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1. Introduction

DovLE & ERICKSEN [1956, p. 77] observed that the Cauchy stress tensor ¢
can be derived by varying the internal free energy yw with respect to the Rie-
mannian metric g on the ambient space: ¢ = 2p dyp/dg. Their formula has gone
virtually unnoticed in the literature of continuum mechanics. In this paper we
shall establish the material version of this formula: £ — 2g8?;/ 0G for the rotated
stress tensor X, and shall address some of the reasons why these formulae are
of fundamental significance. Making use of these formulae one can derive elasti-
city tensors and establish rate forms of the hyperelastic constitutive equations
for the Cauchy stress tensor and the rotated stress tensor, as discussed in Sec-
tions 4 and 5. The role of the rotated stress tensor in the formulation of con-
tinuum theories has been noted by GreeN & NAcGHDI [1965]. Generalizations
of hypoelasticity based on the use of the rotated stress tensor have been considered
by GREEN & McInnis [1967].

Some additional reasons for the importance of these formuiae follow. First
of all, the original (spatial) formula of DovLE & Ericksen allows for a rational
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derivation of the spatial form of the Duhamel-Neumann hypothesis on a decom-
position of the rate of deformation tensor (sce SOKOLNIKOFF [1956], p. 359), which
is useful in the identification problem for constitutive equations. This derivation,
due to HUGHES, MARSDEN & PISTER, is described in MARSDEN & HUGHES ([1983],
pp. 204-207). Our material version of the Doyle-Ericksen tormula together
with some additional results discussed in this paper, allows one to carry out the
same argument materially. This is described in Section 5.1. Second, these formulae
play a crucial role in extending the balance of energy principle (using invariance
under superposed rigid body motions) to a covariant theory which allow arbitrary
spatial diffeomorphisms. ¥ The spatial formulation of the covariant version of
this principle is described in Section 2.4 of MarspDEN & HuGHES [1983]. The
material formulae here enable one to derive a material version of a covariant
balance of energy principle. This is described in Section 5 of this paper. The
covariant energy principle not only makes classical hyperelasticity a fully co-
variant theory, but also allows one to obtain directly the principle of virtual
work. We note that from the principle of invariance of energy under super-
posed rigid body motions it is not possible to obtain the principle of virtual work
directly [see e.g. SEWELL 1966]. An alternative derivation of this principle based
on the integral form of the balance laws is found in ANTMAN & OSBORNE [1979].

Finally, in classical relativistic field theory, it has been standard since the
pionecring work of BuLINrANTE [1939] and RosenrrLp [1940] to regard the stress-
energy-momentum tensor as the derivative of the Lagrangian density with respect
to the space-time (Lorentz) metric; see for example, HAwkING & Eriis [1973,
Sect. 3.3] and MISNER, THORNE & WHEELER [1973, Sect, 21.3], This modern point
of view has largely replaced the construction of canonical stress-energy-momen-
tum tensors. Thus, for the Lagrangian formulation of elasticity (relativistic or
not), the Doyle-Ericksen formula plays the same role as the Belinfante-Rosenfeld
formula, and brings it into line with developments in other areas of classical
field theory.

Acknowledgements. We thank Joan Barr, Tom Hucues, MorTOoN GURTIN, KARL
PistER and CLiFFORD TRUESDELL for helpful comments.

¥ In the context of classical continuum mechanics, a derivation of this principle
was given by GREEN & RiIVLIN [1964a], and applied to multipolar media in GREEN &
RivLIN [1964b, c]. An alternative although equivalent formulation of this principle can
be given based on closely related ideas of invariance due to NoLL [1963] (sec MARSDEN
& Hucuges [1983] pp. 145-152, for this and a comparison of both approaches). As
noted by NaGgupi ([1972], footnote 17 in p. 490) the idea of obtaining balance laws from
balance of energy and invariance under spatial isometries was known to ERICKSEN
[1961]. A version of this principle in the context of Cosserat Continua was given by
ToupN [1964], who gives much credit to the CosserRATs. A comprehensive accournt of
the applications to Cosserat continua is found in NAGuDI [1972] and references therein.
In the context of classical Lagrangian field theory the application of this principle amounts
to imposing invariance of the Lagrangian density under one parameter groups of trans-
lations and rotations and using NOETHER’S theorem (see, e¢.g., MARSDEN & HUGHES
[1983], Sect. 5.5). '
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2. Notation. Baéic Relations

Let B and S be orientable smooth z-manifolds equipped with Riemannian
metrics G, and g respectively, with associated volume elements denoted by dV
and dv. We refer to (B, G,) as the fixed reference configuration of the body of
interest, and to (S, g) as the ambient space in which its deformation takes place.
A configuration of the body is an embedding ¢: B— S, and the set of all con-
figurations is denoted by %.

A motion of the body is a curve t€R — ¢,€ %, and for X€ B we write
x=¢(X)= ¢(X, t). The material velocity is the vector field V,: B—T,S
detined by V(X)) = 0¢(X)/ot, for X € B, where 7,5 is the tangent space to &
at x = ¢,(X). The material acceleration A,: B— TS of a point X€B is
defined by A(X) = odV.(X)/0t. The spatial velocity v,(x) and the spatial accelera-
tion a, are vector fields on ¢,(B) defined by the relations v, = V,o¢; ! and
a, = A,o ¢, |, respectively.

The deformation gradient, F = T¢,, is the tangent of the map ¢,: B— S,
t€R, with components F4 relative to coordinate charts {X'} and {x*} in B and
S, respectively. The components of the right Cauchy-Green deformation tensor
are then defined as

Cap = FiFiga- ¢, (2.1a)

To emphasize the geometric meaning, it is convenient to employ the siandard
pull-back/push-forward notation of analysis on manifolds (LANG [1972], MARSDEN
& HucHEs [1983]). Equation (2.1a), then, is simply the coordinate expression
for the pull-back of the spatial metric g; i.e.,

C = ¢Xg. (2.1b)

Next, we consider the classical polar decomposition theorem in a slightly
more general setting. Consider the manifold B endowed with two different Rie-
mannian metrics G, and G, and let (TxB, G,) and (TxB, G) be the associated
tangent spaces at X € B with the inner products G,(X) and G(X), respectively.
The polar decomposition theorem states that

T$,=F =RU ie, F%= R3UE (2.2)

where R(X): (TxB, G) = (T, x)S, g) is a (G, g)-orthogonal transformation called
the rotation tensor, and U(X): (TyxB, G,) - (TyB, G) is the material stretich
tensor. Although we may choose G, = G, the discussion between the metrics
G, and G becomes crucial for later developments. The metric G, is a fixed Rie-
mannian metric assigned to the reference configuration B, and is invariant with
respect to superposed spatial diffeomorphisms. (The metric G can be arbitrarily
chosen and may change under spatial diffeomorphisms as we shall see later. The
following diagram summarizes the domains and ranges of F, U and R. The fact
that R is a two-point (G, g)-orthogonal tensor is expressed by the relation

Gap = RGRGgam° ¢, (2.32)
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which simply states that the pull-back of the (spatial) metric tensor g by the rota-
tion part R of the tangent F = T¢, yields the metric tensor G. To emphasize
this interpretation we introduce the notion of pull-back under R, by rewriting
(2.3a) as

G = R¥(g). (2.3b)
Ux) »
(TyB,G,) > (TyB,G)
X) RX)

(Tlp,(,\’)‘q:g)

From the stretching part U of the polar decomposition (2.2), we recover the right
Cauchy-Green tensor C by the formula

Cup — ULGUS. (2.42)

Thus, we may regard the tensor C as the pull-back of the metric tensor G by
the stretching part U of F. Again this interpretation is emphasized by rewriting
(24a) in pull-back notation as

C = U%(G). (2.4b)

In view of (2.1) and (2.4) we may think of C either (a) as the pull-back of
the metric g by F, or (b) as the pull-back of the metric G by U. In the next section
a simple argument employing the chain rule will show that point of view (a)
yields the (spatial) formula of DoyLE & ERICKSEN [1956], whereas point of view
(b) leads to the material version of this formula. A more fundamental approach
based on the notion of covariance will be pursued in Section 6. This approach
will reveal the fundamental role played by the formula of DovLE & ERICKSEN
in a covariant formulation of classical hyperelasticity.

3. The Rotated Stress Tensor and the Doyle-Ericksen Formula

Recall that standard constitutive assumptions and arguments (COLEMAN-NOLL
[1959]) imply that the free energy functional ¥ for a thermoelastic material
depends on the motion ¢,(X) through the point values of the deformation tensor
C(X) and the temperature variable @(X). We write Sa(X, C(X), 0(X), G,) to
express this functional dependence . Let pr(X) be the density in the reference
configuration B. If S denotes the (symmetric) second Piola-Kirchhoff stress

T The metric tensor G, must be included since it is needed to form a scalar from
the tensor C, such as tr C = CzG45,
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tensor, one has the constitutive equation

#x,C,0,G,)
S =20t - (3.1)

By equation (2.1), C is a function of the deformation gradient F (the spatial metric
g assumed fixed). Hence, on defining Y(X,F, 0,G,) = Y(X,F'F, 0,G,), the
constitutive equation (3.1) takes the equivalent alternative form:
o
P = QR:{"@Tg— (3.2)

where P is the first Piola-Kirchhoff (two-point) stress tensor, with components
P! relative to coordinate charts {X'} and {x}.

In this section, we shall develop the material version of the formula of DoYLE
& ERICKSEN by a chain rule type of argument analogous to that employed by
DoYLE & ERICKSEN [1956]. (See also MARSDEN & HucuEes [1983], p. 196.) We
recall the basic idea.

(a) Spatial Form. Making use of (2.1), one defines the (spatial) free energy
functional ¢ as a function of the point values of the spatial metric g and the
deformation gradient F, by the relation

¥(x, 809, FX), O(X), G,(X)) = (X, C(g(), F(X)), O(X), G,(X))  (33)

where C(g(x), F(X)) = ¢{(g(x)). The chain rule together with the Piola-trans-
formation and the constitutive equation (3.1) then leads to

.
o — 295;2 (3.4)

where o is the density in the current configuration ¢(B) given by (conservation
of mass) p = ogpe/J, where J is the Jacobian of ¢,: B— § taken relative to
G, and g.

The material version of formula (3.4) may be developed by a similar argument
as follows. :

(b) Material Form. We make use of of (2.4) to express the free energy as a
function of the point values of the metric G and the stretching tensor U. The
chain rule and use of (3.1) then yields the desired result. Explicitly, set

P(X, UX), G(X), O(X), G,(X)) = F(X, C(U(X), G(X), O(X), G(X)) (3.5)
~ where, by virtue of (2.4),

C(U, G) =U*G)=U-G- U. . (3.6)
The chain rule and (3.1) then gives, in coordinates,

o ¥ 3C.p o
ORef G,y = ORef 9Cap 0Gy = ORef eCon

ULUg = % U=S)H”. (3.7
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Next, recall that the rotated stress tensor (GREEN & NAGHDI [1965], MARSDEN
& HuGHEs [1983], pp. 137), denoted by 2, is defined as the pull-back by the ro-
tation tensor R of the Cauchy stress tensor o. Accordingly,

=R, (X)) ie, o%—=R4REZE. L, (3.8)

By the Piola transformation and the polar decomposition, we have

1 1
o = T ¢, (S)= 7 R, - (U.(S) 3.9

and from (3.8) and (3.9) we obtain the following expression for X,

1
E=—U,() e, SY=JULUZ. (3.10)

Substitution of (3.10) into (3.7) and use of conservation of mass (i.e., ¢ = gret/J)
leads to the formula
' g
F=12 Frel 3.1

which is the material version of the Doyle-Ericksen formula.

Remark. Formula (3.11) requires careful interpretation. Although we may
take G = G,, the variation is done only with respect to the dependence on G
through C. The dependence of ¥ on G, plays no role in formula (3.11). Our
covariant argument of Section 6 will be consistent with and will clarify the reason
for this.

For the purpose of comparison, the equivalent forms in which constitutive
equations for hyperelasticity may be expressed have been summarized in Table 1
of Section 5. In the next section, we examine the appropriate expression for the
elasticity tensor associated with the rotated stress tensor X.

4. The Rotated Elasticity Tensor

The elasticity tensors appear naturally in the formulation and linearization
of boundary value problems in nonlinear elasticity. (See, e.g., TRUESDELL & NOLL
[1965] or Marspen & HuGnes [1983].) These tensors also appedr in a natural
manner when the hyperelastic constitutive equations are formulated in- rate form.
The second point is illustrated in the next section.

The following two tensors are often referred to as material and spatial versions
of the second elasticity tensor:

A
2 2%

oy
sz@RefM: CZ4Qag9g

4.1)
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These tensors are related by the Piola-transformation,

2 : !
c= 74’:*((:) de, o= — FIFRFEFEC PP o ). (4.2)

J
¢ appears naturally in connection with the spatial formula (3.4) in terms of &
and g, whereas C is naturally associated with the stress tensor S and the consti-

tutive equation (3.1), In addition, one defines the first elasticity tensor by the ex-
pression

)

A =oragpor =75

4.3)
The tensor A, associated with the first Piola-Kirchhoff two-point tensor, is connect-
ed to € and ¢ by the relations

A4BcD _ F;{lpécABCD + gacSBD o cabcd(F——l)[I)? (Fw'l)(? + G GBD (44)

‘ In connection with constitutive equation (3.11), the material version of the
Doyle-Ericksen formula, we define the rotated elasticity tensor £ by the expression

PEZ

7G G (4.5)

Z =1

In next section, we shall that this tensor appears naturally in the rate form of
constitutive equation (3.11). By making use of the chain rule and relation (4.2)
we obtain the following expressions relating £, € and ¢:

E = —:2;- U.(C), E£=R*0). (4.6a)

In coordinates, these transformation formulae read

2
EIJKL — 7 (]/‘11 UB{UCKUECABCD’ cabcd . Rz[zRgR;’(RZEIJKL o 91)71 . (46b)

5. Rate Form of Hyperelastic Constitutive Equations

In this section we examine rate forms of constitutive equations for jyper-
elasticity, based on the spatial and material versions of the Doyle-Ericksen for-
mula, in the context of thermoelasticity. First, we summarize the relevant results
in the spatial picture.

(a) Spatial Form. Recall that the ﬂow of the spatial velocity field v,(x) is the

map y,,=$,0 ¢; ' $(B) — ¢(B). The Lie derivative of a (spatial) tensor
field in the direction of the flow of the v,(x) may then be defined as

d 0
Lyt) — %L~t(?fStS) = ¢, (8_1‘ ¢?<(tt)) .1
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where t, denotes an arbitrary, possibly time dependent, tensor field (i.e., for fixed
t, t, is a section of a tensor bundle constructed on S). By holding t fixed, one obtains

ot
the autonomous Lie derivative £ (t,); that is: L.(t,) = 3—; + Z(t). For the

metric tensor g, a direct application of definition (5.1) leads to the formula
L(g = ¢, (0O =2 (5.2)
where d — % d),,k(('“,) is the spatial rate of deformation tensor. In addition, note

that .
L= J= Jdiv(v). (5.3)

Taking Lie derivatives on both sides of the (spatial) Doyle-Ericksen formula (3.4)
and substjtutions (5.2), (5.3), yields the rate constitutive equation:

Ly(o) + div(v) o = % L,(Jo)

2.5 2¢
igig YT %06
where m = 2p ¢%p/dg 00 are the thermal stress coefficients. One calls © = Jo
the Kirchhoff stress tensor. The left hand side of (5.4) is the Truesdell rate of
Cauchy stresses, defined as L, (r)/J (TRUESDELL [1955]), and the spatial second
elasticity tensor ¢ given by (4.1), appear naturally on the right hand side of
5.9).

=4 O=cidtm-0 (54

(b) Material Form. By analogy with definition (5.1) we may define the material
stretch Lie derivative of an arbitrary material tensor T, by

0
Ly(T) = U, '(5; U*(Tz)>- (5.9

That is, the pull-back/push-forward operations with the tensor F in (3.1) are
replaced by its stretching part U. An interpretation of definition (5.5) in terms
of the spatial velocity field is given by part (i) of the proposition below. The
introduction of (5.5) is motivated by part (i), which is the material version
of (5.2).

Proposition.

(i) The material stretch Lie derivative defined by (5.5) is the Lie derivative
with respect to the rotated spatial velocity field R*(v,); i.e.,

Ly(T) = LR*(v,)(Tz)- (5-6)
(i) If A is the rotated rate of deformation tensor defined by
A == R*(d) i.e., AAB = R;Rg dab o d)t’ : ‘ (57)

then one has the formula
Ly(G) =24. (5.8
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Proof. - ’
(i) Making use of standard properties of pull-backs and the Lie derivative,
by definitions (5.1) and (5.5), we have
. O iy e
Ly(T,) = R* (¢t* 'a_t‘(P?(R:{:lt))
= R*L,(R,T)
7 = L (T).
(i) By definition (5.5), together with (2.4) and (5.2) it follows that
Ly(G) = U,(C)
= 2U, (¢} d)
— 2R*(d) = 24. []
Taking the material stretch Lie derivative (according to (5.5)) on both sides
of the material version (3.11) of the Doyle-Ericksen formula, and using (5.3)

together with (5.8) yields the following rate constitutive equation for thermo-
elasticity:

Lo(Z) ~ Ztr (4) = ff Ly(JZ)

=4, i A 2———6@ O=E:41-M0 5.9
=456 AT 2 924t (.9)

which is the material version of (5.4). The tensor T = JX is simply the rotated
Kirchhoff stress tensor; i.e.. T = R*(z).

Remarks. (i) Clearly, the material stretch Lie derivative Ly(X) may also be
defined as the R-rotated Lie derivative L,(o), since

Ly(®) = L(R*vt)(R*a) = R*(L,(0)). (5.10a)
Tn coordinates, we have the formula :
(L(0))” = RGRH(Lu(Z))*% o ¢, (5.10b)

(ii) The rate constitutive equation (5.9) may be derived by a direct computa-
tion as follows. Taking the material time derivative on both sides of expression
(3.10) yields

2 (UUHE - ZUOU Y L (A):iJU-S-UT. (5.11)

We note that the left hand side of (5.11) is Ly(JX). Since

s & ) 6
oC 0
the equivalence of (5.11) and (5.9) follows.

U-S-UT%U-( >-UEJ(E:A+M-@); (5.12)
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_ (iii) By taking the R-push-forward of the rate of rotated Cauchy stress tensor
X, one obtains the following objective rate of Cauchy stresscs (GREEN & NAGHDI

[1965], DieNgs [1979])
0

O
o=Ri3

R¥c)=0 — 2 -0 —oc - 27 (3.13)

where the spatial tensor 2 = RR” is skew-symmerric. Thus, a is simply the Lie
derivative of o, with the pull-back/push-forward operations by F replaced by
its rotation part R. Introducing the left polar decomposition F = VR, we have

. . o . . .
the following expression for ¢ in terms of the spatial velocity field:

P \

G =V (¢ oV, a)) = VH(L(V4,0)) = Ly (0). (5.14)
Notice that the rotated clasticity tensor & is associated with the material stretch
Lie derivative Ly(X) of the rotated stress tensor through (5.9), and not with
2 — R¥(3).

(iv) The Lie derivative provides the natural way of measuring the rate of change
of a tensor field with respect to a vector field in differential geometry. In the con-
text of continuui mechanics, several definitions to measure the rate of change of
the Cauchy stress tensor have been proposed and called objective rates. (See,
e.g., TRUESDELL & ToupIN [1960] Sects. 147-152.) As noted in MARSDEN &
HucHEs [1983] (pp. 99-102) all spatial objective rates are in fact different mani-
festations of the Lie derivative. The spatial formula (5.4) shows that the Lie deri-
vative of the Kirchhoff stress tensor (essentially the TRUESDELL rate of Cauchy
stresses) is naturally associated with the second elasticity tensor ¢. Obviously,
any objective rate could be used in (5.4) provided the right hand side is properly
adjusted. ‘

The alternative representations of constitutive equations for (isothermal)
hyperelasticity have been summarized for convenience in Table 1 below.

Table 1

Stress Tensor

Elasticity Tensor

Rate Equation

o PR
S~20Ref% C:29Ref—ac 7C S=C:C
o o2
P'—QRefﬁ A:QRefﬁ P:AF
o 29
G = 20— c=4dp ¥ L,(Jo) = Je:d
og g og
X =2 w g4 G LyJX)=JE: 4
e == "iG G (/2 = JE: 4
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5.1, An Application:
The Material Form of the Duhamel-Neumann Hypothesis

The results of this section allow for a derivation of the material version of
the Duhamel-Neumann hypothesis (SOKOLNIKOFF [1950], p.359). The material
version of the Doyle-Ericksen formula (3.11) and our definition (5.5) of material
stretch Lie derivative are the two key ingredients in the derivation.

As used in Table 1, the free energy function, depending on the point values
of C, admits the various representations

¥(C, 0, G,) = ¥(G, 0, G,) = #(g, 6, G,) (5.15)

where, for notational simplicity, the dependence of ¥ on U and the dependence
of % on F has been suppressed. By performing a Legendre transformation on

_&I—’(G, 0, G,) (see ARNOLD [1978], p. 61 for a geometric interpretation), we define
the material complementary free energy y by

207(T, ©,G,) = £: G — 20¥(G, 0, G,) (5.16)

where T = R*(t) is the rotated Kirchhoff tensor. Since ¢ = grer/J, the chain
rule gives

2 3)_5_(; J"'aGr 2 3?'8(; 5.17
QRefaT‘ + ‘"3T_ QRefaG"aT' ( )
Since by (3.11) the last two terms cancel, we are-led to the relation

G=2 A 5.18

which is dual to the formula T = 20ger 0¥/0G. Applying the material stretch
Lie derivative on both sides of (5.17) and making use of (5.8) we obtain

2, 2

0%y 0%y . .
= QRefaT—aT':LU(T) T+ Ot FToE O=TI:Ly(M+N-6 (519

A

where I' and N are the rotated material compliance tensors. Therefore, the total
rotated rate of deformation may be decomposed into the mechanical rate and the
thermal rate, according to (5.19). It is clear that I' and J& are inverse tensors.

6. Covariant Energy Balance and the Doyle-Ericksen Formula

The key step in the development of a covariant formulation of classical
hyperelasticity, is the extension of the balance of energy principle so that it
holds not only for superposed spatial isometries, but for arbitrary diffeomor-
phisms. This extension, due to MARSDEN & HUGHES, reveals the fundamental
role played by the (spatial) Doyle-Ericksen formula. To develop the material
counterpart by a covariant procedure a simple although non-trivial construction
is required. In addition, the convected version of this formula will also be consid-
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ered. First, we summarized the basicingredients involved in the covarant approach,
which are relevant to our development. A complete account can be found in
(MARSDEN & HUGHES [1983], sec. 2.4).

Balance of Energy. Let ¢,: B— S be a fixed motion and 2 C B a compact
region with smooth boundary @£, mapped onto ¢,(2) C S with boundary
0¢,(£2). Let b(x, t) be the external body force per unit of mass, and t(x, z, n)
the Cauchy traction vector. The motion ¢; satisfies balance of energy if '

d

- [ ole+ 3,y dv="[ o<b,v> +r)dv+ [ (tv>+Hhds (6.1)
) R 24,(0)

where e(x, ) is the internal energy per unit of mass r(x, t) is the heat supply per

unit mass, and h(x, t,n) the heat flux across the boundary ¢¢,(£2) with unit normaln.

Covariant Assumption. For the fixed motion ¢,: B— S, which satisfies
balance of energy, consider an arbitrary diffeomorphism &,: S — 5. Postulate
that the new motion q;, = £, ¢, also satisfies balance of energy provided the
metric g is replaced by &g and velocities, forces and accelerations are transformed
according to the standard dictates of the (Cartan) theory of the classical spacetime.
(See MarspEN & HucaEes [1983]. sec. 2.4.) That is, the key assumption is

e(x, 1, 8) = e(x, 1, £fg), X =&(x). (6.2)

Remark. Assumption (6.2) is rather natural and may be motivated as follows.
If &:(S, g8)— (S, g) is a spatial diffeomorphism, one may ask what the relation
between the metrics g and g must be so that the tensor C, a rmaterial tensor,

remain unchanged. Since C = ¢*(@), the condition C = C implies that
g =&, ° 9,0 =&, 6,(C) = &, (6.3)
That is, C remains unchanged if g = ¢, (g); note that g is in the set
O, ={,(2|&:5— S is a difftomorphism}

called the orbit of g. Thus, the assumption that the internal energy transforms
tensorially according to e(x, £, g) = e(x, r, &, (8)) is consistent with the classical
result of constitutive theory since C does not change.

Prior to considering the covariant argument which Ileads to our material ver-
sion of the formula of DoyLE & ERICKSEN, we recall the fundamental role played
by its spatial counterpart in the covariant formulation of the balance of energy
principle.

6.1. Spatial Form

The basic idea is to evaluate the balance of energy equation (6.1) for the mo-
tion ¢, = &,0¢, at time ¢ =1t, for which
0k,

_aTttz'to:w

5111790 = Identity, (64)



The Doyle-Ericksen Formula 225

Use of the transport theorem, the divergence theorem and the Cauchy tetrahedron
construction gives, as in the Green-Rivlin-Naghdi argument, conservation if
mass, balance of momentum, balance of moment of momentum; together with
the additional identity

[ loe—& —o:Kldo=0 | 6.5)
&0
where
1 )
k = ?Lw(g); Le., kg = (me + Whia). (6.6)

In the Green-Rivlin-Naghdi argument one has ¢ — ¢ since spatial isometries
_ leave the metric g unchanged. Under arbitrary spatial diffeomorphisms, however,
(6.2) and the definition of Lie derivative gives

. d . Oe
e=¢ +5§ Trhes 5*(g)=€+%-14w(g)- (6.7)

Substitution of (6.7) into (6.5) and noting that L.(g) can be arbitrarily specified,
yields

de
6=2 Pt (6.8)

Thus, the Doyle-Ericksen formula appears as the essential condition which serves
the purpose of relaxing the “rigidity” part of the assumption that balance of
energy must hold under arbitrary spatial diffeomorphisms.

In terms of the polar decomposition, the above argument leads to the situation
described in the following diagram

U R
(TyB,G,) >(7xB,G) —> (T¢,t()()5,g)
R TE, '
(T$,(X)S’E)
Where
g=£((2, R=TLoRoE!, U=U. (6.9)

Notice that the metric G and C = U*(G), remain unchanged through the argu-
ment. Clearly, to obtain the material version of the Doyle-Ericksen formula, one
must introduce a framework in which the metric G varies under spatial diffeo-
morphisms.
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6.2. Material Form

Suppose we hold the rotation tensor R = R fixed under spatial diffeomor-
phisms &,. Since R is an orthogqnal two-point tensor, and g = &, (g) € O¢, then
the metric G must change to say G so that the orthogonal character of R, expressed

by (2.3a), is preserved. The precise situation is summarized in the following
diagram: '

U R
(TyB,G,) »(TyB,G) —>(T4,0)S,8)
U H T¢,
_ R
(TyB,G) > (TEt(X)S’E)
where H: (TxB, G) — (T},B, (_}) is defined as
H=R 'oT§Rop '=R*§, . (6.10)

Notice that the metric G, in the reference configuration, remains unchanged.
The metric G, however, transforms tensorially according to

G=H"'-G-H!; e, G,—(H HYAH HYGC,; (6.11)

which preserves the orthogonal character of R with respect to G and g=2¢£.(9).

The linear transformation U : (TyB, G,) = (T'xB, G) is obtained by composition
as

U=H-U; ie, Uj— HLUE. - (6.12)

Thus, since U*(G) = U*(G), the material tensor C remains unchanged.

The material form of the Doyle-Ericksen formula can now be derived by a
covariant argument analogous to that used in the spatial case summarized above.
We define the material form E(X, ¢, G) of the internal energy e(x, ¢, g) in the natural
manner by setting

EX, (, G) = e«($(X), 1, R(G)). (6.12)

By use of this definition and (6.10), the material version of the covariant
assumption (6.2) now takes the form

E(X, 1, G) = e(d(X), 1, R4(G))
- e(¢t(X)> t: E:‘k °© R‘Z(G))
= E(X, 1, H¥(G)) (613
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ahd the definitions of material time derivative and Lie derivative lead to
E—E+=:2 pxe
R R
_ i+ &y G 14
=E+ PTek w(G) (6.14)

wliere W is “rotated” vclbuit_y of & at time 1t =1,; ie

.3

W = R*(w). (6.15)

To complete the argument we note that, by making use of standard properties
of pull-backs and the Lie derivative, the term o:k can be expressed as

c: k=R, (X):k
= X :R*(k)

1
= X: 5 R¥(L,(@)

[
=X . 7 Ra‘(L(R*w)(R 'i'g))

= %2 : Lw(G). (6.16)

By substitution of (6.14) and (6.16), the identity (6.5) now reads

[ (2 —1—2)-L G) Jdv = (6.17)
B (Qac_z Ll - ‘

Since Lw(G) can be arbitrarily specified, our covariant argument yields the material
version of the Doyle-Ericksen formula:

)

X2=2 Prek (6.18)

Finally, we show that the argunent leading in the covariant fofmulation

to the Doyle-Ericksen formula (6.18) leads in the convected picture to an ex-

pression closely related to constitutive equation (3.1) for the second Piola-Kirch-
hoff stress tensor.

6.3. Convected Form

In the convected picture, the basic objects are obtained from the spatial objects
by pulling back to the reference configuration. Thus, the convected velocity v,

and the convected acceleration &, of a given motion f— ¢,€ % are vector fields
on B defined as '

v, = (vV), &, =¢f@,). (6.19)
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Similarly, the convected stress tensor  is defined as the pull-back of the Cauchy
stress tensor; i.e.,

S = ¢¥*(o) = JS. (6.20)

The convected form of the Doyle-Ericksen formula may be derived by the
argument leading to the material formula (6.24). The key point to note is that
in performing the polar decomposition of the deformation gradient F, the
metric G can be arbitrarily chosen. Regardless of the choice of G the covariant
argument of section 6.2 must always hold. In particular, by choosing the convec-
ted metric G = ¢’g, since the relations C = U*(G), G = R*(g) and C = ¢f(g)
must hold, we are led to the situation described in the following diagram:

' I F
(TyB,G,) > (TyB,C) > (Ty,005.8)
U H TE:
s !
(TxB,C) > (T30S :8)

That is, the choice of metric G = C implies that
U =1, UX) =HX), RX) =RX)=TFX) (6.21)
where H = F~'o T, o F. We then have the relations
X =R*o0) = ¢¥o)=JS 6.22)

and

24 = Ly(G) = L(C) = C. (6.23)

Therefore, when we make use of (6.20)—(6.23), the argument that led to the
material formula (6.18) now yields
2 oE
= —— 6.24
S J ¢oC (6.24)
which is the canvected form of the Doyle-Ericksen formula. Notice that the co-
variant argument in the convected picture yields, in addition to formula (6.24),
the convected form of the equations of motion; i.e.,

DIVyS + opeed¥®) — &, S =87 (6.25)

where DIV, S is the divergence of S with respect to the metric C= ¥ (g)s
and B=b-¢,.

Remarks. (i) Our covariant argument of section 6.2 (or section 6.3) is essentially
a material formulation of the notion of invariance under superposed spatial
diffeomorphisms. This argument does not involve, nor does it imply, the assump-
tion of material covariance which embodies the notion of invariance under super-
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posed material diffeomorphisms. Explicitly, the function Y7(C, 6, G,) is said to
be materially covariant if for all material diffeomorphisms 77, R—~ B one has

¥(C, 6, G,)o IT, = YA, (C), 6, 11, (G.).

In the context of a Euclidean structure, material covariance and material isotropy
are equivalent.

(i) The covariant formulation of balance of energy directly yields the principle
of virtual work (i.e., the weak form of the balance equations) for hyperelasticity
expressed either in the spatial, material or convected pictures. Notice, however,
that the material form involves the rotated stress tensor, not the first Piola-
Kirchhoff stress tensor.

7. Concluding Remarks

In Section 6, we have focussed our attention on a covariant formulation
of hyperelasticity based on the covariant balance of energy principle, ex-
pressed either spatially or materially. This approach reveals the fundamental
role played by the spatial or material versions of the Doyle-Ericksen formula.
However, this is not the only possible approach leading to a fully covariant
theory.

(i) The Hamiltonian formalism can be used as an alternative to the covariant
form of the balance of energy principle. Again we may proceed materially
(MARSDEN & HUGHES [1983], Sect. 5.3) or spatially (MARSDEN, RATIU & WEIN-
STEIN [1983]).

(ii) A deep understanding of the Hamiltonian formalism: for incompressible
fluids enabled ARNOLD [19664a, b] to prove the nonlinear stability of plane flows
studied by Rayleigh in a situation where one would otherwise expect the usual
difficulties with potential wells (KNops & WILKES [1973] and MARSDEN & HUGHES
[1983, Sect. 6.6]). A similar stability result for compressible plane flow was
found by HoLM, MARSDEN, RATIU & WEINSTEIN [1983]. It is conceivable that a
similar understanding in elasticity will shed light on the energy criterion; see,
however, BaLL and Marspon [1984].

(iii) Finally, we note that in the context of general relativity, the Doyle Erick-
sen formula is the spatial part of the stress-energy-momentum tensor that na-
turally arises when one couples elasticity to the gravitational field in EINSTEIN’S
theory (MARSDEN & HuGHES [1983], Sect. 5.7).
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