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81. Introduction

In Doyle and Ericksen [1956, p. 77] it is observed that the
Cauchy stress tensor o can be derived by varying the internal energy
e with respect to the Riemannian metric on space: o8P
= 2p0e/Bg,,.  Their formula has gone virtually unnoticed in the
elasticity literature. In this lecture we shall explain some of the
reasons why this formula is, in fact, of fundamental significance.
Some additional reasons for its importance follow. First of all, it
allows for a rational derivation of the Duhamel-Neumann hypothesis on
a decomposition of the rate of deformation tensor (see Sokolnikoff
1956, p. 359]), which is useful in the identification problem for
constitutive functions. This derivation, due to Hughes, Marsden and
Pister, is described in Marsden and Hughes [1983, p. 204-207].
Second, it is used in extending the Noll-Green-Naghdi-Rivlin balance
of energy principle (using invariance under rigid body motions) to a
covariant theory which allows arbitrary mappings. This is described in
Section 2.4 of Marsden and Hughes [1983] and is closely related to
the discussion herein. Finally, in classical relativistic field theory, it
has been standard since the pioneering work of Belinfante [1939] and
Rosenfeld [1940] to regard the stress-energy-momentum tensor as the
derivative of the Lagrangian density with respect to the spacetime
{Lorentz) metric; see for example, Hawking and Ellis [1973, Sect. 3.3]
and Misner, Thorne and Wheeler [1973, Sect. 21.3]. This modern
point of view has largely replaced the construction of “canonical
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stress-energy-momentum  tensors”. Thus, for the Lagrangian
formulation of elasticity (relativistic or not) the Doyle-Ericksen
formulation plays the same role as the Belinfante-Rosenfeld formula
and brings it into line with developments in other areas of classical
field theory.

Acknowledgements. 1 thank John Ball, Tom Hughes, Morton Gurtin and
Juan Simo for helpful comments.

§2. Some Basic Notation

Let B and S be oriented smooth n-manifolds (usually n = 3).
We call B the reference configuration and S the ambient space. Let
C denote the set of smooth embeddings of B into S, so @ € C,
#:B - S represcents a possible configuration of an elastic body. (In
many situations one needs to put Sobolev or Holder differentiability
conditions on elements of C; such conditions will not interfere with,
nor play a significant role in our discussions, so we work with C”
objects for simplicity.)

A motion is a curve &(t) € C. For X € B, we write
x = ¢(X,t) = #(t{X). The material velocity of a motion is the curve
of vector functions over ¢(t) defined by

o
VitiX) = V(X,t) = — #(X.t);
ot

thus V({t}(X) € T,S. the tangent space to S at x. The spatial velocity
is v(t) = V(t)oc’(t)“l. a vector field on the image @(t)}(B) C S.

Let B and S carry Riemannian metrics G and g, respectively,
and associated volume elements dV and dv. Using the standard
pull-back notation from analysis on manifolds (see Abraham, Marsden
and Ratiu [1983]), we let C = ¢*g, the Cauchy-Green deformation
tensor. In coordinates (X3 on B and €x?3 on S, if F%, denote
the components of the derivative F = T#®, then Cap = abFaAFbB
(for the relationship with the formula C = FTF. see Marsden and
Hughes [1983, Sect. 1.3]).
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Let us recall the usual approach to the Cauchy equations of
elasticity (see Truesdell and Noll [1965]). Let W be a materially
frame indifferent stored energy function; that is, W is a function of X
€ B and the point values of C. We write W(X,C) and let PRef
denote the mass density in the reference configuration. Let

ow
P 7 PRefzy

denote the first Piola—Kirchhoff stress tensor and Alt) be the material

acceleration of a motion #{t) (the acceleration is defined using the

Levi-Civita connection of g). Cauchy's equations are:
pRefA =DIVP+B

where B is an external body force. In the spatial picture these

equations read
pa=divo +b

where PRef = Jp (J is the Jacobian of @), Jo = PFT. so o is the
Cauchy stress, and b is an external spatial body force. These
equations are usually derived by postulating the integral form of
balance of momentum and sufficient smoothness. (There are also
boundary conditions to be imposed, but we shall not explicate them
here.)

Although one can do it, it is not trivial or especially natural to
pass directly from the integral balance of momentum assumption to the
weak form of Cauchy's equations; see Antman and Osborne [1979].
Another difficulty with balance of momentum is that it does not make
sense on manifolds; in particuilar, this approach is not useful for
studying continuum mechanics in general relativity.

Let us now outline some different approaches based on

covariant energy principles which overcome the preceding objections.
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§3. Energy Principles in the Material Picture

Let us first recall how one introduces stress by an energy
principle. Let W be a given materially frame indifferent stored energy
function. Let us regard W as a function of @, g and G. Assume
that

1. W is spatially covariant; that is, for any diffeomorphism ¢
of S,

W(2.8,G) = W(€o9, E‘s.G)

and

2. W is local; that is, if (#,81,6G;) and (#.8,,G,) agree
in a neighborhood of X (with g evaluated at x = @#(X)), then
W(#4.81.G{)(X) = W(2,.8,,G )X).

As in the usual Coleman-Noll [1959] argument these
assumptions together with energy balance laws below enable one to
deduce that W depends only on the point values of C. For simplicity
let us assume this at the outset.

Notice that we do not necessarily assume that W is materially
covariant; that is, W(son, g.n G) = W(#.2.Glon for
diffeomorphisms n of B. Indeed, this holds if and only if the material
is isotropic.

The energy function is
1 2
#U,886) = [ ppoel— VONZ + W(w,g,GHAV
U 2
where U C B is a compact region with smooth boundary.
Now assume that there is a traction ficld, namely for each
9,8,G we have a map T(#.g2.G):TB - TS covering @ such that the

following holds:

Cauchy's Axiom of Power. Admissible motions satisfy the following

condition:
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d
—%(U,2,8,6) = j <T(#,8,G)(N),V(t}>dA + j B-V(t)dV
dt dU U

where N is the outward unit normal to BU.

Cauchy’'s theorem states that if this holds for ail U, then
necessarily T is linear in N and so defines a two tensor P.

A. The Hamiltonian Systems Approach

In this approach we first prove that P = pRefaW/aF by
assuming that there are enough motions so that V can be varied
arbitrarily at any fixed &; for example one often assumes "any” motion
is possible by choosing B appropriately. Then the divergence theorem
shows that indeed, P = pRefBW/ OF. With this equation in hand one
can then assume that motions come from a Hamiltonian system
{adapted to take care of external forces) on TC or T’C with energy
function 2(B,#.8,G). These yield directly the weak form of the
Cauchy equations (cf. Marsden [1981, Lectures 1 and 2]).

B. Covariance Approach

In the covariant approach one assumes that an admissible
motion #(t) satisfies Cauchy's axiom of power and that for any curve
€(t) of diffeomorphisms of S, the new motion ¢@'(t) = £(t)os(t)
also satisfies balance of energy in which g is replaced by E‘g and
the velocities, forces and accelerations are transformed according to
the standard dictates of the Cartan theory of classical spacetimes (see
Marsden and Hughes [1983, Sect. 2.4]). In the material picture this
approach directly yields a version of the weak form of the equations
and a formula for the "rotated stress™

ow

T = 2p8W/8G, i.e., SAB =25
acAB

which is a material version of the Doyle-Ericksen formula. See Simo
and Marsden [1984] for detaiis.
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Remark. The symmetry of the stress is built into the

assumption of material frame indifference. Indeed, if S = F-1p is the
second Piola-Kirchhoff stress, then one finds from the chain rule that

ow
5% PPRefzc

which is symmetric; see the appendix. This formula for the stress is
related to the covariance approach in the convected picture; again see
Simo and Marsden [1984].

§4. Energy Principles in the Spatial Picture

Spatially, the energy is also regarded as a function of ¢, g
and G by

el#,6,.G) = Wi#,g,G)op™]

Balance of energy for a moving region #(t)(UU) = Ul{t) where U C B,
now takes the form

d 1 2
— ple + = IVII%)dv = _r tev da + I bev dv
de ") 2 BU(t) Ut)

The spatial form of Cauchy's axiom of power states that admissible
motions satisfy the preceeding equation. As before, this implies that
t, the Cauchy traction vector, is linear in n, the unit outward normal
to OUK), so defines a two temsor o (depending on ¢@,g and G), the
Cauchy stress tensor.

To compiete the spatial description two routes are possible.

A. The Hamiltonian Systems Approach
If one assumes that any motion is possible with suitable forces,
then as before, one gets an equation for the stress. Using the spatiai

picture, this equation is

Oe Oe
0 =2p —, ie., 02 =2,
Og agab
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In this approach one then assumes that the variables (m,p,C), where
m = pv is the momentum density, form a Hamiltonian system in a
sense involving Lie-Poisson brackets for Lie groups analogous to the
way the Buler equations for a rigid body are Hamiltonian when written
in terms of its three angular velocities or momenta. See Holm and
Kuperschmidt [1983] and Marsden, Ratiu and Weinstein [1984] for
details. As before, this directly yields the weak form the spatial
equations.

B. The Covariant Approach

In this approach we assume that a motion satisfies balance of
energy and that balance of energy is still valid under any superposed
curve of diffeomorphisms £(t), where as above, the superposed motion
uses the metric £ .8 and the other quantities are transformed by the
dictates of classical mechanics. This assumption directly yields the
weak form of the evolution equations, conservation of mass and the
Doyle-Ericksen formula o = 200e/0g8. The proof of this is similar to
that of Theorem 4.13 in Marsden and Hughes [1983].

85. Concluding Remarks
1. Since all of the approaches sketched are equivaient, the

four basic formulas for the stress

ovw Oe
P = ﬂRef-an o= 2p a—.

S = 2p Ref ov dX=2 ov
= — an = —_—
P ocC g oG

must be equivalent as well. Indeed, their equivalence is easily
checked directly using the chain rule and the relation CAB
= BabFaAFbB‘ (This chain rule argument is how Doyle and Ericksen
[1956] present the formula.) This is detailed in the appendix for the
first three formulas. (The fourth requires special interpretations and
is omitted only for brevity.)

2. Some special peculiarities with the Hamiltonian formalism

arise when one is considering electromagnetic fields coupled to
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elasticity (the Cauchy-Maxwell equations). The sense in which the
equations written in the variables (m,p,C) and (E,B) are Hamiltonian
is especially interesting. For the corresponding structures for charged
fluids and plasmas, see Marsden and Weinstein [1982] and Spencer
[1982].

3. A deep understanding of the Hamiltonian formalism for
incompressibie fluids enabled Arnold [1966a,b] to prove the nonlinear
stability of plane flows studied by Rayleigh in a situation where one
would otherwise expect the usual difficulties with potential wells
(Knops and Wilkes [1973], Marsden and Hughes [193, Sect. 6.6] and
Ball and Marsden [1984]). It is hoped that a similar understanding in
elasticity will shed light on the enrergy criterion.

4, Finally, we note that the Doyle-Bricksen formula is the
spatial part of the stress-energy-momentum tensor that naturally arises
when one couples elasticity to the gravitational field in Einstein's
theory. The material picture is derived from this by choosing a
reference body and slicing of spacetime relative to which the motion
may be represented. Thus, in this sense, the Doyle~-Ericksen formula
may be regarded as the most basic of the four equivalent formulas

ow ow Oe ow
P= pne%, 8 = szefa'E’ o= Zpgg. and ¥ = 2p5-5

Appendix

A Direct Verification of the

Equivalence of the Stress Formulas
The components of the Green deformation tensor are defined by
()  Cpp = F,FPpe .
where FaA and 8ab represent the deformation gradient and spatial

metric tensor, respectively. (The summation convention is assumed to
hold except with respect to the arguments of functions.) By virtue of
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(1), we may think of the C,n's as functions of the F2,'s and g_.'s;
AB A ab

viz.
@ Cpp = CpplF?y: gap) = CpplFl Flpnni 811815

The physical interpretation of (2) goes as follows: The "strains” (i.e.,
CAB's) are functions of the gradients of the motion (i.e., FaA's). and
the length scales and angle measures of the ambient space, as
manifested by the gab's.

We will need to use the partial derivatives of C AR’ hamely

A b _ a a
a = pa gb

Let W = W(C AB) be a given stored energy function and let us
start by assuming that, say,

ow
AB _
(5) ) = ZPRef__—
9C,p

where SAB and PRef TFepresent the {symmetric} second Piola-Kirchhoff

stress tensor and density in the reference configuration, respectively.
A related potential, fv. may be defined by using (2);

(6) W(FaA- gab) = W(EAB(FEA; gab”
Substituting (3) and (4) into (5) yields

-~

ow
M opor— = 8,F pS>" = PA
oF®,

and
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v
®  2p— = 152, 88Bpb, = oob
asah

where pJ = PRefi P is the density in the current configuration; J is

the determinant of the deformation gradient; and PaA and aab

are
the (unsymmetric) first Piola~Kirchhoff and Cauchy stress tensors,

respectively.
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