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The York map is a canonical transformation
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Abstract. The York mapping from the space of freely chosen conformal data to the
space of constraint-satisfying physical data is shown to be a canonical transforma-
tion for both the vacuum Einstein theory and the Einstein-Maxwell theory.

INTRODUCTION

Building on funcamental work of Lichnerowicz and Choquet-Bruhat, in
the early 1970s, York and coworkers developed a program for solving the
constraint equations of Einstein’s theory. The original work is contained in York
[197]]; for a survey plus additional references, see Choquet-Bruhat and York
[1980]. In the vacuum case, one may think of this procedure in terms of a map
4?4 from the space TT;..II(E) of metrics A on a 3-surface I and transverse traceless
conjugate momenta g, to the space ‘Q(Z) of gravitational initial data (v, 7)
having constant mean curvature 7 and satisfying the constraints on Z. In the
non-vacuum case (including, e.g. the Einstein-Yang-Mills theory) the procedure
is roughly the same, although the domain and range space must be bigger (they
include the nongravitational fields along with the gravitational ones).

Since the York map was largely motivated by Hamiltonian considerations, it
has often been speculated (for example in Fischer and Marsden {1979]) that
@1 is a symplectic (i.e., canonical) map. We prove here that it is.

In the elementary examples familiar from classical mechanics, canonical trans-
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formations are usually nondegenerate (locally invertible). This is not the case
withgy : Tz‘!‘,../fl—» ‘67, as evidenced by its invariance under conformal transforma-
tions. Also somewhat different from the usual simple examples is the fact that
both the domain and range of ¢, are presymplectic varieties (manifolds with singu-
larities and with a degenerate symplectic form) rather than symplectic manifolds.

If, however, we quotient out by the action of appropriate groups (discussed
below) we obtain reduced spacesﬁ‘{mk and 3’, which are symplectic (though
still containing singularities), and we obtain a reduced York map [Q&f] which
is nondegenerate (invertible). Since 9’7 is the space of gravitational degrees of
freedom (see Isenberg and Marsden [1982]), this reduced map provides an equi-
valent, simpler space to represent these degrees of freesom. These results also
establish the compatibility between the York [1973] field decomposition and
that of Moncrief [1975].

This paper is entirely directed toward proving that the York map is symplec-
tic: We define the important spaces of fields and their reductions, describe the
York map, estabilsh its properties, show that it reduces properly, and then state
and prove the result. We do this first for the vacuum Einstein theory and then
for the Einstein-Maxwell equations. Some applications of the results herein to
other connections between the conformal and «<ADM» pictures are planned for
a future publication.
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1. THE VACUUM EINSTEIN CASE
A) Spaces of Field and Group Actions

For simplicity, we shall work in space of C™ fields; this can be generalized
to Sobolev W5P or Holder C*¥** spaces (weighted for nonspatially compact
spaces) in a routine fashion following Fischer and Marsden {1979], Choquet-
-Bruhat, Fischer and Marsden [1979]), Choquet-Bruhat and York [1980] and
Isenberg and Marsden [1982).

Fix an oriented connected smooth 3-manifold £ and define the following

spaces:

HM(Z) the space of all Riemannian matrics ¥ on Z. In local coordinates
on I we write 'Y;,'(x) for .

T*H(2) the natural L2 contangent bundle of #(Z) consisting of pairs (v, 7)

of Riemannian metrics ¥ and symmetric contravariant tensor
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densities m; in coordinates on £ we write (v;, 7'y for (v, 7). [we
shall also find the notation u : = Vdet vy useful].

€, (2) the subset of T*#(Z) which satisfies the vacuum Einstein con-
straints:
1) 0=9(y,7)= 811r; or Va‘n""’ =0
1 1
(2) 0=H(y,m)=—uR + ﬂ"”ukg—- Py (rm?t) —
-~ H

ans also satisfies the constant mean curvature condition:

1
(3) —tro=r1
2u

(for some constant 7).
T,’.‘,../I(Z) the subspace of T*#(Z) consisting of pairs (A, 0) € T (Z)

for which
4) troa=0
and
() §,0=0.

The space T*#(Z) is a (weak) symplectic manifold. We identify tangent
vectors to #/(Z) at y with symmetric covariant two tensors k¥ and denote the
pairing between vectors and covectors as

6) (H,k>=f1r~k

-

where 7 - k = 7'/ k,.’. is the natural contraction, producing a density. The symplec-
tic form § at (v, 7) is then the skew form

N QUlky, 1)), (kg 1)) = (ko) — (k)

which is the canonical symplectic form on T*#, (cf. Abraham and Marsden
(1978}, p. 178 -9). This same 2 defines a presymplectic form on @,,(Z) and
TS A(Z) by restriction.

In addition to these spaces of geometric fields, we shall need
9(Z) — the group of diffeomorphisms of Z and
©(Z) — the space of positive real-valued functions on Z
which generate group action on the above defined spaces as follows: The group
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9(Z) acts onA(Z) by pull-back

(8) n,7) 2%y

This (right) action extends naturally to a symplectic action on T2#
9 (n, (v, ) P (n*y, n*m).

Since <€,(z) and T5.#Z) are both mapped to themselves by this action, we
regard 2 (Z) as acting on them as well.

The set ©(Z) forms a group under pointwise multiplication. This group acts
on #(X) by

(10) @, ) - 8%y.
the induced symplectic action on T*#(Z) is
(n 0, (v, M) = (8%, 674 m).

Since TME) is mapped to itself by this action, we can regard ©(Z) as acting
on it. Note that ‘67(2) is not mapped to itself by the action of @(X).
Now consider

(12) %(Z):=D(Z)x O(Z),

the semidirect product of 2(Z) and ©(Z). The group multiplication is

(13) (1), 8,) - (ny, 0,) = (ny 20y, (6, °n,) - 6,).

Clearly G actson (Z), via

(14) (n,0),7) > 84n*y,

and also on T*#(Z) and Tﬁ..ll(z) in the obvious way. In view of the identity
15) 8,136, nfY) = (6, °n,) 0,(n; o my)*,

we see that & acts on the right on all these spaces (again, excluding €, (Z)).

As noted in the introduction, certain reductions play an important role in
our analysis. The first one we consider is the reduction of TT’.‘r A (the domain
of the York map) by the action of . The key here is the recognition that

(16) T* M(2)=J;10),
TT
where Jg is the momentum map
(17 Jg:T*M(Z)»g*
corresponding to the action of @ on T*#(Z), and g is the Lie algebra of G:

g = (vector fields) x (scalar fields)
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and g* is its natural Z2-dual:
8* = (one form densities) x (scalar densities).

To verify (16), we compute J from the general formula for the momentum of a
cotangent lift (see Abraham and Marsden [1978, p. 283]) and find

(18) Jglv, m) =28 m, trm) = QV,a¥, 7',

then (16) is obvious. It now follows from the reduction theorem (see Marsden
and Weinstein [1974]) that the quotient space (1)

(19) 920!!( ‘= TT‘T‘Mg

is a symplectic manifold (almost everywhere), whose symplectic form S'z,, is
inherited naturally from 2 on T 4.

The other reduction we need, that of ‘61 by the action of 2, is not so obviously
a symplectic manifold. To see roughly that it is, we note that &_is the zero set
of the momentum map corresponding to space plus time diffeomorphisms acting
on T*4#, with the additional condition that all points (y, 7) € €, satisfy tr n/2p =
= 7. This latter condition freezes the time translations. Hence if we factor out
the space translations,

(20) P =%,

becomes (almost everywhere) a symplectic manifold; again, with symplectic
97 induced from £ on T*# (see Isenberg and Marsden [1982] for a more rigo-
rous discussion of this reduction).

Note the caveat «allnost everywhere» appearing both with ﬁymk and Z.This
reminds us that both%, , and 32 have singularities (i.e., they are both stratified
manifolds). Their singularities are inherited from T;%..#and € respectively, they
are present even before the quotient operation. See Fischer and Marsden [1977],
Arms, Marsden and Moncrief [1982] and Isenberg and Marsden [1982] for discus-
sion of these stratified structures.

B) The York Map and Some of Its Properties

For any chosen constant 7, the York procedure takes data (X, o) € T,."‘T./I/(Z)
into data (v, @) € €, by solving the Lichnerowicz equation

R 1 1
(1) Vip=—¢— — o%0,¢ "+ — 72¢°
=3¢ 8u2 a® 12

(*) Since the space we shall be really be working with is a bit smaller than TAM/G (sce §).B,
below), we include the «~ » here.
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for the positive scalar ¢ (here V 2 R, u, and the contractions on ¢ are all construc-
ted from A) and then forming

(22) v=¢'A
and
1
(23) 1r=¢“‘a+;#7\"'r

one easily verifies that the Einstein constraint equations (1) and (2) are satisfied
by any set (v, 7) constructed in this way.(The identity

(24) RN =¢"*RQ\) —8¢7°V2g

is useful for this verification).

The York procedure is defined at (A, 0) € T;TM(E) iff Eq. (21) has a unique
solution for that choice of data. While there are points (A, 0) of T%..4#(Z) for
which this fails, York and O’Murchadha [1974] show that the Lichnerowicz
equation has unique solutions on an open dense subset (2) of TT’."TJII(E), which

we shall call TT"‘TV%(Z). This we have a well-defined map

(25) Y THM(Z)~6,(2)

whose action is specified by Eqgs. (21)<23).
We now discuss a number of important properties of the York map y, .
They are presented in the form of a series of lemmas.

LEMMA 1. (Surjectivity). %, : T, M(Z)—~ €, is a surjective map.

Proof. Let (y,) be a set of data in . Define A=y and o =7— 2y 3 1u.
Since tr = 2u7r (by definition of ‘€T) and since 7(\, 6) =9(y, m) = 0, we see
that (\,0) € T;T./K We easily verify that o = 1 solves the Lichnerowicz equation
for this (A, ¢) and thus find that@/ (A, 0) = (v, 7). [ ]

(2) While the exact form of T7%.4,(Z) has not yet been determined, we do know the fol-
lowing:
7 +# 0 case: if o is nonzero for at least one point x € Z, then (A, 0) € T%#4,(2)

If =0 on Z and if there exists a conformal factor 6 such that R(8%A) = 0 for
alix € Z, then (A, 0) € T #,(2).

7 =0 case: If there exists a conformal factor 8 such that R(@*A) < 0 forallA € Z, the A, 0) €
€ T4, (Z).
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LEMMA 2. (© Invariance). For any (A, o)ET;TJ()(Z) and any 6 € ©(Z), one
has

(26) Y(6*), 07%0) =7, (\, o).

Proof. Suppose ¢ solves the Lichnerowicz equation for (A, 0). Then we claim
that ¢ = (1/8) ¢ staisfies the same equation for (64X, 8~%0). Clearly if we prove
this claim then the lemma is proven.

Let A=0*\,0=0"%0, and let R, V, &, denote the quantities defined from
A. Then ¢ must satisfy

27 Vip=
Using Eq. (24) as well as the more obvious transformations, and multiplying

through by 8%, we transform Eq. (27) into

_ 1 1 o? ]
(28) 05V2§+(V20)f=—ROP—— = 08+ — 700
8 8 u? 12

Now

1 2 )
Vig=— — (\/det 4 0N — $)
¢ Vdet 94\ X' ax/

I P
o 59

6°n ox ox
12 _
(29) =3;V o+ ;,'EV"'W-
Thus
05V26+ (V20)6=0V25+2(V9) (VP + (V203
(30) =V2(@ ¢),
so we have
_ 1 1 et 1
Gn V263 =—ROPH——— 09 '+ — 1(09)°.
8 8 u 12

Since, by assumpition (A, 0) € TT*TJIO(E), the solution of (31) must be unique.
Therefore 6 ¢ = ¢, as was to be proven. =
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LEMMA 3. (D Equivariance). For any (\,0) € T4 (Z) and any n€D(Z).
one has

(32) %, (n*\, %) =%y (A, 0).

Proof. The scalar curvature and Laplace operators are both covariant. Thus if
¢ satisfies the Lichnerowicz equation for (A, o) then n*¢ = ¢ o n satisfies it for
(n*X, n*0). The result then follows. (]

Lemma 2 shows thatgy, cannot be one-one. To compensate, however, it permits
us to define a reduced version of4/, on TT‘T.IIO(E)/G). Further, from Lemma 3, we
can reduce by 2, and define

(33) @) : Ty (Z) g ~6,1D.

We have earlier identified ‘67/9 as the stratified symplectic manifold 2 As for
the domain, this resembles,_, , but it involves T;*..#,(Z) rather than T;%-#Z).
However since T,’.“r/lo(Z) is invariant under &, the same considerations used
earlier show that

(34) Pyone = Tr (VG
is also a stratified symplectic manifold. Thus we have
(35) () P =2

LEMMA 4. (Bijectivity of (@ |). The map [, ] is one-one as well as onto.

Proof. The reduction procedure preserves surjectivity, so we need only demostra-
te that [@ ] is one-one. In this proof (as well as in later discussions, we shall use
brackets [ ] to denote equivalence classes (under & in the domain; under P in
the range).

Now suppose that

l@;lO\. o) = l@,](T\, 0).
By definition of [@;], it follows that

2 2
37 [((b‘)\, ¢ o+ 3 $2n1 u'r)] = [(E“X, 9746+ — pn-! Hr):l.

This implies (by definition of the equivalence classes) that there exists n € 2(Z)
such that

(38) *(@*A) = '\
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and
2 2
(39) wleto s < ¢2x-lm) =5+ S N
If we define 6 : = n* ¢/ ¢ then (38) becomes
(40) A=04"\

Concentrating on the second term on both sides of (39), we find
2 2
n*(; ¢2>\“m)= 3 @* ) (V) (*u)7

82620+ 47\-1 9-6‘-“,

C3)) =— ¢\ lpur.

Wl wle

Hence we can cancel in Eq. (40), and obtain;

“42) n*¢74o =740
which implies
(43) o =0"%n*\

Equs (40) and (43) together state

(44) (A, 0)] = [(X, 9)],

SO [qy,] is one-one. .
C) The York Map is Symplectic

Our main theorem (for the vacuum case) is the following.

THEOREM. (Vacuum Einstein Case). The maps®, : Tl My~ € and (@) : Py~
-2 are both symplectic (3).

The rest of this section constitutes a proof of this theorem.

() Where 14, are Py,,, are singular [i.e., for (A, 0) with a simulteneous conformal killing
vector field] the statement is true in the stratified sense.
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We first wish to establish that if & is symplectic, then so too is [ ]. This
turns out to be essentially a consequence of the following resulit:

LEMMA 5. Symplectivity of Reduced Maps. Let (B, w,) and (P,, w,) be symplec-
tic manifolds. Let G, be a group acting by canonical transformations on F; with
Ad*-equivariant momentum map J, :F, - g} for i=1,2 Let F, =J,.‘l(0)/G,
denote the corresponding reduced space (which, according to Arms, Marsden
and Moncrief [1981), may have singularities). Let

(43) ¥ J710) - J510)

be a given mapping (smooth at nonsingular points).
Let k:G, =G, be a surjective group homomorphism and suppose V¥ is k-
-equivariant:

(46) Y (g, p)=k(g) ¥(p)

for g,€G and p EJ;"(O). Then the induced map [¥) : P, - P, is symplectic if
and only if

@7) w,W, W) = TV v, TY W)
forallv,we T,JT1(0)C T, P,

Proof. This lemma follows readily form the definitions of the reduced symplec-
tic forms on P, and P,. [Note that the actionof w onv, w & Tp I 1(0)is irrelevant
to what happens on the reduced space]. ]

As a (slightly indirect) consequence of Lemma 5, we have
COROLLARY 6. Ifgy, is symplectic, then (9] is symplectic.

Proof. If we choose P,=T*#, G, =%, P, =P P =T*M, G,=9, P, =2,
k: Dx © - 2 (by projection) and ¢ =@/, then Lemma 5 almost applies. There
are just holes to patch: Firstly we have 2, = Th#/% + J,(0)/¥ (because
of the points of I;*,.#at which®_ is not defined).

Secondly, we have 9; =(€,/9 #J,(0)/% (because of the super Hamiltonian
constraint which is included in the Einstein equations). However. since (as we
have seen) 2 and .‘f”y x are both symplectic (stratified) manifolds in spite of

Ol
these complications, then in fact this corollary does follow from Lemma 5. L

The most straightforward way to complete the proof of the theorem is to
consider a general pair of vectors §, and §, tangent to Ty A at a general point
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(A, 0) lie, &, € T(A‘ 9 ;T.,I[o] and verify directly by a brute-force and lengthy
calculation that

(48) QUTYE), Tr*(E)) = UL &),

This method, which relies upon the linearization of the York map, is in fact how
we first proved the result. However there is another way to proceed which shows
more clearly why the result is true. This alternative way, which we shall use,
splits@, into the composition of two maps: The first is almost an extended point
transformation (i.e., cotangent lift) while the other is a fiber translation. Both
of the maps will be shown to be canonical, and hence the compositiongy, is also.
The two maps we need are

-T® >
i o irT 0

49
“9) (A, 8) (942, ¢7%0)

where ¢ satisfies the Lichnerowicz equation (21) (for some constant 7), and

T T
(50)

2
A, 7 "(‘Y;ﬂ*' ; '7_1#1').

One easily verifies that both %’ and Z are D-equivariant, that %/, is ©-invariant,
and an assortment of other properties. Of more immediate concern is the fol-
lowing.

LEMMA 7. [Two Step York Map].
28, =2, ¥,
b) If W _is symplectic and Q‘; is symplectic, thendy, is symplectic.

Proof. Part a) is verified by calculating the composition of (49) - (50), and com-
paring with (22) - (23). To prove part b), we do some strightforward mapchasing
recalling that the symplectic form on T;TJ///O and on € is that induced from
T*4. =

We now show that the maps both symplectic. We start with ﬂ'f (since it is
the easier one to check).

LEMMA 8. |Z is symplectic). The map %, : T*# - T* M preserves the symplectic
form Qon T .

Proof. The action of ﬂ: [see Eq. (50)] clearly leaves the base of T"*#/alone; so it
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. ) . 2
is a fibre translation. To show that the amount of translation— 3 v lur—

is in fact the exact differential of a function f :.#— IR, we consider an arbitrary
ke T_, Afand calculate [using the pairing given in Eq. (6)] (9)

2 2 2 4
1) (— v lur, k)= (—m"y'l-k)= —urtrk=D_|—T1 p]~k
3 13 . 3 L3 g

2 4
Hence 3 vy lur=Df= D[E T f p]. But if ﬂ'f is a fibre-translation by an exact
. >

differential, then it must preserve the symplectic form (see Abraham and Marsden
(1978, ex. 3.2E, p. 186]). n

LEMMA 9. (#, Is Symplectic). The map W_ . T My~ T M,y preserves the
symplectic form Q on T M.

Proof. If ¢ depended only on A, then ¥’ , would be a cotangent lift and therefore
automatically be symplectic. But ¢ depends upon o as well as A, so we must
verify the preservation of £ by explicit calculation.
Let £, §,€ (A o) TTT.II so we can write (5)
] ] a 9

(52) go=h - — +k - — and E,=hy- — +k,0 —.
LY 3o 2772 % ae

Since §, is tangent to TT*T/{,, itscomponents /, and &, must satisfy
(53) hj-o+Xx k=0

which follows from the linearization of the traceless condition. (There is also a
constraint on 4, and k, which follows from the transverse condition, but we
won’t need it). The components of £, obey similar constraints.

The action of the tangent of “Ilfr is easily calculated to be

d
(54) (TH)IE) = (61, + (D, ¢ N — +(¢"“k +D, (¢'4)o)

() In language more familiar to physicists we calculate

f Zave=Z 'r'y" \/_
by
to show the same thing.
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(fori € {1, 2}). Plugging this into £, which we may write symbolically as
(5% Q=[d0'*d?\,

we get

QUTH[IE, . TH[IE,D =
= f {l67%k, + D @A - 1674k, + D,_(47)a] - 11, 2]

]
where «{1, 2]» means that the second term is obtained from the first by inter-
changing the subscripts |1 and 2. Expanding out this first term, we get

[¢*h, + Dy (6*)N] - [97%k,+ D, (¢4 0] =
=hy ky+¢*D (67 )y -0 + ¢7*D, ($)\ - ky+ Dy ($9)D, ()N~ 0
(57 =hy k,— 447 D Dy 0 +467HD, O\ -k,
f"‘ (using tr 0 = 0). Then plugging back into (56), we find

QUIW]E,), TWE,)) =j{hl cky=hy k= 447D @)k 0+ XKy

v
-

+4¢71D, Oy 0+ N k)

=f[hl-k2—h2~k2]

-
p

where we have used Eq. (53) to kill the ¢ dependent terms. Hence 2 is preserved
by¥ . .

T

This completes the proof of the theorem. Two aspects of it are worth noting.
Firstly, while the proof uses the condition tr 6 = 0 as well as its linearization, it

(5) In coordinates, this is

b= Ld X "'Eb(x)[axab(x) 50 e |

-
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does not use the condition 80 = 0. Of course 80 = 0 is needed forg, to map
into¥ ,» and 60 =0 is needed for the reduction, but we never use it explicitly
in showing that®,_ (or W_ or .92: ) is canonical. Secondly, the proof also uses little
of the explicit form of the Lichnerowicz equation. Again, the exact form of
this equation (21) is critical i, is to map into %f; but we don’t need it in the
proof that the symplectic form is preserved.

2. THE EINSTEIN-MAXWELL CASE

The York map is easily extended into a procedure for solving the constrained
equations of many Einstein-source field theories: e.g., Einstein-Maxwell, Einstein-
-Yang-Mills, Einstein-Dirac, Einstein-Higgs, and Einstein-fluid. (See Isenberg and
Nester [1977]). One might expect that for many of these theories, the map is
still symplectic. At least for Einstein-Maxwell and Einstein-Yang-Mills, this is
the case. We show this here, following roughly the same order of discussion as
in the last section (leaving some of the trivially duplicated steps). For simplicity,
we do only the Einstein-Maxwell case.

Before proceeding, we want to emphasize that the map which proves to be
symplectic in these nonvacuum theories is not that which involves solving the
«LW» equation along with the Lichnerowicz equation. The LW part of the York
procedure (which is used to obtain the longitudinal part of the gravitational
momentum) does not preserve §2. We get a symplectic map by starting with
data obtained after solving the LW equation. We shall see this illustrated in
the Einstein-Maxwell theory, and comment further after the proof has been
completed.

A) Spaces of Fields and Group Actions

We work on a principal U(1) bundle Z over Z (our oriented connected smooth
3-manidold). In addition to the spaces #(Z) and T*#(Z) introduced in the last
section, we shall use the following spaces:
the space of U(1) connectionsA4 onE; locally, we write the com-
ponents of A as 4;(x) and regard it as a one-formon Z.

T*A the L2 cotangent bundle of A, consisting of pairs (4, Y), where
locally we regard Y as a vector field density, and denote its com-
ponents Y (x). The electric field is E = — Y/u.

TrA the subspaces of T*Aconsisting of pairs (4, Y) for which

59 6Y=0

{Note that condition (59) depends upon a choice of metric (or
volume element). It is independent of A (this is not the case for



THE YORK MAP IS A CANONICAL TRANSFORMATION 99

non-Abelian Yang-Mills)].
¢t™M The subset of T# x T*A which satisfies the Einstein Maxwell
constraint equation:

(60) 0=#(y,mA,Y)=8Y
(61) 0=9™M(y,m,4,Y)=—28n—Y xB
1 1
(62) 0=3M(y,1,4,Y)=—pR + (7*, — 3 r n)z)—
u
1 I
(62) + — y2+ —B?
2u 2

and also satisfies the constant mean curvature condition (3).
[B =dA is the magnetic field 2-form and Y x B = Y’B‘.i in index

form].

BM the subset of T*# x T*A which satisfies conditions (59), (60)
and has vanishing ¢r m, but generally fails to satisfy condition
(61).

‘ﬁ\ The groups we need, in addition to 2(Z) and ©(Z), are

Aut(z) the group of automorphisms of the U(1)-bundle =. Note that
each ¥ € Aut () covers an element n € 2(Z).

Aut(Z) the subgroup of Aut(Z) consisting of all those elements which

cover the identity in 2(Z). [These are often called the «pure gauge
transformations»|.

and @EM(Z) the semidirect product

(63) @™(Z) : = Aut(Z) x O(Z).
Note that gEM (Z) is isomorphic to the direct product @(Z) x
x Aut;, ().

With all these groups and all these spaces, we have lots of group actions. The
actions of most immediate interest here are that of Aut(Z) on T%# x T*Aand
€M, and that of @EM(Z) on T4 x T*A and BEM. Aut(Z)’s action is the stan-
dard pullback. Its momentum map J, @ is found to be
(64) JM(E)('y,rr,A,Y)=(8Y,261r+YxB).

Thus ‘65“ is the subset of J;ul‘ (s)(O) with the added conditions that J(EM vanishes
and that r;—ﬂ = 7. As with ‘gr for the vacuum Einstein theory, the #r 7 condition
“

{reezes the action of the time translations which are generated by 3EM, and hence
one can show that
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(65) PM . = €M/ Aut (D)

is a (stratified) symplectic manifold. The symplectic 2-form for?f“ is obtained
(by pull-back and quotient) from QM the natural symplectic 2-form on T*# x
x TH*A.

The action of @ EM on T*#x T*A is obtained by extending ©(Z) to T4 x
x T*Avia
(66) 6,(y,mA,Y) »(8%,67%m,4, 1),

and then combining the action of ©(Z) with that of Aut(=) as per the semi-
direct product. The resulting momentum map is

(67) Jypu(1 T A, V)= (8Y, 287+ Y x B, 1r m),

so the space BEM is the zero set of J, This permits a straightforward reduc-

G EM’
tion (via the reduction theorem), so
(68) P =M g EM
is a (stratified) symplectic manifold. The roles of ﬁ&&‘k and?f” in the York

procedure are clearly presaged by the notation.

B) The York Map

The York procedure (as we define it here) for the Einstein-Maxwell-theory
takes data (A, 0,4, Y) €™ into data (v, 7,4, Y) €BEM by solving the modi-
fied Lichnerowicz equation

2 R : 7, ! 245 1 y: o 2 3
(69) Véipg=—¢p— — 0-0¢p '+ —7°¢’ —|— — + —B°p|¢”
8 8u? 12 2 u 2
1
and the setting Yy =¢*\, 1=¢"%0 + 3 pX~17, with 4 and Y left unchanged.

As in the vacuum Einstein case, the procedure works for an open dense subset
of BEM(Z), which we shall call.@(l;‘“(s) (See Isenberg, O’Murchadha and York
{1976]). We thus have a well-defined York map

(70) EM.g5M >gtM.

The properties onI/fEM essentially mirror those ofgy, . We collect them in the
following lemma:

LEMMA 10. (Properties of ™). ™ is surjective, ©(ZYinvariant, and Aut(Z)
-equivariant.

Proof. The verification of these three properties very closely follows the proofs

<
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given for Lemmas 1, 2, and 3, so we omit the details here. With 4 and Y invariant
underdy EM, it js not surprising that no new complications arise. "

From Lemma 10 and the discussion of reduced space given above, we are
led to define a reduced York map
EM) . _pEM _ pEM
an B =Py =2,

(With@eM, : =BM[4t™). We then have
LEMMA 11. (Bijectivity of ™). The map ] is one-one as well as onro.

Proof. Follow the steps outlined in Lemma 4. ]

C) The York Map is Symplectic

QOur main result here is

THEOREM. (Einstein-Maxwell Case). The maps @™ BM > @M and ™).
:@\gﬂ( »ZEM are both symplectic.

Proof. We start by arguing that ifq,lleM is symplectic, then so too is [@f“]. This
is essentially a corollary of Lemma 5, with P, =T*M xT*A, G, =9™, P, =
= sﬁ‘rk, P, =T*#(xT*A, G,=Aut, P, =.‘7/’TEM, k : Aut x © > Aut (by projec-
tion) and ¢ =%, . The same complications described in Corollary 6 arise here,
and are handled essentially the same way.

Next, we carry out the split ofg/_ : We define

.,l/rEhi :Qg“ _)@g.M
(72) (A, 0,4,E) » (¢*X, 9740, 4, E)
with ¢ satisfying Eq. (68), and also

ZEM T x T*A > T x T*A

(73) (v, 7 A E) - (v, + (2/3)y lur, A, E).
Clearly
(74) @’EM = QOTEM aW:fM ,

and clearly ifﬂ’f“ and¥W” f“ are both symplectic, thenéi/,EM is as well.
The map 2™ may be written as

(75) M =g xlds. ,
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Hence, since 2, is symplectic (see Lemma 9),27™ must be also.

ForW ™, we don’t have such a simple decomposition (both because the do-
main doesn’t split, and because the scalar ¢ depends upon 4 and Y as well as
upon A, and 0). So we must again calculate directly.

Let £, £, €B,(Z), so we can write

) 3 3 3 3
(76) =h,+ - — +k - ~+a°- —+e, —
=" oA e a4 'oay

for i € {1, 2}. The tangency conditions requires that the components (k;, k;,a,, €;)
satisfy three identities, one of which still 4, -0 + X -k; =0. Now, applying
W™ to ¢, we get

0 ]
(T¥PHIE] = (6*h, + (D $*M) - s (¢*k; + D, (97%)0) - P
o

0 0
an +a; - .

Then, if we substitute into
(78) QEM=f[do-“d7\+dA-‘dY],

we obtain

QEM(FWEM L), TWEM(E,) =
="j {[¢4h1 +DE|(¢4))\] . [¢-4k2+
z

(719) +D (57 *)0) +a,- e, — [1,2)).

Part of Eq. (79) seems to match the right hand side of Eq. (56) exactly. While
this isanot true—since ¢ depends upon A4 and Y and since §, contains g; % +
+ ¢ 5 — the difference are irrelevant to the calculations done in going from

(56) to (58). Hence, we find
QEM(TWEM (g ], TWIM[E,]) =
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=f(hl-k2+al-ez—-hz-kl—az-el)

z

(80) = QML E).
This shows that QM is preserved by %M, and as it follows that®™ and (@)
are symplectic maps, and so the theorem is proved. ]

D) Comments on the LW Part of the York Map

As decribed in the standard references (e.g. Choquet-Bruhat and York [1980])’
the York procedure for the Einstein-Maxwell theory starts with data (A, 0,4, Y)
in T,‘.“T.I{O x T*A (rather than inQEM) and obtains data (y, 1, 4,7Y) in Wf“ by
solving

1
(81) Va(LWY® =— — Y*B?
2p

2
for the vector field W? where [(LW)"” t=VIWb + VOWo - 3 PAVR W], then

e solving
Vig= : LW wye~’ : 495 1[ i ZJ
82 =—g— — (0+ Y (o+ L L -] — 4+ 5
(82) ? 8¢ 8"2( ( 1) 21’¢ 2 .

1
for ¢, and finally setting vy = ¢\, 71 =¢ 4(c + LW) + 3 g\ lr withAdand Y
unchanged. We may denote this by a map

(83) GM . Tr Myx T*A> G,
and we readily show that one can write
(84) GEM _qyEM o g EM

where

GEM . T My x T*A B,

(85)
Ao, A Y)(Ao+LW,AY)

for W satisfying (81).

From a practical standpoint, it makes sense to include Z'EM in the York map,
since the linear elliptic equation (81) is well-behaved, and it is much easier to
choose data in TT‘T./{{O x T*A than it is to choose data in.@o. Unfortunately the
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map@™ is not ©-invariant (6), and the space T;%.#, x T*A does not factor to a
symplectic manifold. We therefore have no well-defined reduced York map.
Moreover, it is unlikely that@"EM itself is canonical. So, while@fEM is useful for
solving the full set of Einstein-Maxwell constraint equations, only theqyfEM
portion of it is a symplectic map.
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