatic condition, dn/d¢ = 0, means that no
heat is exchanged across flow lines. The pressure p = p(p, n) is assumed to be given in terms of a
thermodynamic equation of state for the internal energy density £(p, n) as follows. Given ¢, define the
temperature T and specific enthalpy & by

pT = 9¢/dn and h = d¢/dp,
1.e.,

de=pTdn+hdp. (8T1)

The pressure p, defined by p = p>d(g/p)/dp, satisfies ph = ¢ + p and

1 oT
dh=Tdy+-dp= [T+p—
P ap

1
]dn +—-c*dp, (8T2)
n Y

where c is the adiabatic sound speed, defined by

c*=dp(p,n)ldp = pdh(p,m)/dp. (8T3)
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The space P consists of triples (v, p, 1) in a suitable Sobolev space (see section 2) such that these
quantities are C'; as usual, this condition precludes shocks. The Hamiltonian is

H(o.p, )= | BoloP + e(o, m))dx dy dz. (8H)

D

Remark A. Poisson structure. The equations (EM) are Hamiltonian using the variables (M, p, n) with
M = pv and the semidirect product Lie-Poisson structure

{F, G}= f M[(:—;—; V)g;—(:——;- V)%%]dxdydz
D

+jp[(86.v) 8—Id—*—<ili-l7)§]dxdydz+J1;\7-(Egg—g:—ig)dxdydz.

sM /s \sM /) 8p SM &y SM 5y
D
) ° (8PB)
This may be derived, for example by consulting references given in remark A, section 3.4.
B. Constants of the motion
The potential vorticity is defined by
1 1
:=-w- Vp=—div(nw), 802)
p p
where w : = curl v is the vorticity. Using (8EM) one finds that {2 is a flow line invariant, i.e.,
d@/dt=0.
Thus, the following functional is conserved for solutions of system (8EM),
Coln, ):= [ p@(n, D) dx dy dz, (8C)

D

for an arbitrary function @. In particular, the functional

C.(n, )= j pQ dx dy dz
D
is also conserved for any constant u.

Remark B. Casimirs. The functionals C, are Casimirs for the Poisson structure (8PB). This can be
checked by direct computation, or by noting that the group underlying the Poisson structure leaves Cy
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invariant. This group is the semidirect product Diff ® (Functions X Densities) and acts on (M, p, ) by

(6. f,v) Mp,n)=(p+M~df Qdbxp—v@d(p=7), pxp, dx7),
for (¢, £, v) € Diff X Functions X Densities, where M is regarded here as a one-form density.

C. First variation

The equilibrium states of (8EM) are stationary adiabatic flows (in three dimensions). As usual, we let
the subscript e denote quantities associated with such flows. Since (2. and 7. are constant along
streamlines, their gradients are perpendicular to v.. On the other hand, for stationary flows, the
conservation of mass and energy imply that the quantity 3|v.*+ h(p., n.) is also constant along
streamlines. Thus we have:

Ve Vne =0e" V-Qe =0t V(%Ive|2+ h(pe’ TIe)) =0.

Sufficient conditions for these relationships are the existence of functions K(%., £2.) and A(x, y, z) such
that

Soef + h(pe, 1) = K(ne, £2) (8S1)
pee = (Vn.x VA . (8S2)

As usual, K is called the Bernoulli function. The gradient of (8S1) together with the relation
3V|ve>+ (1/p.) Vp. + @. X v. = 0 for stationary solutions and the relation (8T2) yields the formula

ve X w. = VK(5., 2.)— T.Vy.. (883)

After integration by parts, one finds that the first variation of He:= H + Cp + C, is given by

DHc(v, p, n)* (30, 8p,89) = j {[%Ivlz+ h(p, 1)+ ®(n, 2)— QP'(n, M}op

D

. 1
+p(q§ +T—I—)w . V@’)Sn +[pv— @"(n, 2)Vn x V] -80} dxdydz

+ % ®'(n, 2)dv X Vnp + wdn) -n dS

aD

+ f (30 X T + wdn) - n dS, (8FV1)

aD

where ®(n, 2) denotes the partial derivative of @(n, 2) with respect to its first argument and @'(n, {2)
denotes the partial derivative with respect to its second argument; n is the outward unit vector normal
to the surface element dS, on dD. The following proposition is essentially due to Dikii [1965b] (who also
admitted the possibility of a uniformly rotating coordinate system).
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Proposition. Within the class of smooth solutions with velocities parallel to 4D, a stationary solution v,
e, M. Of the adiabatic fluid equations in three dimensions with {2, and 7. constant on dD and satisfying
0. #0, V0. x Pn.#0,is a critical point of He = H + Cy + C,,, where @ is determined from the steady flow
quantities by

B

K(a,B)+ (e, B)- BP'(e, B) =0, ic., (p(a,ﬁ):[,(j K(a 1)

t2

dr+ W(a)) , (8FV2)

for arbitrary arguments «, 8 and an arbitrary function ¥(a), and the constant u is determined by
u=-P(y,, 'Qe)laD’ (8FV3)

with @ given by (8FV2). The function K is constant on streamlines and is determined by Bernoulli’s
Law (8S1). Conversely, any critical point of Hc is a stationary solution.

Proof. Since 7. and {2, are constant on 4D, for stationary quantities in (8FV1), one can factor
®'(n., £2.) out of the first boundary integral and hence the two boundary terms cancel if condition
(8FV3) holds. The volume integrals will vanish for stationary flows, provided that

%'velz + h(peﬁ ne) + ¢(77e1 'Qe) - 'Qe¢’(7’ea ‘Qe) =0, (8FV4)
Pele = ¢”(77e9 '{)e) Vne X V‘Qe » (8FV5)
and
, 1
P, 2)+ T.— —we* VO'(., £2.)=0. (8FV6)
Pe

Relation (8FV4) is equivalent via Bernoulli’s Law (8S1) to condition (8FV2). We now show that (8FV5)
and (8FV6) follow from (8FV4). To prove (8FVS), substitute (8FV2) into the gradient of Bernoulli’s
Law, take into account (8T2), the relation (v V)v = w X V3jo’, and the first equation (8EM) for
stationary solutions, and find

Ve X W, = ~(D(ne, ) + To— 2.9 (e, 2.)) Ve + 2. D" (9., 2) VA, . (8V1)
Vector multiplication of this relation by V. then gives

Vne X (v. X @.) = ve(w.* Vn.)— @.(v.* Vn.) = 2.D"(n., 2.)Vn.x V.. 8Vv2)
The term v, Vn. vanishes for stationary flows and e, Vn. = p.f2. by the definition of £. Thus, if
£, # 0 we get (8FV5). Note that (8FVS5) determines the function A in (8S2) from (8V2). To get (8FV6),
vector multiply formula (8V1) by V{2, and find that

V0. x (v X w.) = vw.* V2.)— w(v.* VQ2.)
= [é(ne, 'Oe) + Te - nedy(ne’ '{)e)]( V77e X Vne) .
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The term v, * V{2, vanishes for stationary flows. Using (8FV5) and Vn. x V02, # 0, we get
, . 1
O = ¢(ne, ‘Qe) + Te - ﬂed),(nea Qe) - ¢"(77e, Oe)we : Vﬂe
Pe
. 1
= d)(ne, 'Qe) + Te — Wt de(nea 'Qe)
Pe

which is (8FV6) and so the proposition is proved. B

Remark. For flow on a planar surface of constant 7, the gradient Vy is a vector normal to
the plane, and {2 = w/p, up to a constant factor. The proposition then reduces to the planar barotropic
case, treated in Holm et al. [1983] and section 3.4.

Remark D. Formal stability. For three-dimensional adiabatic flows,

H(v, p, n) = J {plol+e(p, m)+p[P(n, Q)+ ultdxdydz. (8HC)

D

It will be convenient to write (8FV1) in the form

SHC: = DHC(vea Pe; ne) ‘ (81), Spw 87])

= f Bl028p + peve - 80 + 8e(pe, o) + [ P(e, 2.) + 102e 18p + peD(ne, 2:)87

D

+[@' (9, 2.)+ 1] 802} dx dy dz,
Where 3£(pe, 11c): = £,(Pe; De)dP + €,(pe, M)37. The second variation is given by
8 Hc:=D?Hc(ve, pe, 1)+ (80, 8p, 87 )

= f {ZUe : 808/) + pe|81"2 + 52€(Pe7 776) + 2¢(7’e, 'Qe)(sn)(&())

D

+ p[ D(e, D)BN) + D"(1e, 2)(BQRY + 2D'(n., 2.)B7)(R2)]
+2(D' (1., 0)+ 1 )B)BR) + p D'(ne, 2+ )32} dx dy dz, (8SV1)
where

8°€(Pes Me): = Epp(Pes M)BP Y + 2655 (Pes 7)OP)ON) + £ (Pey 1)ON ),

and where 8202 is computed as follows:
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0:=p Y(curlv): Vy,

32 =—-p'03p+p  (curldv)- Vp.+ p - (curl v.) - Von,

30 =p"0.06p)Y—p"(32)Bp) - p28p[(curl 8v): Vn.+ curl v.- Vdn]+2pz"(curl 3v)- Vop
=-2p7'(3p)(002)+2p; (curl 5v) Vo7

Consequently,
p5°02 +2(3p)(802) = 2(curl 3v) - Vdn,

and so that the last two terms in (8SV1) can be integrated by parts using @'(n., £2.),0 + =0 to give

¥He= f (PSP +200 - (089 + V&' (110, 2) X Vo) + 8% (pe, me) + 2 (e, £2)67)(042)

+ pd B(ne, DNE7 Y+ D" (e, DIERY + 20 (., Q) (Bn)B2)]} dx dy dz. (8SV2)

Completing the square in the first two terms of this expression yields

8’Hc = J {peldv + plvdp+p VD' (ne, 2) X Pyl —pe'lvdp + VD' (7., )% Vdn

D
+8%(pe, e) + 2D(n., 2.)5782 + pe D(7., 2)dn )
+ D"(ne, 2BV + 2D (4., 2.)57502]} dx dy dz. (8SV3)

This quadratic form has indefinite sign; for example, variations with 8p = 0, 37 =0 and curl v =0
(so 842 = 0) give a positive expression. To get a negative expression, choose a variation with 8» small
compared to V3%, V87n in the plane orthogonal to curl v., and with 8o the curl free part of
-Vd'(n., 2.)% Vdn in the L? orthogonal Hodge decomposition with a p. weight (Marsden [1976]).
(Note that curl v, - V35 =0, 8p = 0, and curl dv = 0 gives 82 = 0.)

We next show that 8*Hc becomes positive definite for states satisfying

|Von*<ki(@n), (8BD)

where k. will be determined below in terms of equilibrium flow quantities. We will get conditional
stability results: that is, our bounds will hold as long as (8BD) is not violated. This is consistent with the
fact that generally, shocks can develop and violate (8BD). This conditional stability is similar to that for
compressible barotropic flow (see section 3.4). It should be kept in mind that when (8BD) is violated,
the model itself may become invalid because of heat diffusion that should be accounted for if Vy is
large.

We introduce the notation
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@=p V' (0., D), A=£0,(pes 1) = P20y B = Egn(pes ne) e P(es 2o),
C= £pn(pe, 1)+ P(Me, 2) = p2lwe* V' (e, ) = T+ D(ne, 22) - [by (8FV5)]
D=p.®"(ne, ), F=pD(n, ), y=p'VO'(n.,2)X0v..

Thus, 32Hc in (8SV3) can be written (using the vector identity |a x B|* = |a[*|B] - (a - B) as

82H, = f [pddv + p='odp+ p 2 V' (e, )X VonP+ p2'(Von- V&' (n., Q)F + 2} dx dy dz,

D
(8SV4)
where the quadratic form 2 is given by
dp | | A+|yfla®> 0 C || 8p
2=|3 0 D F || 30| -a®Von—a?ydp|’. 821)
dn C F BJdlbdy

Sufficient conditions will be found for 2 in (821) to be positive. To do this, we first look at two special
cases: (1) choose 8p = 0, and take 8» and 8% such that 82 = 0. Then

2 =B@®n) - a*Von|?,

so 2>0 in this case if |Vdn[*<a"2B(dn)* and (ii) choose V37 =0, and take 8p and dv such that
32 = 0. Then

2= ()& 5)lay):

and 2 >0 in this case if A >0 and AB - C*>0. In (821) we write V37 = k&7, which defines the vector
k and recombine to find

dp VT A 0 C+k-y dp
2=13n]10 D F 3| . (822)
] LC+k-y F B-lkl’a*] Ld

For positivity of the quadratic form (822) we need each subdeterminant to be positive, i.e.,
A>0, D>0, D[AB-kPa®>)-(C+k-yP]-AF*>0.
The last condition for positivity can be rewritten as

~AB+ Aa?kP+(C+k-yy+ AFY/D <0,
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or, on expanding the square,
Aad’lkf+(k-yy+2Ck-y—(AB- C*- AF?*/D)<0.
By the Schwartz inequality, k - y < |k||y|; if C=0, It suffices for positivity of 2 in (822) that
(Aa®+|yP)|k*+2Cly|[k| - (AB - C*~ AF?/D)<0. (8KI)

The product of the roots of this quadratic expression in |k| is —(AB — C*— AF?D)/(Aa*+ |y ), so
there is one positive real root, k., if

AB-C*- AF}D>0.

(If C=0, the discriminant is trivially positive, so the roots are real.) The value of k. is given by the
qu adratic formula:

ko =[Aa*+]yP]{~Cly|+ VCyF+(Aa*+|yPYAB - C*- AF?[D)}, (8k-)
and the inequality (8KI) is satisfied for
0<|k|<k,.

This calculation using the Schwartz inequality shows that the quadratic form 2 in (821) is positive
definite provided

A>0, D>0, C=0,
and

AB- C*- AF?/D =0
for specific entropy variations satisfying

| V89| <k.lon], (8SEV)
with k. given by (8k.) in terms of equilibrium flow quantities. These positivity conditions for 2 imply
positivity of the second variation 8Hc in (8SV4). Hence, as long as (8SEV) is satisfied, sufficient
conditions for formal stability of three-dimensional equilibrium flows of an adiabatic fluid are express-
ible (by using (8T1-3), (8FV5), and the definitions of A, B, C, D, and F in (8D)) as

A= gpp(pes me) = peloef = pi(ci-|of) >0, (8FS1)

plv. Vp.x V.()e>
- |Vp.x V2.2 ’

P P"(ne, 2.) = (8FS2)
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C:=plw.VP'(y.,2.)=0, (8FS3)
B:= 0y (pes 1)+ pe®(ne, ) > p (0 - VOV + (c2= [0 (@'Y @
=:(C*+ AF*D)/A, (8FS4)
where c. is the equilibrium sound speed, &,,(pe, 1.) = p.T./c5, and ¢, = T/(3T]dn)p is the specific heat

at constant specific volume. The quantities p., T., c¢2, and c¢ are all assumed to be positive, on physical
grounds. The formal stability conditions (8FS1-3) can also be expressed simply as

ci-|vf>0, (8FST")
pe- Vpox V0.>0, (8FS2)
w. VO'(n., V.)=0. (8FS3)

In the isentropic planar limit, the fluid flow takes place on planes in which 7, is constant, so that if
these planes have coordinates (x, y), Vn.| Z. Among the formal stability conditions in this limit, the
subsonic condition (8FS1’) remains, but (8FS4) and (8SEV) are absent, since 37 = 0= V7. The
Casimir variable, £2=p 'curlv-Vy, in this limit becomes the scalar specific vorticity, w/p=
p~'Z - curl v; so the first geometrical condition for formal stability (8FS2') becomes v, * Z X V(w./pe) >0
and the second geometrical condition (8FS3') is satisfied identically [w.? - V®'(we/pe) = 0, since w, and
p. are functions of (x, y)]. Thus, the formal stability conditions for three-dimensional adiabatic fluids
reduce to those for two-dimensional barotropic fluids (see section 3.4) in the isentropic planar limit.

D. Convexity estimates
In (8HC) we have H-= H + C, with

H@p.m)= | BoloP+e(omidrdydz,  Clopm)= | o0, @)+ p2}dx dy dz.

D D
Consequently,
H(Av, Ap, An): = H(ve + Av, pe + Ap, 0+ An) = H(ve, pe, ne) = DH(ve, pe, me) * (Av, Ap, An)

- j ((p.+ Ap)|AvP+ Ap(v. - Av) + é(Ap, An)} dx dy dz,

D

where
EQAp,An):=e(pe+Ap, net Bn)— e(pe, ne) — £5(Pe; M)A p = £4(pe, M)A . (8D1)

Likewise,
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C(Av,Ap, An): = C(ve+ Av, p.+ Ap, n.+ An) = C(ve, pe, 1) = DC(ve, pe, ne) - (Av, Bp, An)

- j (pe+ Ap)[D(n. + An, 0o+ AD)+ p (2o + AD)] - pe] D1, ) + 2]

D

—[P(n., Q)+ n0)Ap ~pe P, (ne, D)AN — pe[ Po(ne, £2c)
+ 1D - (Av,Ap, An)}dx dy dz,
where, since £ = p~'(curl v)- Vp,
D2 -(Av,Ap,An)=—p ' DAp+p;(curl Av)- Vn.+ p ' (curl v.) - VAn,
and

A :=(p.+Ap)curl(v.+ Av)-(n.+An)—pe'curl v, - Vne

e 1
=—2  DO.(Av,Ap Ag)+ ~ (curl Av) - VA,

p.tAp p.tAp

Comparison of these expressions for Af2 and Df2 - (Av, Ap, An) gives
p.D02 - (Av,Ap, An)= (p.+Ap)AQ2 — (curl Av) - VA

which, when substituted into the previous equation for C, leads to

Cleo,8p,0m)= [ {(oe+2p)B(80, AD) + B, QIAp A
D

+Av- Vd'(n., 2.)x VAn}dx dydz,

where

d(An, An): = B(n.+ Ay, Q.+ A2) - D(n., 2.)— D(n., Q)AN - '(., DIAQ.

Adding together H+ € yields

A+C= j B(p+ Ap)AvP+ Ao - (0.hp + VD'(n., 0.) x VA7)

D

+ &(8p, An)+ (pe+ Ap)D(An, AQ) + D(n., 2 )ApAn}dx dy dz,

whereupon completing the square and using the relations

83

(8D2)
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Av+o.Ap/(p.+Ap)=AM/(p.+Ap), AM:=(p.+Ap)(v.+Av)-pev.,
leads to the expression in terms of AM,
H+C= j {———— AM + V&'(n.. 0.)x VAq[2—
2p. + Ap)‘ ( ) |

—————|vAp + VD'(n., 2.) X VA
2(10.3+Ap)l e £2:

+ (8, An)+ (p+ Ap)(An, AD) + Blne, DJApAn | dx dy dz.

This expression can be compared with the second variation (8SV3), to which it reduces (up to an
inessential factor of 2) for infinitesimal values of {Av, Ap, An}.

Assume now that for certain positive constants Pmin, Pmax €, Ei, @i, Ai, i=1, 2, 3, we have the
following bounds and convexity properties:

O<pminspspmax<°o’

0< e = 8pp(pe’ ne) < o, 0< ar= (pe + Ap)¢”(ne’ ne) <o ’
Ap\i/e e3><Ap> E, E;/Ap
l =sensn =iV (2 2)(sr).
2<An)(e3 e \ag)=E@naD =2\ (g g (An

where £ and d> are given in (8D1) and (8D2), respectively.
Then H + C is bounded below by

A oA 1
A+ CZ%J { AM + V®'(n., 0.) X VAq[*-
pmax

D

1
lv.Ap + VD' (5., 2.)x VAy|?

'min

Ap ]’ e 0 e3+d" Ap

+ | AR 0 a a; AR| } dxdydz. (8D4)
AT] e3+<i> as at e A‘I]

Expanding the square, we get

1
———|vAp+ VO'(n., ) X VAnP = —

min

1 1
|oe*(Ap)* + — (V@'(n, 2e) - VAnY’

min min

N 2Ap

1
o 98/ (n., Q.JFIPAnP,

min

VAn - Vd'(n., )X v, ~

which we substitute into (8D4) giving

Ao 1
H+ CZ%J { IAM + V&'(n., ) X VAg[?+
pmax

D

L (van- P&(n. Q)7+ 9 } dxdydz. (8D5)

min



Darryl D. Holm et al., Nonlinear stability of fluid and plasma equilibria 85
The quadratic form 4 in (8D5) is given by an expression similar to (821):

Apl’ pmmlvelz-l'lylz/ 0 63+d5 Ap )
9= |AN 0 a;  as ||AQ|—|a}VAn-aiApl, 821)

An es+ @ as ate, |LAn

where a2 and y are defined by
= pmml V¢ (ne’ 'Q ),2
y= pmmv¢ (Mes £2¢ )X v

Writing the quadratic form 4 in terms of a vector k by setting Vdn = k87 yields

Aplt A 0 C+k-yll{Ap
9= |40 0 D F A0 |, (892)
Ap| |C+k-5 F B-lkla®llan

which has the same form as (822), but now with the following interpretations:
A=e;—pmnlvef?, B=ate, C=e;+ d(g., 12.), D=a,, F=a;.

Consequently, upon retracing the argument using the Schwartz inequality for positivity of the quadratic
form 2 in (822), we find that the quadratic form 9 in (842) is positive if

A=e1_p;1iln|ve|2>03 D=a1>09 C=e3+¢(neyﬂe)>07
A(B - F*D)— C*= (€1~ |0e]*/pmin)@2+ €2— a3/a;) — (es+ D(ne, Q) >0, (8D6)

provided the specific entropy variation A satisfies

|VAD| < k.|Aq|, (8D7)
with k.. given now by (8k..) in terms of pmin, €, a;, i =1, 2, 3 and equilibrium flow quantities.
E. A priori estimates

Under the assumptions of (8D3) and the conditions (8D6-7) for positive definiteness of the quadratic
form in (841), the following estimate holds:

1
3 [{— A+ Vo'tn, 0 VARF+

max min

2.)y

D
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Aplt 1= |ve)*/ prnin 0 est P, D)+k-71[ Ap
+ | AR 0 a as AN | tdxdydz
Apl les+ de, R)+k-F as  ay+e,— [k[P@> Ay
= I:I'*' é:: :I:IC
= He(ve + Av(0), p. + 4 p(0), ne + An(0)) — Hc(ve, pes me) (8E)

(the last equality uses the proposition concerning vanishing of the first variation).

F. Nonlinear stability
The left-hand side of the inequality (8E) defines a norm |[(AM, Ap, A2, An)|* in which the estimate
(8E) may be expressed as

Hc(80(0), Ap(0), An(0) = (AM(2), Ap(r), AQ(D), An()P,
and (8F1)
Hc(Bo(t), Ap(t), An(1)) = (const)|[(AM(0), A p(0), AR(0), An (D)),

since His a constant of the motion and the norm of the initial perturbation is bounded for functions v., g,
7. defined in a finite domain (or having appropriate decay properties at infinity, if D is not bounded). The
estimate (8F1) expresses Liapunov stability as summarized by the following:

Adiabatic stability theorem. Let the function @ be related to the Bernoulli function K by

B

o, 8)=( [ X5

t2

dr+ W(a))

for an arbitrary function ¥ and let u = —®'(z., £.)|9D, where v., pe, 7., is a stationary solution of the
adiabatic fluid equations (8EM) satisfying 2. # 0 and Vn.x V(2. # 0. Assume that & and the internal
energy density ¢ for the flow satisfy the convexity conditions (8D3). In addition, assume that the
quadratic form (841) is positive definite. Then the stationary solution v., p., 7. is conditionally stable,
i.e., stable for solutions that (i) are sufficiently smooth and that satisfy |VAn| < k.|An| with k., given by
(8k,) in terms of constants pmin, €, a1, i = 1, 2, 3 and equilibrium flow quantities as in (8D6); and (ii)
satisfy 0 < prin = p =< Pmax < ©.

Remarks (1) For specific examples, the arbitrariness of the function ¥ might be helpful since it gives
additional freedom in the (1,2) and (2, 1) entries of the matrix as well as in the inequalities involving
n-derivatives of @.

(2) Estimates on (div v) are absent, another indication that shock formation is not prevented. In the
isentropic planar case, the present result reduces to the estimate of Holm et al. [1983] in section 3.4.
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(3) A subcase of the flows treated in this section occurs when £2=0. In this case, there is the
additional conserved quantity [, v - curl v d’x. However, the corresponding class of flows with pv + A
curl v =0, A =const (compressible Beltrami flows), are not even formally stable, as can be readily
shown.

9. Adiabatic MHD

This section studies the stability of static three-dimensional MHD equilibria. As we shall see, the
methods used in this paper are consistent with Bernstein’s 8 W method. They also reduce to the
corresponding two-dimensional results considered in sections 5 and 6.

A. Eguations of motion and Hamiltonian

In adiabatic magnetohydrodynamics (MHD), quasineutral plasma motion is described in terms of the
following physical variables: p, the mass density; M, the fluid momentum density; 75, the specific
entropy; and B, the magnetic field. The three-dimensional MHD equations are

d 1 1

—v+(v°V)v=——Vp+—JXB,

ot p p

ap . an oB

o4 AL ¢ —=curllv X B 9EM
” iv(pv), prinial A P curl(v X B), (OEM)

where v = MJp is the fluid velocity, J = curl B is the current density and p is a given function p and 7.
The electric field E = —v X B has been eliminated. The pressure p may be determined from an internal
energy function e = e(p, n) by the first law

de= T dn+(plp*)dp,

which also defines the temperature, 7. The boundary conditions are taken to be v-n|,, =0 and
B n|,p =0, for an impermeable fixed boundary dD of our domain D. The divergenceless condition
div B = 0 is preserved by the dynamics.

The (3dMHD) equations conserve the total energy

H(e,p.1,8)= [ [3plof+ pe(p, m)+ 4BF] s, OH)

D

where € = pe. The space P consists of octuples (v, p, 5, B) with div B =0 and are assumed to have
certain differentiability properties (and to decay at infinity if D is unbounded).

Remark A. Poisson structure. The Hamiltonian structure for the (MHD) equations was introduced in
Morrison and Greene [1980] and connected to semidirect Lie-Poisson brackets in Holm and Kuper-
shmidt [1983]. It was derived by reduction from canonical brackets in Lagrangian coordinates by Marsden
et al. [1983], Holm, Kupershmidt and Levermore |1983], and Marsden, Ratiu and Weinstein [1984].
These equations are Lie-Poisson equations on the dual of the Lie algebra of the semidirect product
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Z O (A°PA*PAY) of vector fields and the direct sum of functions, densities, and one-forms. Dual
coordinates are: M is dual to vector fields; p is dual to functions; 7 is dual to densities; and B is dual to
two-forms. The Poisson bracket is given by

{F, G}=HM[§MG—-V:—AI;—W V—B—M—] [:TM_ Vg_%’; Vaf]

0G OF OF SG] [SG VSF oF

+di [ or %, B OF _3F p3G ]
T sMsn Moy 5M 5B, sM ' B,

OF & S
+ B,-[ ) G 3G — 5 ﬂ:—]} dx. (9PB)
8B, '8M, 5B, M

The equations of motion (9EM) are equivalent to F = {F, H} with H given in (9H).

B. Constants of motion
The equations (9EM) have a geometric reformulation which facilitates the search for their constants

of motion. For p, 5, and B/p we may write
@G+ LY Px)=0, (B+ZL=0, (B:+L)p 'B-dx)=0,

where %, denotes the Lie differentiation along the velocity field v, and B - dx = 2 B; dx’ is B thought of
as a one form. The last equation is also expressible as a commutator relation

[01 + .27,,, $B/p] = O ’ (QCR)

where £, is the Lie derivative by B/p. This commutator relation and (é; + %, )n = 0 imply there are
constants along flow lines,

n(n) = (:Z’B/p)"") ; n= O, 1’ 2’ T

See also Henyey [1982], where these constants along flow lines are derived from symmetry under particle

relabeling.

There are also constants of motion which depend on the magnetic vector potential A; for example, the
magnetic helicity [, A+ B d°x, where B = curl A. In terms of the one-form A = A-dx, the evolution
equation for the magnetic field equation may be written as (4, + %,) dA = 0. Choosing a time-dependent
gauge ¢ = v - A for the electrostatic potential ¢ satisfies the MHD requirement E + v X B = 0, provided

(8, + £,)A =0, so in that gauge
(6, +%)ANdA=0,
or, equivalently by the continuity equation,

G+ZL)p 'B-A)=0.
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By the commutator relation (9CR) the following quantities are also constants along flow lines
A® = (Zp,) (p'B- A).

Consequently, any function @({2}, {A™}) is constant along flow lines and the following quantities are
conserved by the equations (9EM):

Cy = j pBUO™Y AP Fx,  n=0,12,.... (9C)

D

Among those conserved quantities Cp depending on A, only the magnetic helicity is gauge invariant
(this uses B - n|,p = 0).

The constants 2, A™, are independent of velocity v. Seeking additional constants depending on v,
we rewrite the velocity equation of motion as

1
dv+wxv+ V(w*2+h)-TVyp==-curl BX B.
p

This is the vector form of the Lie derivative relation
0, + L) v dx)+d(-|v]*2+ h +|Bf*/p— T dn = %, (B-dx).

Two Lie derivatives appear in the (3dMHD) motion equation: one by v, and one by B/p. Still, the
so-called “cross helicity” [, v+ B d’x is conserved for flows with 2® =0, i.e., with 2@ vanishing
throughout the domain of flow, and v - n|,, = 0 and B+ n|,5 = 0, by the equation

3 (v+ B)= —div[v(v* B) + B(—|v[*/2+ h)]+ pTQ?D,

together with constancy of 2%, on flow lines. This equation follows readily either from (9EM) directly,
or by taking the inner product of the vector field B/p with the motion equation written in differential
geometric form above.

Remark B. Casimirs. The functionals (9C) are Casimirs for the Poisson bracket in Holm and
Kupershmidt [1983] in terms of (M, p, 5, A). The functionals (9C) without the A™ dependence are
Casimirs for (9PB). The cross helicity [ v + B d’x is a sub-Casimir of (9PB) (Weinstein [1984] and appendix
B), subject to vanishing of 2 and the boundary conditions v - n|,p = 0, B+ n|,5 = 0.

C. First variation
The equilibrium states p., 7., v., B. of the system (9EM) satisfy the relations

div p.v. =0, curlv.x B.=0, ve:Vp.=0, v.-V02.=0,
we X v+ V(3|v >+ h(pe, 1)) — T.Vn. = pz*(curl B.)x B.

where 0. = 2 = B, - Vn./p., without superscript in the remainder of this section. For static equilibria
the above relations reduce to the single condition
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(curl B) X B. = Vp(p., ne) - (9SC)

To get a variational principle for static equilibria, we need only use the Casimirs depending on 2
and 2V, i.e., on n and 2= (1/p)B- V.

Proposition. For smooth solutions satisfying div B=0 and B-n =0 on the boundary, a static equili-
brium (v. =0, pe, 5., B.) of the ideal three-dimensional MHD equations is a critical point of

HC = H + C¢ s (9Hc)

where Cp = J p®D(n, 1) &x, provided the function @ satisfies the following relations in terms of the

D
equilibrium solutions:

h(pe, 1) + P(ne, 2e) = DPo(n., 2:)= 0, (OFV2)
Be + ¢n(ne, ne) Vne = O [ (9FV4)
where h(p., n.) is the specific enthalpy and T, the temperature at equilibrium.

Proof. The conserved functional in the proposition is

Hc(v, p, 1, B) = J [ip o]+ pe(p, n)+2BP + pP(n, )] dx.

D

This functional has the same form as the corresponding conserved quantities in section 8 for adiabatic
flow. We obtain the following expression for DHc:

DH(ve, pe, 7.)(50, 8 p, 57, 5B) = j & {peve 230+ [Lou+ hot @ — DB

D

+ 0T+ @, — p:'B. Vdolon +[B.+ %Vne]-aB}

4 j& SndoB. - n dS, (9DH)

oD
where dS is the surface element on the boundary and n is the unit vector normal to the boundary. The
boundary integrals in (9DH) vanish by 8B - n|,, =0 and B.- n|,, = 0. Throughout (9DH), suppressed

arguments of functions are to be evaluated at equilibrium. For DHc to vanish at equilibrium requires
each coefficient to vanish, i.e.,

5 ¢ 0.=0, (9FV1)
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3p:  h(pe, ne)t P(ne, 1) — 2. Par (e, 2:) = 0, (9FV2)
89: T+ ®,—p:'B.- Vdo(ne, 2.)=0, (9FVs,3)
oB: Be + ¢n(ne, .Qe) V’f}e = 0 . (9FV5B) = (9FV4)

Substituting (9SC) into the gradient of (9FV2) and using (9FV4) shows that (9FVs,3) holds.

To determine @ from the static equilibrium, one possibility is to assume a functional relationship
pe = F(ne, £.). (If v. were not zero, this would follow if div v. = 0). Then (9FV2) determines @ in the
usual way. Let v, = 0 and let the functions 7. and {2, be arbitrarily specified; let p. = F(7., f2.) and let
B. be defined by (9FV3). This gives an equilibrium solution and &.

Note that (9FV3) implies

J. = curl B, = @po(1e, 2:) Ve X VA2, ,
so the current follows lines of intersection of surfaces of constant %, and {2.. Also

DPoa(ne, 2) = (Je* Ve X VA2)/|Vn. x VAP, (9SvQ)
$0 @Pon(ne, £2.) >0 as long as J., V. and V(2. form a right-hand triad.

Formal stability and stability of MHD

In the proposition, Hc is identical in form to the corresponding quantity for three-dimensional
adiabatic fluids in section 8, except for quadratic pieces which do not harm stability, and the
reinterpretation of £2. Therefore the corresponding results for stability in the adiabatic stability theorem in
section 8 apply for MHD. For a static MHD equilibrium the subsonic condition is automatically
satisfied, of course.

There also exist stationary, non-static MHD equilibria in three dimensions; for example, the aligned
flows, with v. X B. =0, v. # 0. These flows are extremal points of

H-=H+ C¢'+CB+ CA:

where (2. = 0 identically and C, is the sub-Casimir for this case:
CA=AJ'v-Bd3x.

Unfortunately, the resulting aligned flows are not formally stable, since the quadratic form D*H¢ in this
case is indefinite.

Further remarks

(1) Notice that in the two-dimensional limit in which we pass to a surface of constant 7., so Vn.— Z,
the three-dimensional second variation condition (9SVC) corresponds to the two-dimensional one ((¢') of
section 6.2).
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(2)* The W method of Bernstein [1958, 1983] is related to 8*Hc by reduction from Lagrangian to
Eulerian coordinates. In fact 8W is the second variation of the potential energy for MHD written in
Lagrangian coordinates. For MHD the Casimirs are given via Lie derivatives as we have seen, and
Eulerian and Lagrangian variations of a quantity differ by a Lie derivative (the coadjoint action
generator on a general Lie group). In this case one arrives at,

82I{C * (ag)%uler = |8§.l%,agi'p + 8 WLagr s (98W)

where 8¢ is the Lagrangian displacement from the equilibrium trajectory, so that formal stability in
terms of d W implies that for Hc. We shall explore this relationship at greater length in another publication.

(3) In appendix A, we recall Bernstein’s logarithmic convexity argument which shows that
definiteness of the second variation is necessary as well as sufficient for linearized stability, in
Lagrangian coordinates.

10. Adiabatic multifiuid plasmas
A. Egquations of motion and Hamiltonian
The physical variables are (as in section 7, but suppressing species indices): p, the mass density; M,

the fluid momentum density; 7, the specific entropy; E, the electric field; and B, the magnetic field. The
velocity v is related to momentum density by v = M/p. The three-dimensional MFP equations are

1
dp=—(@-Vov——Vp+a(E+vXB), 4dp=—divpo,
p
om=-v-Vy, oB=-culE, 4E=curllB-> apv, (10EM)

where p is the pressure, the parameter a is the species charge-to-mass ratio, and X indicates a sum over
species. The remaining Maxwell equations

divB=0, dvE-Sap=0 (10SME)

are preserved by the dynamics and, thus, can be treated as initial conditions. The equation of state for
specific internal energy e = e(p, ) determines the pressure through the first law

de=Tdn +(plp®)dp,
where T is temperature. Boundary conditions are v * n|,p =0, B+ n|,p =0, and EX n|,p = 0.
For a single fluid species and when E and B are absent, these equations reduce to the equations for a

three-dimensional adiabatic fluid, whose stability conditions for stationary flows are discussed in section
8.

* We thank Philippe Similon and Phil Morrison for discussions on this point.
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The equations (10EM) conserve the total energy

H(v,p,n, E B)= 2, f [3plv] + pe(p, )] &x + j GIEF +3|Bf*) dx, (10H)

D D

where £(p, n) = pe(p, 1 )is the internal energy density. The space P consists of (v, p, n) for each species, and
E, B, all of which are assumed to be suitably smooth and to satisfy (10SME).

Remark A. The Hamiltonian structure for the MFP equations is due to Iwinski and Turski [1976]
and is discussed further in Spencer [1982], Holm and Kupershmidt [1983], Marsden et al. [1983], Holm,
Kupershmidt and Levermore [1983), and Marsden, Ratiu and Weinstein [1984}. For functionals F, G of
(M, p, n, E, B) with boundary conditions as above, the Poisson bracket is given by

o1 MG () oo e
D

3G 5F 5F 5G 5F 3G_3G ®F _ ®F 3G\|
+17d1v< —————>+ (— —-—='=tB- )}d
3M 5y M 87 5M OE oM SE = M oM
Jrj(g 20 _2C urlg>d3
5E ""sB SE  oB (10PB)

D
The equations of motion (10EM) are equivalent to F ={F, H}, with H given in (10H).

B. Constants of motion

A direct way to find the constants of motion associated with the “freezing-in” of fluid quantities is to
notice that the velocity equation in (10EM) can be written in the following suggestive form by using
E=A-V$, B=curl A, and the first law expressed in terms of specific enthalpy, h = e + p/p,

d(v+aA)—vxcurl(v + ad)+ V(v*2+ h+ap)— TV =0. (10EMa’)
This is the vector form of the differential relation

G+ L)g—-d(v*2~h—ad+av-A)-Tdn=0, (10EMa")
where %, is the Lie derivative with respect to the vector field with components v/, g = (v; + aA;) dx’ is
the “circulation” one-form, and d is exterior derivative. Recall that for any differential form, Q, the Lie
derivative is given by £,Q = v -dQ + d(v - Q), where the dot ““-” means substitution, i.e., inner product
of a vector field and a differential form. Taking the exterior derivative of (10EMa"), using d*= 0, and
[d, %,] =0 gives

(6. +%)dgq—dT Adn=0.

Since (4, + %,)n = 0 for the scalar 7, one finds
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(9:+Z,)(dg rdn)=0,
and combining with the continuity equation
(3:+ Zo)(p &x) =0,
yields
(+ov-V)2=0, (1002)
where
N=p ' curllv+ad)-Vyp=p w+aB) Vy.
Likewise,
(6, +Z)Ngnrdq)=d(Bdg+ Tdnrqg)+2T dn adg,
where
B=v2-h—ap+av-A,
yields an equation for helicity, [ (v + aA)- (w + aB) d*x, namely,

a,j(v+aA)-(w+aB)d3x=J2pT(2d3x=0 for 2=0,

D D

provided v-n|,p =0, (w + aB) n|;p =0 and Vn X n|,, = 0. Note that by (1002) if £ is initially zero
throughout the domain of flow, it will remain zero.
The eq. (1042), the entropy equation, and the continuity equations imply that the quantity

Coln, 0): = j p®(n, ) P (100)

is conserved by the MFP equations (10EM) for every function &(n, {2).

Remark B. Casimirs. The functionals (10C) are Casimirs for the Poisson bracket (10PB). The helicity
integral [ (v + aA):(w +aB)d*x is a sub-Casimir, subject to vanishing of 2 and the boundary
conditions mentioned previously.

C. First variation

The equilibrium states p., 7., ve, Ee, Be, of the system (10EM) are the stationary, three-dimensional,
adiabatic MFP flows. Such stationary flows satisfy the relations

E.=-Vo., (10SRa)
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divE.=S ap., (10SRb)
div B.=0, (10SRc)
curl B.= > ap.v., (10SRd)
div p.v. =0, (10SRe)
v V=0, (10SRf)
ve* VGloe + h(pe, ne) + ade) = 0, (10SRg)
v V2. =0. (10SRh)

A sufficient condition for the last three relations is the Bernoulli law
3[0e+ h(pe, ne) + agpe = K (1., £2c) (10C1)
for a Bernoulli function K. Thus, by the stationary equation (10EMa’), we have

ve X (w. + aB.) = VK(n., 2.)— T.Vn. .

Vector multiplying this by V5. gives
K
Pebe = ?” Vn.x V2., (10C2)

where K, : = dK(7., £2.)/{2.. Note the divergence of (10C2) vanishes, as required by (10SRe). Similarly,
vector multiplying by V2, gives

VQ.: (w.+ aB.) _T.—-K,
Py (o + aB.) Ko ’

(10C3)

where K, := dK(n., £2.)/0n.. Relations (10C1)}~(10C3) will be useful in demonstrating the following
proposition.

Proposition. For smooth solutions satisfying v-rn =0, B-n =0 and EX n =0 on the boundary, a sta-
tionary solution (ve, pe, e, E., B.) of the ideal three-dimensional MFP equations is a critical point of

HC=H+ZC¢+2pprd3x,

where 4 is a constant (separated out for convenience), provided for each species,
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4

on.0)= ([ K%Y

t2

dr+ const> ,

and u = —Py|sp, K being the Bernoulli function of a given species.

Proof. The conserved functional in the proposition is

Heo,p. 1. B B)=3 [ BoloP+ pe(o, m &x +1 [ (BP+ |BF) s

D D

+3 [ [o0(r, )+ wp0] x.

Except for the electromagnetic pieces, the expression for Hc is identical to the corresponding conserved
quantity in section 8 for adiabatic flow. Integrating by parts leads to the following expression for the
derivative DH:

DH(ve, per e Eer B+ (50,5,57,8E, 8B) = 3 [ (o + (e, n0)+ @~ 0,80l

D

+(peve— Vne X Vo) 80+ p Te+ @, — p ' (we + aB.) - Vdaldn} dx

+j [(Be+2a¢n‘7ne>-8B+(Ee-8E)] Ext S f}; (4 + Bo)[50 X V. + 57 (we+ aB.)] - n dS,

D aD

(10DH)

where dS is the surface element on the boundary and n is its unit normal vector. Throughout (10DH),
& and its partial derivatives @, and @, are to be evaluated at equilibrium (7., {2.). The 3E coefficient
in (DH) is transformed to a 3p piece by using div 8E = X adp, as in section 7. For a stationary solution,
the connected components of the boundary are both streamlines and (by E. X n|;p = 0) equipotential
surfaces. Thus, 7. and {2, are all constants on the boundary. The boundary integrals in (10DH) vanish
upon choosing u + @, = 0 on 4D and noting that 8B - n|,p, = 0. The remaining coefficients in (10DH)
vanish for stationary flows by virtue of the single relation

K(ne, 2+ P(ne, 2) = 2 Pa(n., 2)=0, (10K)

which is the same as the relation between K and @ in the proposition. Given (10K), the 8p coefficient
in (10DH) vanishes for stationary flows according to (10C1). Since (10K) implies that

Kﬂ(nea -Qe)/ne = ¢ﬂﬂ(1’e’ ‘Qe)
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the dv coefficient vanishes by (10C2'). Upon substituting (10K) into it, the 8% coefficient becomes
T.- K, - Poap(w. + aB.)- Vi,
which vanishes by (10C3). Finally, the 8B coefficient vanishes by using (10K) and (10C2), to imply
pv. = —curl(®pVn.) .

Hence, (10CRd) gives

Be+z a¢07n3=0,

for the 8B coefficient. W

Formal stability and stability for MFP

Observe that Hc in the proposition is identical in form to its counterpart for three-dimensional
adiabatic flow in section 8, except for quadratic electromagnetic terms which cause no difficulties, and
reinterpretation of the quantity {2 to incorporate the magnetic field. Consequently, both the formal
stability conditions (8a, b, c) and the convexity estimates (8E) may be taken over directly for MFP; so the
stability theorem of section 8 applies for MFP, as well.

Part II1. Plasma Systems

In this part we apply the energy-Casimir method to the Poisson—Vlasov and Maxwell-Vlasov systems
in one, two, and three dimensions. Our main result is an a priori estimate that is in agreement with the
formal stability results of Newcomb [1958], Gardner [1963] and Rosenbluth [1964]. In the homogeneous
case, this theorem applies if the equilibrium plasma density function f. is a function of the particle
velocity that is isotropic and monotone decreasing. Because of technical difficulties for large values of
the velocity, a full nonlinear stability result does not appear possible using these methods.

11. The Poisson-Vlasov system

Here we consider the Poisson-Vlasov (or collisionless Boltzmann, or Jeans) equation and the
nonlinear stability of equilibrium densities that are functions of the velocity. Stability results in the
context of stellar dynamics are due to Jeans [1902, 1919]. Formal stability in a spirit similar to Arnold
[1965a) was considered by Newcomb [1958] for a Maxwellian equilibrium and by Gardner [1963] and
Rosenbluth [1964] for a general monotonic decreasing equilibrium. The Casimir one uses to obtain
formal stability is essentially the entropy of the equilibrium solution. Here we provide the convexity
estimates needed to bound the growth of perturbations.

For one dimensional plasmas, Penrose [1960] and Case [1958] studied neutral stability and linearized
stability. (See, for instance, Clemmow and Dougherty [1969], Krall and Trivelpiece [1973], and Ichimaru
[1973].) These results provide neutral stability for equilibrium densities that are not monotone, but may
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have two humps. When dissipation is present, these results are very important for bifurcation analysis,
as in Crawford [1983]. In the conservative case, however, we conjecture that these equilibria are
nonlinearly unstable through the mechanism of Arnold diffusion. It is conceivable that the numerical
work of Berman et al. [1982] is evidence for this. (The stability results of Rowlands [1966] do not appear
to be correct.) It would be of interest to understand the Penrose criterion from the point of view
of Krein’s [1950] Hamiltonian spectral theory.

A. Egquations of motion and Hamiltonian

Consider a collisionless plasma consisting of several species with charges ¢° and masses m®, where s is
the species label, 1 =s=S. The particles move in n-space R", n = 1. Let x, v €R" denote the position
and velocity of particles in the plasma and f*(x, v, #) be the phase space density of species s. We assume
that f* is either periodic in x or has appropriate asymptotic behavior as x> and decays as v >
(for example, f* may belong to function spaces governed by the existence theory described in Batt
[1977, 1980], Ukai-Okabe [1978], Horst [1980, 1982], Wollman [1980-1984], Cooper and Klimas [1980],
Bardos and Degond [1983], and Glassey and Strauss [1984]).

In the case of one species, we assume in addition that [ [ f*(x, v) d"xd"v =1 and that the plasma is
moving in a background static ion field.

The Poisson-Vlasov equations are

a S a S Sa a s
A A N 3 Vo =pi=-3q" [ flrv)d, (11EM)
ot dx m®ox v s

where d/dx, d/dv denote the gradients with respect to x and v respectively, V? is the Laplacian in the
x-variable, f=(f',...,f%), and p, is the total charge density of the plasma. If we are dealing with a
one-species plasma, the right-hand side of the Poisson equation in (11EM) is replaced by

q(J f(x, v)dv—1). Let

i{.%i’i.ﬁﬁ)

1
{8 hlx 0)=—> (ax v Ix v

m

be the canonical Poisson bracket in (x, v) space. A direct verification shows that the dynamic equation
for the species s in (11EM) has the expression

of*lot={Xpf"}, (L1IEMY
where
H p(x, v) = 3m’[vf + g°¢y(x).

The total energy of the system has the expression

H(f%) = }s: [%J' j m|o[*f*(x, v)d"x d"v] +%j dpppdx. (11H)
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It is easily verified that H is conserved along trajectories of (11EM) by using the following relation
(proved by integration by parts):

[ [remaxan=[ [ 1rahaxan.
Remark A. The eqs. (11EM) are Hamiltonian with respect to the Lie-Poisson bracket

F61N=3 [ [ reofim s

5f of
on the dual of the direct sum of functions of (x, v). This can be easily verified by showing first that
dH/3f* = &y and using (11IEM). The bracket (11PB) was introduced by Morrison [1980] and Gibbons
[1981], and its interpretation as a Lie-Poisson bracket and derivation from the canonical bracket in
Lagrangian representation is due to Marsden and Weinstein [1982].

} d'x d' (11PB)

B. Constants of the motion
From equation (11EMY it follows that for every function @*:R - R the functional

C(fY) = f f &(f*) d"x dp (110)

is a conserved quantity for (11EM).

Remark B. The coadjoint action of the group of symplectic diffeomorphisms of (x, v) space on the
dual of its Lie algebra, which consists of functions of (x, v), is given by push-forward (see Marsden and
Weinstein [1982] or Marsden et al. [1983]). It is easily verified that C* is invariant under this action and
thus it is a Casimir function. Alternatively, one can check directly that the Poisson bracket (11PB) of C*
with any other function vanishes identically.

C. First variation
Let C=2,C°. A short computation shows that the derivative of Hc:=H+ C at a stationary
solution f, = (fs,. .., f:) equals

ch - sif fs
—afT(fe)— Hpt DU(f2).

This vanishes if and only if
Hp=—-D%(f?)
for every s. But by (11EMY, for stationary solutions we have

Hyp: ofc ofe g
ox dv odx v
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A sufficient condition for this to hold is the functional relationship
= ¥(f2)
for every s. Thus we get the following.
Proposition. Stationary solutions f; of the Poisson—Vlasov equation satisfying # ;s = ¥*(f:) for every s,
are critical points He:= H + C where @%(¢)= — [* ¥*(u)du. Conversely, critical points of Hc are

stationary solutions.

Remark D. Formal stability. To compute D*’Hc(f.)* (3f)*, we need the expression of the derivative
of ¢; with respect to f. Since V¢, = p; and

Dpy8f=3 g [ o 0y ar,
we have

Dg;df =~ q* [ o).
This formula and

DH()-81= 3 [ | [ wlofar o erdosa: [ ([ 5 o) o) 0|
yield

D?H(%)- 617 = [ Doy 31(Sq* | o arw) e

(e e (3o or e

Since V7 is negative definite it follows that for perturbations §f°(x, v) such that =, ¢° [ 8 ff(x, v)d"v # 0,
we have D*H(f.):- (8f)>0.
Since

DC()-6f2= 3 [ | e 00f o) dr o,

the second variation D*Hc will be positive definite if @*'(f$)> 0 for all s; that is, ¥¥(f%) <0 for all s.
Taking the gradient of # ;s = W*(f3), it follows that ¥*(f3) = V¥ s/ Vf:, provided Vf:# 0 for all s. We
have therefore proved the following stability result of Newcomb [1958], Gardner [1963] and Rosenbluth
[1964]:
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A stationary solution f. with V¢ # 0 for all s and for which ¥;, is a function of f. is formally (and hence
linearly) stable, if V¥ / Ve <0 for all s. )

D. Convexity estimates
Let f:=f.+ Af; then we have

H(Af):= H(f+ Af)~ H(f)~DH(f)- 0 = } [|Fgu, P v,

since f~ ¢, is linear and the kinetic energy term of H is linear in f. Consequently, we can take

Qusf)=} [ Vo, P,
and condition (CH) of section 2 holds. For (CC) we require
0:8n= | [ S@ e+ ar)-0r9- 0 (¢aaf) ax avo
which holds with
QBN=ta [ [ S@arFasar,

provided

@ ({)=a for all s and all /.
Condition (D) requires

a>0.

E. A priori estimates
We have the following a priori estimate on Af = f— f.:

Qi Af(1)) + OAASf(2) = %j |V asl* d"x + 3a f j > (AfPd"x d™v
= Hc(£(0)) - Hc(fe) .

F. Nonlinear stability
For a >0 we set

IAfF=4 [ IVpasars+da [ [ S @ryarsaw (11N)
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(note that this norm is bounded below by the L%norm of f). Condition (CH) is satisfied. A sufficient
condition for (CC)’ to hold is

PY(L)=A <+,
for all £ and all s, i.e.,
—ol -~ A=V(f)=VH:/Vfe< —a<0
provided Vf: s 0 for all s. We have proved the following.

Poisson~Vlasov stability theorem. Let f. be a stationary solution of the Poisson-Vlasov equations.
Assume that ¥ s = ¥*(f:) for all 5, and for a constant a >0,

0<a=-v9() (11SC),
for all { and s; i.e., that

Vo ;s /Vfe<-a<0.
Then the a priori estimate (11E) holds, as long as C' solutions exist (which is automatic in one

dimension).
If

—PI()=A< o, (11SC),
then the f, is stable in the norm (11N).

Corollary. Let f. be a spatially homogeneous spherically symmetric stationary solution of the one-
species Poisson—Vlasov equation, i.e. f.(x, v) = g(|v}) for all s, with g a real-valued C* function. Assume
that g’(A) <0 for A >0 and g"(0) <0. Then f. satisfies the a priori estimates (E) of section 2 (as long as
smooth solutions exist).

Proof. 1f f. is a spatially homogeneous solution, it follows from Poisson’s equation in (11EM) (with the
charge modified to g(f f(x, v)dv — 1)) that ¢;, is a constant which we can take to be zero. Since g is
monotonically decreasing on the positive semiaxis, it is invertible. If { = g(jv]), we have

Hr.=z2mlof+qds=2m(g (L))
Therefore Y({)=3((g) ()Y satisfies ¥;, = ¥(f.) and

g () o v}
g ')  g'(v)

Since g"(0) <0, it follows that ¥'({ )< —a <0 for some a >0, so we get the result. Wl

v'({)=m
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In the stability conditions (11SC),, the upper estimate on — ¥*, and in this corollary, the behavior for
large v is a serious problem. Indeed, while one has the a priori estimate (E) of section 2, the upper
estimate (CC)' is not possible. In fact, it is easy to see that in one dimension for the Maxwell
distribution, where @(¢) = ¢ log ¢, the functional C is not continuous in the L?*-norm at the Maxwellian
f. = const - exp(—a|v[?), nor in the norm (11N) (consider perturbations of f. that are like 1/ for large v).
Thus, the full stability result one might like does not seem possible by these methods. More delicate
estimates at large v are needed. The present results require control on a norm of the perturbations that
is stronger than the norm guaranteed by the a priori estimates. Of course one can still interpret this as a
nonlinear stability result, but it is not as clean as one would have hoped.

12. The Maxwell-Vlasov system

Here we extend the analysis given in section 11 to include electrodynamics rather than just electrostatics
A number of previous investigations of formal stability cited in section 11 also apply to this case; see,
for example, Gardner [1963].

A. Egquations of motion and Hamiltonian

Consider a multispecies collisionless plasma consisting of particles with charges ¢° and masses m°®,
moving in 3-space R with positions x and velocities ». We shall assume that the plasma densities
f5(x, v, 1) as well as the electric and magnetic fields E and B are either periodic in x, or have asymptotic
decay sufficient to justify integration by parts. We shall also assume that f* decay to zero in the v
variable at  at a sufficient rate that makes all subsequent integrals convergent. (The weighted spaces of
Cantor [1979] and Christodoulou [1981] may be appropriate here.) The Maxwell-Vlasov equations are:

as as
iJrv-f+

s X s 14B
q_(mu).i_o i
at ox m’®

= -—=-curlE,
¢ dv at

10F s
;E=cur18=2q7fvfs(x, v)d’v, divE=p,=Eqsffs(x, v)d®v, divB=0, (12EM)

where we denote by f the vector (f*) of plasma densities for every species. If we deal with only one

species, we assume in addition that there is a constant background electrostatic field and replace the

right-hand side of the equation div E = p; by q(1— [ f(x, v) &*v) where f satisfies [ [ f(x, v) v d*x = 1.
The total energy of the system is the conserved Hamiltonian

H(fEB)=13 j j loPfi(x, v) Px o + f (IEF+ B[] d°x (12H)

Remark A. The equations of motion (12EM) are Hamiltonian with respect to the following Poisson
bracket found by reduction from Lagrangian to Eulerian coordinates by Marsden and Weinstein [1982],
inspired by Morrison [1980]. (The bracket seems to have been first given by Iwinski and Turski [1976)):
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SE ovsf* OE dv afs)

{F, G}(f,E,B):}s:jJ[fs{:;’:]i}Jr(BF'afSG 3G of oF

3 8F 3 3G 8F 3G G _ _®F
+ sB-(— X — )] 3 +J<—- =22 1—->d3 :
f wdf dwdf dxdot ) Gg vl sg or “"oB/ "
(12PB)

The first double integral in (12PB) represents a Lie—Poisson bracket on a semidirect product. This
bracket is a canonical one in the quotient space of the cotangent bundle of a principal bundle by its
structure group; for the general theory see Marsden, Ratiu and Weinstein [1984] and Montgomery,
Marsden and Ratiu [1984].

B. Constants of the motion
A direct computation shows that the quantities

() = j j (f*(x, v)) d’x &0 (120)

are conserved along trajectories of (12EM), for any smooth functions @*:R > R.

Remark B. The functionals C* are Casimirs for the Lie-Poisson bracket given by the first double
integral in (12PB). When (12PB) is written in momentum representation they become Casimirs for the
entire bracket; see Marsden and Weinstein [1982].

C. First variation

Let Ho:=H+ C, where C: = 2 C*. The derivative of Hc at a stationary solution f., E., B. equals

DH(f.. E.. B)- (6,5, 58) = | [ S (GloP+ 0*(f2(x, v)Bf(x. o) & &'

+4 [ (B.-3E+ B.-5B) x. (126V1)

This vanishes if
Hof + d¥(feilx,0))=0, E.=0, B.=0. (12FV2)

Consequently we shall consider stationary solutions of the following kind:

f. is spatially homogeneous, i.e., f. is independent of x;

f. is spherically symmetric, i.e. f3(v) = g°(v}) for all s, where g* are some real-valued functions on
[0, +0).
Note that these conditions imply that the total current is I, ¢° [ vf i(x, v) &®v = =, ¢° [ vg*(|v) d*v = 0.
The second condition is satisfied, e.g., for Maxwellian density distributions.

For such stationary solutions the first variation of Hc vanishes if

Yol + &*(g (o)) = 0,
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so that, if each g* is invertible, we get
P¥($)=2((8) (L)
Proposition. Spatially homogeneous spherically symmetric solutions of the form f(v) = g*(|v]) for some

invertible functions g*:[0,)>R of the Maxwell-Vlasov equations with zero electromagnetic field are
critical points of H¢:= H + C provided

[
(2)=1 [ (77 du
for every s.

Remark D. Formal stability. The second variation of Hc at a stationary solution (f, 0, 0) considered
above equals

D2H(f,, 0,0) (3f, 5E, 5Bf = S f f SV (F2)f7) Px Po+3 f (SEP + [3BP) d’x.

This is positive definite if @*"(g3)>0 for all s. Taking the gradient with respect to v of the defining
relation for @

2P+ DY (fv) =0,
it follows that

v+ @*(f)ofe/ov =0,
ie., for afs/av #0 we get ®¥(f.)=—v/(3f:/dv). We have proved the following result (cf. Gardner
[191643]3;aﬁonaw solution of the Maxwell-Vlasov equations as in the above proposition with df /v # 0 is

formally and hence linearly stable if v/(df i/ ov) <O0.

D. Convexity estimates
Let (f., 0,0) be a stationary solution, as in the Proposition. We choose

O.(AE,AB)=} f (AEP+|ABP) &,

so that we have

H(Af AE,AB):= H(f.+ Af, AE,AB)- H(f.,0,0)- DH(f.,0,0)- (Af, AE, AB) = Q,(AE, 4B).
(12CH)

Similarly,
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C(Af,AE,AB):= C(f.+ Af AE, AB)— C(£.,0,0)- DC(f.,0,0)- 3f, AE, AB)

=3 [ [0+ 45)- 0(2) - P(FIA LI 1 &0 = 048 ),
where
QAf)=3a > f f A fo(x, v)? &x &0,

provided

@' ({)=a, forall ¢ andall s.
Then

O.(AE, AB)+ Qx(Af)>0

holds if a > 0.

E. A priori estimates
In the hypotheses of the previous step we have the following estimate:

QiAE, (1), AB(1) + Qx8 f(1)) = H(f(1)) — Hclfe) |
where f=f.+Af.
F. Nonlinear stability
Let

lAf, AE, AB)F = Q:(AE, AB)+ QA f) = 3l(Af, AE, AB)|?:

(12CC)

(12D)

(12E)

(12N)

so that (12E) gives an a priori estimate in this norm. However, as in section 11, Hc¢ is not usually
continuous in this norm at the solution (f., 0, 0), again for technical reasons involving the behavior at

large velocities.

Maxwell-Vlasov stability theorem. Let (f.,0,0) be a spatially homogeneous, spherically symmetric
solution of the Maxwell-Vlasov equations with f.(v) = g*(|v|) where g° is invertible. If 3f$/dv # 0 and if

v/(dfs/av)=—a <0,

then the solution (f, 0, 0) satisfies the a priori estimate (12E) which limits the growth of perturbations from

equilibrium.



Darryl D. Holm et al., Nonlinear stability of fluid and plasma equilibria 107

Appendix A. The linearized equations

In this appendix, we show that the equations of motion linearized about an equilibrium solution of a
Lie-Poisson system are Hamiltonian with respect to a constant coefficient Lie-Poisson bracket. The
Hamiltonian for these linearized equations is 8Hc(u.), which is the quadratic functional obtained by
taking the second derivative of the Hamiltonian plus conserved quantities for the nonlinear equations,
when evaluated at the equilibrium solution u. (where the first variation of Hc vanishes). An immediate
consequence is that the linearized dynamics preserves 8*Hc(u.). We will also show that formal stability
of the equilibrium solution implies its linearized stability. Finally, the Rayleigh equation will be derived,
using this Hamiltonian formalism in the example of ideal planar incompressible flow. The Rayleigh
equation is a linearized fluid perturbation equation, whose spectrum will be compared to the condition
for positivity of the second variation.

Al. The Hamiltonian structure of linearized Lie—Poisson equations

From Marsden et al. [1983] for example, we recall that for a Lie algebra &, the Lie-Poisson bracket
is defined on &*, a space paired with & by a weakly nondegenerate pairing ( , ) between &* and &, by

3F 8F
(F.GYw) = ([ = 2= ), (A1)
ou du
where u € 8* and 8F/3u € @ is determined by
oF
DF(u)-8u = (- 5u ). (A2)

for any du € B*, when such an element 8F/8u exists. The equations of motion F={F, H} are
equivalent to

du SH\*
dr ad(m) al (A3)

where H:®* >R is the Hamiltonian and ad(¢):®— @ is the adjoint action ad(¢)- 5 =[¢ 5] for any
n € @; ad(£)*: G* > @* is the dual of ad(¢). Let u. be an equilibrium solution of (A3). The linearized
equation of (A3) at u. is obtained by expanding all quantities in a Taylor expansion with small
parameter ¢ and taking d/de|.-o of the resulting equations. For u = u.+ £8u, using Taylor’s theorem
gives

oH
du

)(2d)-du +0(e?). (a9

The derivative D(8H/8u )(u.) - Su is the linear functional

vE®*»D’H(u.) (du, v)ER, (AS)
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using the definition and (A2). Since 8*H = D*H(u.) - (du, du), it follows that the functional (AS) equals
30(82H)/5(d ). Consequently (A4) becomes

bH _3H , ¢ 3F°H)

du  dpe 2 d(du)

and the Lie-Poisson equations (A3) yield

due  du) SH\* 3 H) SH\* )
et e S —ad(27) e bad ) et ad(Z7) u |+ O(e).
i ° dr a due pem o]0 (8(8;1.) pem @ (B,ue # (&9

+0(e?), (A6)

Thus, the linearized equations are
d@u) , dEH)N\* SH\*
R iad ) .~ ad( )a. AT
a (8(8#) He™ M0 oud (A7)

Letting C be a conserved functional* for (A3) satisfying 8(H + C)/du. = 0 and replacing H in (A7) by
Hq:=H+ C we get

d@u) | dRZHN*
=oE = —ad( ‘.
dr 2 ) H (A8)
This equation is Hamiltonian with respect to the Poisson bracket
3F 3G
{E G}(F’) = <,u‘e’ |:——9 ——_]> . (A9)
du du

That this bracket satisfies the Jacobi identity is readily checked. (See, for example, Guillemin and
Sternberg [1983].) The Poisson bracket (A9) differs from the Lie-Poisson bracket in that it is constant in
the argument. In fact, as shown in Ratiu [1982], the Poisson bracket (A9) is also Lie-Poisson, but on a
Poisson submanifold of the dual of a Lie subalgebra of the loop algebra defined by &. With respect to
(A9), Hamilton’s equations given by 8*Hc are (A8), as a verification shows.

Finally, note that if 8°Hy is definite, i.e., either 8 Hc or —8*H is positive definite, it defines a norm
on the space of perturbations du. Being the Hamiltonian function for (A8), 8 Hc is conserved. Thus,
any solution of (A8) starting on an energy surface of 8°Hc, i.e. on a sphere in this norm, stays on it and,
hence, the zero solution of (A8) is Liapunov stable. Thus, formal stability (i.e. Hc definite) implies
linearized (and hence spectral) stability.

It should be noted, however, that the conditions for definiteness of §?Hc are different from the
conditions for spectral stability i.e. that the operator acting on du given by the right-hand side of (AS8)
have purely imaginary spectrum (‘‘normal mode stability”). In particular, as noted already in section 1,
having purely imaginary spectrum for the linearized equations does not produce Liapunov stability of
the linearized equations in general.

We shall now make explicit the difference between 8*Hc and the operator in (A8). Assume that the
pairing (, ) identifies &* with @ itself, i.e. (, ) is a symmetric pairing on &. Then

* Such a C may not exist if u. lies on a singular symplectic leaf (see appendix B).
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3D?Hg - (8, 3v) = (du, Ldv), (A.10)

defines a linear operator L:® > & symmetric with respect to (,), i.e., {a, LB)=(La, B) for all a,
B € . Then the linear operator in (A8) becomes

dp > [Ldp, e s (A.11)
which, of course, differs from L in general. However, note that the kernel of L is included in the kernel
of the linear operator (A.11), i.e. the zero eigenvalue of L gives rise to “neutral modes” in the spectral
analysis of (A.11).

A2. The Rayleigh equation

We shall now derive the Rayleigh equation for linearized incompressible planar parallel shear flow
from the Hamiltonian formalism described in Al. We shall assume, for simplicity, that D C R? is simply
connected, so that the equations of motion ’

0
a—‘;’= (0,0}, VY=o, (A.12)

are Hamiltonian with total energy

H(w)= %j [Vi|?dx dy, = —%f (V) 'w do dy, (A.13)

with respect to the Lie-Poisson bracket (see the cautionary remarks in section 3.3)

SF SF
{F, G}{w)= f w{—, —} dx dy. (A.14)
dw dw
D
The Casimir functions are
Colw)= | B(w)dxdy. (AL5)

D
As we saw in section 3.3, the equilibrium conditions

b= ¥(o.) (Al6)
imply the vanishing of the first variation of He(w): = H(w)+ Co(w)+ Afp w dx dy, provided that

@' =-¥, and A= B(w.]iD). (A17)
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Now let D be a strip of finite height in the xy plane, and impose either x-periodic boundary conditions
on the velocity, or sufficiently rapid decay of the velocity at infinity in the x-direction. Let ¢, = ¢(y) be
the parallel shear flow solution of the equation (A.12) and let v.(U(y),0), with U(y)= ¢'(y). The
second variation of H¢ equals

U(y
?Hc.= J [8w(—V2)'18w + "(( )) (dw)?]) dx dy
D
so that the operator L is given by
L=-(V)'+U)/U"(y). (A18)

Let ¢ = —(V?) 'dw denote the perturbed stream function. Then the eigenvalue probem for L can be
written as

U(y) _ o U'(y) _
(v ¢K e Y%>+¢—O,(x R vl (A19)
Now set ¢(x, y) = explik(x — ct)]x(y) to get
A y(y)=0. (A20)

U(y)-AU"(y)~

We shall compare this equation with the Rayleigh equation, obtained from the operator L in (A18)
via the formula (A11). We have

U(y)
U'(y)

~{o- 2 va.u0)

= (o ¢—5%V2¢X)U"(y),

{m@m={wﬂw+ a,w@ﬁ

so that the linearized equations are
2 ad) " 2
V2= (0.4)U'() - U)Vog. (A2)
Now set as before ¢(x, y) = exp[ik(x — ct)]x(y) to get, after a few manipulations from (A21),

ey V0D
|G-+ 53 e (A2)
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This is the Rayleigh equation. In this case, the eigenvalue problem for the second variation and the
linearized equations are remarkably similar. In fact the zero eigenvalue (A = 0) case of (A20) coincides with
the normal mode (c = 0) case of (A22). This is not true in general; see Abarbanel et al. [1984] for a
discussion of the Taylor-Goldstein equation for linearized incompressible ideal stratified planar shear
flow in this context.
A3. Bernstein’s logarithmic convexity result (Bernstein [1983])

We now want to show that in some circumstances, indefiniteness of the second variation of the
potential energy implies instability of the linearized equations. The argument as formulated below is
given for linear equations second order in time, so it applies to the linearization of systems in
Lagrangian coordinates at a static equilibrium.

In Hilbert space # we consider an equation

i=Au

where A is a self-adjoint operator. As in Marsden and Hughes [1983], this is Hamiltonian with energy
H(u, 1) =3|u|? — 3 (u, Au), where |ju|*= (u, ).

Let
I=3uu).

One computes that

2 2

d 1. Py 1, o
“plog D= (-T) = ~24uf)

by the Schwarz inequality. Thus
(d*/dP)(log 1) = -2H/I.

Suppose we look at the static equilibrium satisfying u. =0 and Au.=0. Suppose there is an initial
condition (u(0), u(0)) such that

H(u(0), u(0))= -1 <0.
Then
d?log I/]d#=2)M/I1>0.

Using elementary differential inequalities one finds
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I= I+ e ((u0), u(0)) +21)— 24,

so I grows exponentially with ¢, and one concludes instability of (i, 4.).

Appendix B. Symplectic leaves and Casimirs

There is a limitation of practical importance to the energy—Casimir method that is geometric in
nature. To understand it, we recall first some facts from the theory of finite dimensional semisimple Lie
algebras. If ® is semisimple, the dual &* is identified with & via the Killing form and thus the ad* and
ad actions are also identified. The polynomial Casimirs of & are generated by rank (&) (= dimension of
a Cartan subalgebra of &) functionally independent homogeneous polynomials on & which generate a
ring called the ring of invariants of &. Every generic adjoint orbit is characterized by rank (&) values of
the basis of the ring of invariants; a generic adjoint orbit is an adjoint orbit through a regular
semisimple element of &. Thus, the tangent space to a generic adjoint orbit at x € & coincides with
ker, {C}:={v € BDC(x)- v =0 for all Casimirs C of &}. But the generic adjoint orbits, which are
maximal dimensional, form only an open dense subset of &, so that lower dimensional orbits are
distinguished by additional functions on & which commute only on the manifold of lower dimensional
orbits. Motivated by these facts, we define a regular symplectic leaf S of a Poisson manifold P to be a
submanifold S of P satisfying

ker,{C}:={v € T,P|T.C(v)=0 for all Casimirs C}=T,S.

The union of all regular symplectic leaves forms the open set R of regular points of P. The set P\R is
called the set of singular points of P. Note that for any point x € P we have T,S Cker,{C} where S is
the symplectic leaf through x, equality holding if and only if x is regular. If Q is a subset of P, a function
K:P-R is called a sub-Casimir for Q if {K, G} is zero on Q for every (smooth) extension K of K to P
and for every function G on P.

For example, the orbits in the dual of divergence free vector fields on the domain D C R? formed by
point vortices, vortex filaments and vortex patches are irregular orbits (Marsden and Weinstein [1983]).
The strengths of the individual vortices are sub-Casimirs on the manifold of point vortices. This brings
us to a practical limitation of the energy-Casimir stability method. If the equilibrium solution happens
to lie on an irregular leaf, to characterize it as a critical point, one needs to know the sub-Casimirs of that
leaf. If this characterization is not feasible, to prove stability other direct estimates are needed (as in
Wan [1984], Wan and Pulvirente [1984], Tang (1984) and Weinstein [1984]).
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