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Abstract: A method is presented for obtaining Liapunov
functionals (LF) and proving nonlinear stability. The method
uses the generalized Poisson bracket (GPB) formulation of
Hamiltonian dynamics. As an illustration, certain stationary
solutions of ideal reduced MHD (RMHD) are shown to be non-
linearly stable. This includes Grad-Shafranov and Alfven
solutions.

1. Introduction
To establish stability, the LF method [1-3] relies on
the existence of conserved quantities that are used to bound

the growth of perturbations from equilibrium. This method
has been used to show linearized stability of plasma and
fluid equilibria [4-6]. Here we present an algorithm for
proving nonlinear stability based on the LF method using the
GPB, or noncanonical Hamiltonian formalism. One finds there
are often Casimir functionals that Poisson commute with all
functionals and these enable one to obtain variational
principles for equilibria of various Hamiltonian theories.
These equilibria can then be tested for linear Liapunov
stability and, in many fluid and plasma examples [2,3,7-9],
nonlinear stability (stability to finite perturbations) has
been proven. For RMHD, which is a system used for tokamak
modeling [10], we find explicit criteria for nonlinear
stability of Grad-Shafranov equilibria and equilibria with
poloidal flow, including nonlinear Alfven waves. Elsewhere,
stability of more realistic tokamak systems is treated [9].



2. GPB Formalism

The GPB formalism uses a conserved functional H (Hamil-
tonian) together with a Poisson bracket operator on pairs of
functionals to represent field equations in the form

i .
%l’t_ x,t) = {v*,H} i=1,...,N (1)

where the qﬁ' denote the field components, and the GPB, {, }
is (i) bilinear, (ii) antisymmetric, (iii) satisfies the
Jacobi identity, and (iv) is a derivation in each argument.
The class of field equations that are representable in this
form is enlarged by relaxing the requirement that the bracket
be in canonical form. In fact, the general formalism can be
used to classify Hamiltonian theories. Systems with the same
GPB possess common symmetries and have the same Casimirs.

If C is a Casimir, then {C,F}=0 for all functionals F;
hence, C 1is a constant of motion. Casimirs are an important
ingredient of the LF stability method, to which we now turn.

3. Stability Algorithm
The algorithm has four basic steps (A-D, below) that

culminate when the norm, |I+||, in the following definition is

produced.

Definition: An equilibrium, ﬁe’ is Liapunov stable if
for every € >0 there is a § > 0, such that, for each nearby
solution $ = &é-+A$ (A$ a finite perturbation) that has
HA$H < ¢ initially, then HA$"<:5 for all time (for which

the solution exists).

A. Constants of motion. There can be either dynamical

constants arising from a geometrical symmetry (e.g. energy or
momentum conservation, arising from either time or space
translation symmetry), or kinematical constants {(Casimirs).
This first step can be facilitated by understanding the
Hamiltonian structure of the problem. From experience, this
is not a formidable task, since at present these structures
are understood for a plethora of systems including the major
nondissipative plasma fields (for review and original refer-



ences, see [11-13]). Understanding the GPB yields the
requisite constants. The stability analysis presented here
uses the energy and the Casimirs, but we note that additional
constants such as momentum may also be utilized when addi-
tional symmetries are present.

B. Equilibria are obtained from a variational principle

that employs the Hamlltonlan and the Ca51m1rs. Evidently from
(1) equilibria occur for %' such that {¢ (H} =0. If we let

C denote a linear combination of the Casimirs, then {wi,I}=(L
where I = H+C. Equilibria occur when the first variation

of I vanishes; i.e.,

DI[P] - 69 = [51 sytar = o . (2)
syt

Usually Casimirs involve free functions; so a whole class of
equilibria is often obtained by this step.

C. Linear stability, i.e. stability to infinitesimal

perturbations th about w can be shown by taking the second
variation of (2). This ylelds a quadratic form in 6w
Definiteness of this form implies stability of the linearized
equations, but does not guarantee stability to finite pertur-
bations for dynamics governed by partial differential eqgua-
tions. A further condition, sometimes called strong positivity,
is required. This amounts to a convexity estimate, which we

treat in the next step.

D. Showing nonlinear stability requires constructing a

norm for the solution space of the system. This will be
accomplished if one can find quadratic forms Ql and Q2
that satisfy the following for all finite Aw

0, (8] < HIPg + Y1 - HIY,] - DHIDL] * AV (3a)
o 0, 1801 < Clig+a¥] - Cl] - DClig) - 4% (3b)
1avI2 := o [AY] + 0, (881 > 0 for AY#O0 .  (3c)

Finding the conditions for the equilibria to satisfy (3a) and
(3b) is typically not difficult, but the positivity condition



(a.u%\

(3c) can require some ingenuity. To see why this construction
gives stability, note that I in step C is a constant of
motion; so
- 2 -+ - -> ->
NAYH® < I[$(t)] -IlY ) -DI[YP.] = A (t)

= I[Y(t=0)] - I[P,]

L1
i

i[Aﬁiol , (4)

where A$(t=0) = Aao. Thus, the norm of the perturbation,
MA$"2, is bounded by a constant for all time. Suppose this
constant is small when |lAY] is small. (This is proven easily
by putting quadratic upper bounds on the quantity I[A@] in
(4).) Then, the equilibrium $e is nonlinearly Liapunov
stable as defined above.

4. RMHD
Assuming helical symmetry, the equations of RMHD are
] 3u
2= el 52 = W3 -1e,01 (5)

where ¢(r,0,t) is the helical flux, U(r,0,t) is the scalar
vorticity, (f,q] = r"l(f_.r_.ge - fegr) , J=V3y and U=V34.

This system conserves energy, H = % [ (|v¢]|® + |vyp|®)dr,

where dt = rdrd®. The GPB for (5) is the Lie-Poisson
bracket associated to the semidirect-product Lie group of
canonical transformations acting on functions on R? [12,13]);
hence its Casimirs are known to be C, = [F(y)dr and

c, = fuG(y)dr where F and G are arbitrary smooth functions
of Y. Varying the functional I = H+C +C, yields

DI-(6¢,69) = [ [6¢(~V%¢+ VZG)+6¢(-VZ¢+UG¢+F¢)]dT ,
(6)

from which we obtain the equilibrium conditions ¢ =G(y) and
Vzw-(VzG)Gw-Fw = 0. Two special cases are of interest:
(i) G=0, which yields the RMHD Grad-Shafranov equation
szp = F\P’ and (ii) G(y) =y, which implies F =constant and
¢=¢. In the latter case, the specific form of ¢ 1is not
further constrained. The case ¢ =y corresponds to flow at



the poloidal Alfven speed and can be interpreted as nonlinear
Alfven waves in the wave frame. We shall investigate nonlin-
ear stability of a class that includes both (i) and (ii).

Taking the second variation of I and rearranging terms
yields

D2I- (8¢,69)° = J(|ya¢-y(c¢5w) 1% + |véy|? (1-6y)

+ (5026, 776 + Fup + 6T (wazlb)])d‘t :

This quantity is positive definite if lel <1 and
wasz'*Fww'*GwY’(G¢¢Yw) > 0. 1In case (i) the latter
condition becomes Fww=>0, which is a severe restriction
(monotonicity) on the toroidal current; while in case (ii)
we obtain D21°(6¢,GW)2 = f|26¢-26w|261. In this Alfven
wave case, we see that ¢ and Yy can each grow arbitrarily
large; however their difference is bounded in time. This is
consistent with the kink mode instability that RMHD is known
to possess [14].

For nonlinear stability it is necessary to show convexity.
Since H is already quadratic, we let Q,=H. If we let ¢
be the right-hand side of (3b) then for RMHD we obtain

C = [ [Ug(F(hg+B0) - Flhg) - F' (V) AY)

+ AU(F (Y +8Y) =F(Pg)) + G(Yg +4Y) -G(Yg) -G '(Yg)Apldr .

If we assume the functions F and G satisfy szq, 2FW¢> P
and ZGW 2 s for constants q,p,s, then c> Q, where

o, = [ [pug(ay)? + qauay + s(ap)?latr .
Hence we obtain

0,+0, = % J[IV(a¢) -qvap)|? + (1-q%)|vay|?
+ (pUg +s) (Ap)2Jar .

Thus Q, +Q, > 0 when (i) [g| <1 and (ii) pUg+s > 0.

Liapunov stability is established upon regarding (Q1+Q2)1i

as

a norm and further requiring F‘JJ < Q, 2F‘W} < P and 2GWJ £ S



>

for$constants Q,P,S, in order for E[Awe,Awol, which equals
I[Awo] in (4), to have a quadratic upper bound.

In case (ii) for Alfven waves, the second variation
analysis for linearized stability is equivalent to the
convexity analysis for nonlinear stability, since I is
quadratic. For Grad-Shafranov equilibria we obtain nonlinear
stability provided F¢ (negative of the toroidal current) is a
decreasing function of ¢ (with a bound on its slope, so that
i[A¢°,Aw°] has a quadratic upper bound).
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