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Chaos in Dynamlcal Systems by the
Poincard-Melnikov~Arnold Method

Jerrold E. Marsden®
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. ..Abstract. Methods for proving ths existence of chaos in the sense
10f Poincar8-Birkhoff-Smale horseshoos are presented. We shal} con-
_Centrate on explicitly verifiable results that apply to specific
.exavples such as the ordinary differential equations for a furced
;pendulum, and for superfluid 3o and the partial difterential equa-
;l.ion describing the oscillations of a beam. Some discussion of the
.difficulties the method encounters near an elliptic fixed point is
gliven,

t
% 1. An Introductory Example. Consider the equation for a forced
pendulum

$ ¢+ s5in ¢» ccos ut (1.1}
where w is a constant angular forcing frequency, and ¢ is a
ismall parameter, For ¢ small but non-zero, (l.1) poossess no analy-
tic integrals of the motion. In fact, it posdcsses txansversal
intersecting stable and unstable manifolds {separatrices)) that is,
the Poincare’ maps Pto‘nl + R2  that advance solutions by one

period T = 2m/w  starting at time to possess transvecsal homo-

clinic points. This type of dynamic behavior has several cansequen~
ces, besides precluding the existence of analytic integrals, that
lead one to use the term 'chaotic'. For example, the equation (1.1}
has infinitcly many periodic solutions of arbitrarily high period.
Also, using the shadowing lemma, one sees that given any bi-infinite
sequence of z¢ro and oncs (for example, use the binary cxpansion of
e or n), there exists a corresponding solution of (1.1) that suc-
Cess ively crosses the plane ¢ » 0 (the pendulum's vertically
downward configuration) with & > 0 corresponding to a zero and

@ < 0 corresponding to a one. The origin of this chaos on an
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intuitive level lles in the motion of the pendulum near its unper-
turbed hoaoclinlc orbit -- the orblt that docs one revolution in
intinite time, Near the top of ity motloa (where ¢ = *m) small
nudges from the forcing term can cause the pendulum to fall to the
left or right in a temporally complex way.

The dynamical systems theory aceded to justify all of the preceding,
statesonts Lo now readily available in Smole [1967), Moser [1973)
and Guckenhelmer and Holsws [1981]). The key people responsible for
the development o€ the basic theory are Poincare, Birkhoff and Smale.
The idea of transversal intersccting separatrices comes from Poincaré's
tamous 1890 papur on the three tody problenm. His goal -- not quite
achicved for reasons we shall commenton later -- was to prove the
nonintegrability of the restricted three body problem and that various
serles expansions used up Lo that point diverged (he invented the
theory of asymptotic expansions in the course of this work).

Although Poincaré had all the sssential tools needed to prove
that equations like (1.1) are not integrable (in the sense of having
nu analytic integrals) his intercsts lay with harder problems and
he did not develop the casier basic theory very such, Important
contrihutions were made by Melnikov [1961] and Arnold [1964 } which
leads to a very simple procedure for proving (1.1) is not integrable,
The Poincarc-Melnikov method was recently revived by Chirikov {1979},
Holmes [1980] and Chow, Hale and Mallet-Paret [980]). (For related
work and moru references ond examples, see also Kozlov [1983].)

The procedure is as follows: rewrite (1.1) in abstract form as
X w xom + leu.:) (1.2)

where x € Rz, X,
X, is periodic with period T and is Hamiltonian with energy K

i3 a llamiltonian vector field with energy uo.

1
Assume xo has a homoclinic arblt x{t} so x(t) - xo, a hyperbolic
saddle point,as t -+ e, Compute the “Melnikov function™

nuo) - f.. (HO.HI)(x(t-to).t) dt {1.3)

where [, } denotes the Poisson bracket. If M{t_ ) has simple
z¢ros aga function of t,, then (1.2) has transversal intersecting
separatrices {in the sense of Poincare maps as mentioned above).

We shall give a proof of this result (essentially the one indi-
cated by Arnold [1964] in $2. 7o apply it to equation (1.1) one
procecds as follows, Let x = ($,4) so (1.1} becomes
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KX - 6 . c[ o ] . {1.49)
~sin ¢ cos Wt

Y

The homoclinic orbits for € = 0 are computed to be given by

_ ) 12 tan” (gtnne)

x{t) = |, - {1.5)
: (103} 2 gecht
1and onc has

. l-
Hytd, & = 347 - con g

(1.6)
“1‘0'0-1) = ¢ cos ut .

Nlence (1.J) gives

any aul an an,
H(tol . 2[.- W_Ba- - *aé- -W de
= F r 0 ©0s wt dt

-7 r [2 vachit-t } coo wt] dt .
-

Changing varlablons and using tho fact that sech la even and oln is odd
we get

N(to) - ¥2 r sech t cos wt dt cos(uto) .

The Ilntegral is evaluated by realdues:

Bw
ntto) n nech[z) cos(uto) a.n

which cleacly has simplo zaron,

. 2, A Proof of the Polncaré-Helnikov Theorem, There are two
convenlent ways of visualizing the dynamics of (1.2). One can
introduce the Poincaré map Pg;m"’ + M2 ,uhich is the tize T wmap

- for (2.1) starting at time 8. For ¢ = 0, the point x5 and the

' pended systemon M2 X S

homoclinic orbit are invarfant under P;. wvhich i3 independent of
s. The hyperbollic saddle xq persists as & nearby faaily of
saddles x¢ for € > 0, small, and we are interested in whether
or not the stable and unstable manifolds of the point xg  for the
map P2 intersect transvecrsally (if this holds for one s, it
holds for all s). If so, we soy (1.2) admits horseshoes for € > 0.

The second way to atudr {1.2) is tY look directly at the sus-
. where S stands for the circle,
elements of which are regarded as the T-periodic variable @, Then

- (1.2) becomes the autonowous suspended system

x = £,(x) ¢+ (tl(l.ol
. 2.1}

0-1

From this point of view the curve

Yoltl - lxo. t)

is a periodic orbit for (2.1), whose atable and unstable manifolds

' ";(yol and w:(yo) are colncident, For € > 0 the hyperbolic

cloged orbit Yo perturbs to a nearhy hyperbolic closed orblt
whtch has stablio and unstablo aant foldn H:(yr) and "::‘“r" 44
u:(y") and H:(Yc) interaect tranavernally, wo agaln aay that
(1.2} admils horsesliond, These two dollaitions of admitting horse-
aloes are readily scen to be equivalent.

Toincacd-Melnikov Meorem. Deline the Melnikav function by (1.3).

Assume u(t_ol has simple zeros as & T-gwerlodic function of t.o.

Then (1.2) has horseshoes,

Proof. In the suspended picture, we uso the energy function llo

5 -
t0 measure the flrst order movement of wr (y‘) at x{0) at time zo
as ¢ s varied, MNote that polnts of ;{t) are regular poluts for

", since "0 is conatant on x(t} and ;(Ol is ot a fixcd

point. Thua, the values of Ilo 9lve an accurate meacure of the



discance from the homaclinie orble. It (x:(t,tol.tl is the curve
on H:(ygi that is ap {ntogral curve of the suspendcd system (2.1)
and has an initial condition x'(to.tol which is the pecturbation
ot W (1)) {the plane ¢ = ty) In the normal direction to the

homoclinic orbit, then K _(x*(c .t )) measures this mormal digtance.
But 0 ¢ 00

dc

n hs(‘r.t ) -n (x'(t. ) = § a4y, tx’u t)) dt (2,2) -
0" o 0¢c 00 . 0 ¢ Yo .
0

From (2,2}, we get

T
[ s , 3
no(xc(‘r,ton notxc(go,to) L [llo.uo + ‘"x“" (;,co.nd:
0"
(2.3)
8 -
Since xc('r,to) is ¢-close to x(t-tol (uniformly as T + 4=}, and
1
anly + en )(ucu,zo).u + 0 exponontially as t » +w, and
("o'"o) e 0, (2.3) becomes

s s - 2
llotxc('r.to)) - |l01xt(to,to)) e I: [uo.ul)t:t:-:o.t) dc + O0(¢).
] (2.4)

Sicdlarly,

u u
Ilo(xc(t.o. tn)l - Ilolnc {-8,t4))
3

(]
- 2
-t J—s luo.ll”(xu-tu),u at ¢+ 04 %) (2.5)

Now I:"('r,lu) . 'l o A perlolle oshle for thn guabusdunt ayelen an
T e vm T, we can chwnn T and 8 gl that "“(x:l“-',"” .
llu(l:(-n.lo)) *0 an T.5 <+ Thus, adding (2.4) anag (2.5), amt
Jetting T,5 + », wo got

[} a - 2
"o"‘c“o"o” - "o(‘c"o"o" -c J: h'o‘"l“"“ ty) ot} dt + 0(e”)
. (2.6}
it follows that if H(toi has a simple tero in tine to' then
) s
xc(to.to) has :c(to.to) must intersect transversally near the
point {0} at tiwme ty-
Remark., Since dno + 0 cxponentially at the saddla points, the
integrals Lnvolved in this criterion are automatlically convergent.
). An Extenslon to Include Damping. Thcre are a number of ex-
tenslons and appllcations of this technique that have been developed,

1+ gomo of which we describe here and in the next fow sections. The
| 1iterature In this arca i3 growing very quickly and we make no
L
k)

claim to be comprehensive (the reader can track down many additional
" roferences by consulting the references cited).

1¢ In (1.2}, xo is llamiltonian but xl is not, the same con-
clusion holds 1€ (1.3) is replaced by

. H(to, - r., (xo x ll) (x(t-tol,t) dat (3.1

" whereo xo ® Xl 1s the (scalar) cross product for planar vector

ficlds. In fact, )((J nced not even be Hamiltonian §f a volume
; cxponsion factor is inserted.
i For example, this appliecs to the forcod damped Duffing equation
o 3 .
u e~ fu +au = cly con wt -~ §u} (3.2)

lloro tha homocllnic orbits are glven by
" il -
UL - g fo sechit i) 0.3

Al (V1) besromen, aftor a reabdier calealat lan,

L)

| whetat )
] g

50 onc hag slmple zcros and heace chaos of the horseshoe type 1t

asp?
\J

n(to) - 2y ouz aoch (3.9




2
%’ -@L—- cosh[l“-‘-] (3.59)
Xoda 2

and € 13 small,

Another Interesting example, due to Montgomery [1984] concerns
the equations for asuperfluid Me. These are the Leggett equatlons
and we shall confine ourselves to the A phase for simplicity (see
Montgomery's paper for additional results). The equations are

2
4 .- % WT aln 20
Y (3.6)

? ) §
(i [YX.)’ - ¢lyh oln we + 3 I ala 20)

Here s is the spin, O the angle describing the order parameter
and ¥y, X, ... are physical constanta. The homoclinic orbits for
€ =0 are glven by

6‘ -2 tan-l(o!nt) - /2

ﬂ 020t (3.7}
o, = 12 20—
2 1+ e!?l’)t

One caleculates using (3.6) ond {3.7) in (3.1) that

« F 2B wr -2 X
n!(toy ¥ ay aech[m] cos wt 3 yz or {1.8)

80 that {(3.6) has cheos in the aense of horseshoes ¢

m,lsf [L«*
R Rt P 3.9

and if ¢ in nmall.

4. An Extrnnlon to PDE'n. There Is a vernion of the folncaréa-

Melnikov theorem applicable to PUL's that is due to Hlolmes and
Harsden [1901). One basically atill uacs the formula (3.1} where

X xx

o L Pow is replaced by the symplectic pairing betueen xo

and X . llowever, there are two new difficulties in addition to

3
standard technical analytlc problems that ariso with POE*s. The
ficat is that there 13 a serious problem with resonances, These
can be dealt with using the ald of damping -~ the undamped case

would nced an infinite dimensional version of Arnold diffusion --

sce §6 below, Sccondly, the problem is not reducible to two dimen«
sions the horseshoe involves all the modes, Indeed, the higher

modes do seem to be involved In the physical buckling processes for

the beam model discussed next.

A DL model for a bucklied forced beam is

g l 2
w e orhe « ’ [welazlv" = €t cos wt -4u) .y
0

where wi{z,t) 0 £z <1 describes the deflection of the beam,

e %, 'z and [, kK, ... arc physical constanta. For
thin case, the thcory shows that if

(a) ®% <T <ap’ (first wode is buckled)

(b) 11‘12(1202 - l'll A uz. 1= 2,), ... (resonance conditlon)

2
(c) £, 0l coah [ {trangversal zcros for M{t ))
¢ 2wl 2 0
2w
d) 6>0

and € ia small, then (4.1) hos horseshoes.

Experiments of F. Moon at Cornell which show chaos in a forced

- buckled beam provided the motivation which led to the study of

(4.1).

This kind of result has recently been used by Slemrod and Marsden
{1901]) tor a study of chaos in a van der Wall's fluld (sce Slemrod®s
lectlure in thene proceedings:) and by Iscea, Brnlr and Morrlzan for
soliton equations. For example, in the damped, forced §ine-Cogdon
cquation one hay chaotic trantitions batween Lreathers and kink-
antixiak palea and §n the Nenjamin-Ono ciuation one can have chaotic
transitions botween oolutiona with dlfferent numhora of gules.

. Autonnrnua Il:-nllton!ny Syatema,  Far Glanllwnlan syntemn with
two d--q-u'u,-u’ol. freadom, fiolmen and Maraden (19820 uhow how the
Melalkov method may be urcd o prove the exiaslence of horacrhoes
on ennrgy surfaces in two degree of frccdom nearly Integrable
systema.,  ‘Mhe class of systems studied have a Uamiltonian of the form
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H(q.p, 0,1) = Flq,p) + G + et {q,p,0,1) + Otc?) (5.1)

where (0,1) are action angls coordinates for the oscillator G
G(0) = 0, G' > 0. It ie asaumod that F has a homoclinic orbit
R(t) = (q(t), p(t)) and that

ey -r (r.ul) de 5.
-t

(tho integral taken along (;(g-t.o). fit, 1)} has simple zcros.

Then (5.1) has horseshoes on energy surfaces near the surface
cocresponding to the homoclinic orbit and small I; the horscshoes
are taken rolative to & Pofncaré map strobed to the oscillator G.
Holmes and Marsden 1982a also studics the cffect of positive

and negative damping. These rosulls are related to that in §2

since one can often reduce a two degeee of freedom Hamiltonian system
to a one degree of freedom forced system.

For zome systems la which the variables do not splic as in $.1,
such as a nearly symmetric heavy top, one nceds to exploit a sym-
metry of the system and this corplicates the situation to some
extent. The gencral theory for this is glven in lIblewa and Harsden
[IBBJ] and was applicd to stow the existence of horscshoes in the
nearly symnetric heavy top; see also some closely rclated results
of 2iglin [1960a).

This theory has been uaed, for example by Koiller and coworkers
in a number of recent reprints on vaortex dynamics (Xoiller and
Pinto de Carvalho [1983] scems to be the first to give a correct
proof of the non-intcgrabllity of the restricted four vortex prob~
lem -~ sce §7 below). There have also been recent applicacions to
Lhe ddyainics of gencral relativity showlng the existence of horne-
hows in Blanchl IX models. Sce also Krlshnaprasad [1903] for
intecesting applications to duwsl-apin npacecralt.

G, Aimmld Diffusion. Arnald [1964] extended the 1'olacard-
Melnlkov theoty to systems with several degrees of frecdom. In
this casc the transverse houoclinic minifolds are based on KAM torl
and allow the possibility of chootic drife from one torus to another.
This drift, now known 85 Arnold diffusion is a basic ingredient in
the study of chaos in Hamiltonfan systems (see for instance,
Chirikov [1979] and Lichtenberg and Lieberman [1981] and references
therein). 1Instead of a single Melnikov function, one now has a
Melnikov vector given schematically by

! "%
SRR I NFC : '

T f.. ‘"o‘"x’ de
M

[. {lk.lll) 13

whre I, dre integrals for the unperturbed (completely integrable)

{6.1)

-
- aystem and where M now depends on to and on angles conjugate to

'l' caey !n. One now requlres ?‘l to have transversal zeros in the

. vector sense. This result was given Ly Arnold for forced systems

and was extended to the autopomius case by llolmes and Marsden

' [1902]°, [1083].

These results apply to systems such as a gendulum coupled to
scveral oscillators and tha many vortex problem. 1t has also beon
wicd in power systems by Satam, Marsden and varaiya [l')!M], milding
on Lhe horseshoe case trcated by Xopell and Washburn [190‘.‘]. Sco
also the work of Salam and Sastry reported tn these procecdings.

Theece have been a nunher of other directions of rescarch on these
technlques. For example, Grundler [1961] developed a sultidimensional
version applicable to the spherical pendulum and Greenspan and Holmes

. [1983) showed how it can be used to study subharmonic bifurcations.

7. Fxponentially Small Melnikav Functions. There is a scrious

difficulty that arises when one uses the Melnikov method near an
elliptic fixed point in a Hamiltonian system, The difficulty ig

* closely related to the difficulty folncard encountered in trying

to prove nounlntegrablllity and the divergence of secles expansions

- that eccur In the restricted 3 body problem.  Near elliptic juints,

ono sees homaclinic orhita {n normal focms and after a temporal
rescallang teads to a loun of anatylelty at o vaplaly aonciliatmy
perturbatlon that i1a modellcd by the following variation of {1.1),

$eutngs ¢ co:z[":-:-] 7.0

If one just bikindly computces N(tol one finds from (1.7},

[ ]

As was pointed out by F.A. Salam and C. Robinson, one needs to
inlerpret the integrals appearing here with care and cocrectly
adjust the phases of orbita asymptotic to the torl.

lo
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’ o L2 (7.2)
H(to.l:l «F 2w :ech[zc) cos[ 3 ]

while this has simple geros, the proof of the Polncare’-nalnikg:,n
theorem is no longer valid since M(t_,c) is now of order e 2

and the error analysis in the proof only gives errors of order ¢*.
In fact no expansion kn powers of € can dectect exponentially amall

terms like e-“/u. {This is the sort of difficulty that secems to

occur in the paper of ziglin [1980b] on the four vortex probleo;
see also Sanders [1982].)

Recent work of llolmes, Marsden and Scheurle aiwma to show that
Indced (7.1) has horseshoes for small ¢. The ldea i3 to expand
expressions for the stable and unstabla manifolds in & Perron type
series whose terms are of order gke® To do s0, the extension
of the system to compelx time plays a crucial role.

Onc can hope that [ ouch results for ('I.E) can really be proven,
then (t may bo posalble to return to Polncard’a 1890 work and come
pleto tho arquments he left unfindahed,
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