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Arnold Diffusion in the Swing Equations 
of a Power System 

FATHI M. A. SALAM, MEMBER, IEEE, JERROLD E. MARSDEN, AND PRAVIN P. VARAIYA, FELLOW, IEEE 

Abstract -We present an application of the theory of Arnold diffusion 
to interconnected power systems. Using a Hamiltonian formulation, we 
show that Arnold diffusion arises on certain energy levels of the swing 
equations model. The occurrence of Arnold diffusion entails complex 
nonperiodic dynamics and erratic transfer of energy between the subsys- 
tems. Conditions under which Arnold diffusion exists in the dynamics of 
the swing equations are found by using the vector-Melnihov method. These 
conditions become analytically explicit in the caSe when some of the 
subsystems undergo relatively small oscillations. Perturbation and parame- 
ter regions are found for which Arnold diffusion occurs. These regions 
allow for a class of interesting systems from the point of view of power 
systems engineering. 

I. INTR~DUCTI~N 

W E APPLY the results on Arnold diffusion of Holmes 
and Marsden [26] (see also [l, sect. 41) to power 

systems [45]. We note that the results in fact apply to all 
systems of the forced pendulum family such as intercon- 
nected power systems employing the swing equations 
model, coupled Josephson junction circuits with negligible 
dissipation, a Josephson junction driven by a direct current 
source (plus a small alternating current) coupled to two 
(respectively one) nonlinear oscillators, and coupled me- 
chanical pendulums. The precise calculations are carried 
out here for a dynamical model of interconnected power 
systems. 

In the dynamical behavior of a large interconnected 
power system, the question of transient stability is often 
considered. This concerns the system’s behavior following 
a sudden fault (such as short circuit) or a large impact 
(such as lightning). The transient stability is precisely the 
Lyapunov stability in a state-space formulation of a sim- 
plified differential equations model possessing multiple 
equilibria. Let the dynamics be given by i = f(x) and let 
x0 be a stable equilibrium point which is presumably 
“closest” to the prefault equilibrium point (see [32], [9]). 
The transient stability problem is to determine whether a 
given point in the state space belongs to the region of 
stability of this stable equilibrium point. Thus the transient 
stability problem leads to an investigation of the region of 
stability of a given stable equilibrium point [28], [33], [13], 
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[14], [18]. Many studies of transient stability [28], [33], [13], 
[14], [18] have been conducted exploiting a first integral of 
the differential equation as a Lyapunov (energy) function. 

Kopell and Washburn [29] were the first to show the 
presence of chaotic motion in the classical swing equations 
model of power systems for a 2-degree-of-freedom system 
(3 generators). Their work is based on the original 
Melnikov method for vector fields (see Holmes [24]) and 
the energy function was not exploited to locate the energy 
levels where chaos resides. 

Here we show the presence of Arnold diffusion in the 
(n 2 3)-degree-of-freedom Hamiltonian system (with con- 
straints) of the classical model. In the case when (n = 2) 
only horseshoes are present. This case is analogous to the 
one obtained by Kopell and Washburn except that we also 
specify the energy levels on which chaos resides, an ad- 
vantage of exploiting the energy function. 

The paper is organized in the following way. In Section 
II we summarize the key result of Holmes and Marsden 
[26]. Section III contains some motivation and the deriva- 
tion of the swing equations model. In Section IV we 
consider specific choices of parameter ranges to simplify 
the model before applying the results of Section II. In this 
section we also study the Hamiltonian formulation of the 
swing equations. They form a 2n degree of freedom system 
with two time-independent constraints. In Section V we 
show that the conditions of Section II can be satisfied for a 
large choice of parameters. These conditions can be sim- 
plified if all but one of the subsystems undergo small 
oscillations. This case is discussed in Section VI. Conclu- 
sions and suggestions for future work are collected in 
Section VII. 

II. ARNOLD DIFFUSION IN HAMILTONIAN SYSTEMS 

In this section we summarize the results of Holmes and 
Marsden [26] for Hamiltonian systems with n-degrees of 
freedom (n > 3). These results extend the work of Arnold 
[ll], for more discussion of Arnold diffusion, see [l]. 

Problem Statement 
Consider the unperturbed Hamiltonian system 

H’(q, P, 2, Y) = F(q, p)+G(x’, y’) (2-l) 

where F is a Hamiltonian which possesses a homoclinic - - orbit (q, p) associated with a hyperbolic saddle point 
qo, po. Let x be the energy constant of this orbit, i.e., 
F(ij, p) = h. The parameters (q, p, I, y) are assumed to be 
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canonical coordinates on a 2( n + 1)-dimensional symplectic fold. Let 
manifold P; q and p are real and x’ = (xi,. . . , xn), y’ = 
(VI,- * *, y,) are n-vectors. We assume that in a certain 
region of the state space a canonical transformation to 
action-angle coordinates (6,; . ., a,,,, Zi; . ., I,,) can be 
found such that the system (2.1) takes the form 

HO(q,P,d,I)=F(q>p)+ i G,(Zi) (2.4 
i=l 

where 
G,(O) = 0, for all j 

and 

c2j(zj)=$o, for Ij > 0. 
J 

(2.3) 

Applying the reduction procedure (see Holmes and 
Marsden [25], [26]), we solve Ho = h for Z,, thereby 
eliminating the action Z,. We also replace the time variable 
by the 2a-periodic angle 9,. Then the equations 

Gj(lj) = h, 

i3j=~j(zj)8n+‘#j(o), j=l;**,n-I 

4= 409 P = PO (2.4) 
describe an (n - 1)-parameter family of invariant (n - l)- 
dimensional tori T( h,, . . . , h,-,). For a fixed set of 
h . .*, hnel, the torus T(h,;*., h,-,) is connected to 
itielf by the n-dimensional homoclinic manifold 

Gj( Ij) = h, 

lYj=slj(zj);m+ly, l< j<n-7 

q=4(%-+Y) 2 p=p(8n-tY;). (2.5) 

This manifold consists of the coincident stable and un- 
stable manifolds of the torus T(h,; . 0, h,-l), i.e., 

W(T(h,;.., h,-1)) = W”(Tth,,- . -3 h,-1)). 
The perturbed problem considered here has the following 
form 

i=l 

(2.6) 
where H’ is 2m-periodic in 6,, . . . , fi,, (precisely, 
2r/S2,(Zi)-periodic) and p > 0. For sufficiently small p, 
KAM theory asserts that (under nonresonance and nonde- 
generacy conditions given below) a positive measure of the 
(n - 1)-dimensional tori T(h,; . ., h,-,) persists (see 
Arnold [12, appendix 81). We denote these tori by 
T’Jh,,. - a, h,-,). Their corresponding stable and unstable 
manifolds W”(T,), respectively, W”(T,), are Ck close, k > 
1, to the unperturbed homoclinic manifold 

W”(T(h,;.., h,-1)) = W”(T(h,,- . .> k-1)). 

Let h > h be the total energy of the perturbed Hamilton- 
ian HP of equation (2.6). Now consider the n-parameter 
family of orbits filling the unperturbed homoclinic mani- 

(~,~,~,,...,~~,,Z,,...,Z”) 

= (q(t),~(t),~2,(z,)t+9,0,...,~,(z,)t+~~,z,;..,z,) 
be the parameterization of these orbits and select one. Let 
{ F, H’ } denote the (q, p) Poisson bracket of F( q, p) and 
fwl, P, 81,. . *> %,, Zl,. . . , Z,) evaluated on this orbit. Sim- 
ilarly let 

{Zk,H1} =-$, k=l;**,n-1 
k 

be evaluated on the same orbit. Then define the Melnikov 
vector M($‘) = (Ml;. -, Mnel, M,) by 

M,(9,0,...,9,0,h,h,;.. ,hn-l):=/m {Zk,H’} dt, 
-CO 

k=l;-.,n-1 (2.7) 
and 

M,(6,0;..,~~,h,h,;.. ,hnel):=lm {F,H’}dt 
--03 

where the integrals above are required to be, in an ap- 
propriate sense, conditionally convergent. That is, they 
mean 

n@m s-“, { . . . > dt 
” 

for suitable sequences S,,, T, + 00. 
Consider the following conditions: 
(Cl) F possesses a homoclinic orbit (ijJt>, p(t)) con- 

necting a saddle point ( qo, po) to itself. Let h be the energy 
of this orbit. 

(C2) !ilJ(4) = G,‘(Zj) > 0 for j=l; . *, n. 
(C3) The constants Gj(Zj) = hj, j = 1; . ., n are chosen 

such that the unperturbed frequencies Q,( I,), * * . , S&( Z,) 
satisfy the nondegeneracy conditions (i.e., Q;(Zj) # 0, j = 
1; . *, n) and the nonresonance condition, i.e., 

t kifJi(Zi) = 0 
i=l 

where ki are integers, implies ki = 0 for all 1~ i < n. 
(C4) The multiple 2a-periodic Melmkov vector M: R” 

+ R” has at least one transversal zero, i.e., a point 
<sp; * *, 9;;‘) such that 

M(i?;“,***,~;o)=O 

and 

where DM is the n X n Jacobian matrix of the vector M 
with respect to the initial phases (8,“; . . ,a:). 

We can now state the main result. 

Theorem 2.1 (Holmes and Marsden) 
If conditions (Cl)-(C4) hold for the perturbed system 

(2.6) then, for p sufficiently small, the perturbed stable and 
unstable manifolds W”(T,) and WU( T,) of the perturbed 
torus T, intersect transversally. Moreover, a finite transi- 
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tion chain of such tori T:, * * . , Tk, can be chosen such that 
FV”(~)h FV’(~j”) and W”(T;l+‘)h W”(TL), 1~ j< k 
-1. 

(r+ denotes transversality of the intersection.) The tran- 
sition chain of tori are responsible for the occurence of 
Arnold diffusion. Holmes and Marsden suggest that these 
transition tori can survive certain positive and negative 
damping, employing a technique which they had developed 
in [25]. 

An example which illustrates Theorem 2.1 is that of a 
simple pendulum linearly coupled to two nonlinear oscil- 
lators. Its perturbed Hamiltonian function can be written 
as follows (with the two oscillators in action-angle vari- 
ables) : 

ZZp=$-cosq+G,(I,)+G,(I,) 

+ 5 ( I[ ((2Zi)1’2siniEl - q)2+((2Z2)1’2sin62 - q)2]. 

One shows that conditions (Cl)-(C4) are satisfied for this 
system by direct computation. 

III. THEMATHEMATICALMODEL 

We introduce the simplest model of a power system. The 
equations resemble a system of differential equations de- 
scribing a set of coupled pendulums with constant forcing. 
Recently [9], [lo], [16], [17], [32] this model has been 
subjected to serious theoretical analysis to assist in under- 
standing its dynamical behavior. 

The model consists of three main components: genera- 
tors, a transmission network and loads (Fig. 1). We assume 
that the transmission network has (n + m) nodes num- 
bered 1;.-,n,n+l;.., n + m with 0 as a reference 
(datum). A generator is connected to each node 1 through 
n, while an impedance load is connected to every node 
(Fig. 1). 

We perform a standard network reduction on the net- 
work, retaining as nodes only the internal nodes of the n 
generators. The swing equations which express the genera- 
tor dynamics under the assumptions of constant rotor 
winding flux, constant mechanical torque, and the absence 
of voltage regulators are as follows (see [6], [19], [32] for 
details): 

where, 

Mk 

Dk 
P mk 
P ek 

wk 
WR 

Fig. 1. A sample power system;lt;,rators, transmission network, and 

The electrical power output is a function of the angle 
differences as follows: 

P,,:=G,,E,‘+ 2 EiEJyijcos(@ij-Si+Sj), 
j=l 
j+i 

i=l;..,n 

where Gii, Kj, O,,., and E,, are all constants, defined as 
follows: 

Ei the magnitude of internal complex voltage (the mag- 
nitude of voltage behind the transient reactance), 

yij the transfer admittance magnitude between internal 
nodes i and j, 

Oij the transfer admittance phase between internal nodes 
i and j, 

G,, the total admittance at the internal node of gener- 
ator i. 

Assume Oij = 7r/2 and assume also that the damping 
constants Di = 0. 

If we define P,(: = P,,,i - GiiEF) to be the exogenous 
specified mechanical input power and denote the constant 
quantity EiEJyij =:yij, then we may write the swing equa- 
tions for machine i as 

h4i$q+Dic+=P,,,i-Pei, ;..,n i=l si = wi - OR (3.1.i) 

inertia constant, 
Mi~j=Pi- k yijsin(Si-6,). 

i=l 

(3.2.i) 

damping constant, )#i 

constant mechanical power (torque) input, 
electrical power (torque) output demanded by the 

We note that the system of equations (3.1), (3.2) describe 

network, 
an n-degree-of-freedom Hamiltonian system with the en- 

the angle of the internal complex voltage or the 
ergy function: 

torque angle of the k th machine, 
the rotor angular velocity of the k th machine, w= 5 $4i(wi - wRy- k Pits, - c yijcos(6, - Sj). 

the reference frequency of the power system (usu- 
i=l i=l i<j 

ally wR = 2~60 rad/s). This energy function is Hamiltonian on the covering space 
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R*“, but only locally Hamiltonian on the “true” space 
R” x T” where the Si are considered modulo 2n. 

The energy function W has been utilized as a Lyapunov 
function to determine an estimate of the region of attrac- 
tion of a stable equilibrium point of the swing equations 
(see Willems [41], El-Abiad and Nagapan [18], Fouad [19], 
Pai [32]). 

Assume that the mechanical power produced is totally 
absorbed by the network, i.e., 

e pi=o. (3.3) 
i=l 

Summing up (3.2.i) gives 

i iwilL+= t pi=o. 
i=l i=l 

Integrating with respect to time gives 

i M,w, (t ) = C, (constant) (3.4) 
i=l 

which when evaluated at the initial time t = 0 equals 

e iQ.d,(o) = c,. 
i=l 

Using (3.1) and the constraint (3.4), one obtains 

f M,&(t) = Cl - WR t lq. (3.5) 
i=l i=l 

Let us define the total inertia of the system to be the sum 
of the individual inertias, i.e., 

M:= kMi. 
i=l 

Integrating the constraint equation (3.5) with respect to 
time, we obtain 

e Mi~i(t)=C,t-(w,M)t+C2. (3.6) 
i=l 

Rewriting the constraints (3.4) and (3.6) and replacing the 
constants by their values one gets 

k lqq(t) = t MiLJi(0) (3.7) 
i=l i=l 

i MiSi(t)= t M,s,(O)+t 2 Miui(o)-MoR . 

i=l i=l i i=l A 

(3.8) 

Equations (3.7) and (3.8) are time-dependent constraints. 
We make a coordinate change to transform these con- 
straints to time-independent constraints, thus simplifying 
the system of equations. These constraint equations reduce 
the space of the dynamical motion by one degree of 
freedom or two dimensions, as is seen below. 

Define the following transformation: 

wi --+ q = wi - $ ,g MjUj(0) 
J=l 

where we have employed the so called center-of-angle 
reference frame without transforming to center-of-angle 
coordinates. Our transformation is analogous to the one 
utilized by Kopell and Washburn [29] except for the factor 
of (l/M). 

With this transformation and dropping the overbars we 
can summarize the autonomous swing equations with con- 
straints as follows: 

8, = wi 

Mihi=Pi- t yijsin(6i-6j), 
j=l 
j#i 

with the time-invariant constraints 
n 

c MiSi = 0 
i=l 

e lkf,u, = 0 

(3.9.i) 

lgi<n (3.10.i) 

i=l 

and the energy (Hamiltonian) function . 

(3.11) 

(3.12) 

w= e g4pJ; - 5 P&- c ~yijcos(6i-6j). 
i=l i=l i< j 

(3.13) 

From the constraint equations (3.11) and (3.12) it is 
observed that the system can be reduced by one degree of 
freedom. This procedure of eliminating a degree of free- 
dom by making use of a conservation law is a special case 
of the procedure of reduction; see Abraham and Marsden 
[4, ch. 41. 

IV. PERTURBATIONAND SCALINGPARAMETERS 

We begin by choosing “transfer” parameters for the 
swing equations model. 

4.1. Transfer Susceptance Parameters 
Choose the coupling parameters y,,, i, j = 1,2, - . . , n - 1 

to be very small (i.e., weak coupling) of order c, E > 0, (how 
small E must be, is determined later). Let (recall y,, = yji) 

yij = eBij, l<i,j<n-1 i#j 

and 

Yin = Bin 9 l<i<n-1. 

Then our system of equations becomes 

&=t.+, l<k<n (4.1 .k) 
n-1 

Mi~i=Pi-E C Bijsm(6i-~j)-Bi,sin(6i-6,), 
j=l 
j#i 

l<i<n-1 (4.2.i) 
n-l 

M,b,,=P,,- c B,jsin(6,,-6j) (4.2.n) 
j=l 
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with time-invariant constraints 
n 

CM,S,=O or a,=- 1:: z6j (4.3) 
i-l n 

n n-1 M. 
CM,q=O or tin=- C 4~. 

j=l Mn ’ 
(4.4) 

i=l 

and the Hamiltonian 

W((61,..~,~,,WI,...,W,) 

n-l n-l 

--E C Bij~0S(6,-6j)- C Bj,COS(Gj-6,). 

i<j j=l 

(4.5) 

4.2. The Case of Uncoupled Machines 

Consider the case E = 0. This corresponds to machines 
1; * *, n - 1 being connected to machine n but not to each 
other. From (4.3), (4.4), and (4.5), 

w”(~l,...,~n-l,wl,...,~n-l) 

the critical set equations as follows: 

(4&i) ( 

or in a matrix form 

r 8W0 1 

with the elements of A given by 

4 Mk ajj=l+w and ajk=w) for all j, k and j # k. 
n ” 

Similarly, the elements of B are 

(4.6) 

Our next main concern is to evaluate the effect of the two 
states S, and wn on the rest of the system. These states are 
functions of the rest of the states subscripted 1; . . , n - 1 
via (4.3) and (4.4) and thus they produce the coupling of 
(4.6). 

w, and S, shall be restricted to be periodic with small 
amplitude. This implies that the coupling Hamiltonian of 
(4.6) shall be of the same small order and hence one 
obtains the Hamiltonian formulation of Arnold diffusion 
as in Section II (see also [26] and [l]). In the power systems 
context this amounts to considering the effect of the largest 
(infinite) machine on the system. 

4.3. Determination of the Critical Set 
We now locate the critical points of the energy function 

W”. They must satisfy the following equations: 

Mjuj+Mn+ =0 
uJ I 

awe -= as, -q+Bj,sin(6j-6,)+ 

n-l 

. -P,,-iGiB,sin(6,-6,) =O. 
I 

Recall from Section II that P,, = -C~-‘Pj, so we may write 

Therefore, the 2( n - 1) X 2( n - 1) matrix 
A 0 [ 1 0 B 

is nonsingular with determinant >l. Thus equations (4.7) 
and (4.8) are equivalent to the following simpler condi- 
tions: 

wi = 0 (4.9.i) 

l<i<n-1. 

Let 
(4.10.i) 

and define 

n-l 

Ai:=si+ c +$a,, 
k=l n 

(4.11.i) 

to be the mod-(2m) constant “angle” such that (4.10.i) is 
satisfied for all i = 1; . -, n - 1. Assume that the point 
(( Ai,O), i = 1,. . . , n - 1) is a local minimum of the energy 
function W” (or a stable point of the differential equation, 
see [8, 16, 371 for a detailed treatment of the critical set). 
One can verify that every point of the critical set is 
non-degenerate (the Hessian matrix of W” is nonsingular). 

We remark that the A$ i = 1,. * *, n - 1, uniquely de- 
termine the SL, k=l;**,n -1, i.e., the matrix defining 
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Fig. 2. The power system diagram (our model). 

the linear map (8:; . a, a,“-,) --j (AI; . -, a”,-,) of (4.11) is 
invertible. 

Let us now define as new state variables (a, o) where 

u = (Ul,. * * ,a,-, , ) with ak=ak-6/: l<k<n-1, 

and w = (wr; * ., w,-r) 

is the same as before. Then we rewrite the Hamiltonian as 
follows : 

n-1 

- x1 Bin 

with H(O,O) = 0. 

4.4. The Choice of Constants (Parameters) 
Suppose M,-, -K MI; . . , and Mnm2 -SK M,. Let us ex- 

press this condition by introducing a nonzero small param- 
eter a such that 

Mm M,:=L Mi 
cl2 ’ 

M”$=&, and Mi:=;, 

l<i<n-2 
where the overbarred quantities are of the same order 
(O(1)) and M,” is large. Denote 

Note that for an infinite machine (i.e., M,, or M,” + CO), 
we have pi + 0, 1 G i G n - 1. We further require that each 
“large” machine is connected to the nth machine via a 
“strong” line (see Fig. 2), i.e., we let 

I$ 
Bin = T 9 l<i<n-2 and B,,-,,,=B,-,. 

Correspondingly, let 

pi+ lgi<n-2 and P,,-l=p,-l. 

Let p = (pr,. . a, P.,-~, j&,-r), and rewrite the Hamiltonian 
function as 

(4.12) 
One may observe from (4.12) that the coupling between 

subsystems 1, - . . , n.- 1 is due to the states S,, and w, of the 
n th machine. That is, if M,” = 00 then the parameters 
j.tk=o, k=l;.., n - 1 and one obtains the decoupled 
(’ unperturbed’) Hamiltonian. For notational simplicity let 
Pl= ** * = /An-* = j&-l = p. 

The unperturbed Hamiltonian (/J = 0) is 

- @-,[cos(u,-,+ A;-,)-cos(A;-,)I}. 

(4.13) 
We note that the perturbation affects the critical set: the 
unperturbed system has the point (A:, 1. . , A”,- ,,O) as a 
critical point. But after perturbation this critical point is 
transformed to the point (as,. - . , Qr,O) via (4.11). Thus it 
is necessary to use the Melnikov version developed by 
Holmes and Marsden [26] rather than that of Arnold [ll]. 

The perturbation parameter is ~1 and the purpose of the 
parameter a is explained as follows. The unperturbed (i.e., 
p = 0) Hamiltonian system describes a system of pendu- 
lums with constant forcing. The phase portrait of each of 
its subsystems is thoroughly discussed in Andronov and 
Chaikin [7, p. 2931. Under the assumptions that 3. < Bj, 
1 G j G n - 1, one obtains the phase portrait for each sub- 
system j as in Fig. 3. 

The parameter a is selected to boost the energy values of 
the level curves of subsystem i, 1 G i < n - 2, compared to 
the energy values of the level curves of the subsystem 
n - 1. More precisely let the energy constant of the separa- 
trix (or homoclinic orbit) of subsystem n - 1 be 3. Then 
one chooses a small enough such that the total (system’s) 
unperturbed Hamiltonian, with an energy constant h > h 
and h close to z, possesses solution curves which are cross 
products of one homoclinic orbit (that of subsystem n - 1) 
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rototion 

I I 
Fig. 3. The phase portrait of a pendulum with constant forcing. Fig. 4. A homoclinic orbit (subsystem n - 1). 

and (n - 2) closed orbits (those qf subsystem i, 16 i < n - 
2). 

w, ’ 

As a consequence of this choice of parameters, the 
Hamiltonian system will satisfy the first three conditions of 
Section II (i.e., (Cl)-(C3)). Also note that the combined 
subsystems i, 1~ i G n - 2 admit, implicitly, action-angle 
coordinates (see Arnold [12, p. 2851). 

We now scale the perturbed Hamiltonian H(P3a), (equa- 
tion 4.12), by multiplying through by (a/Mj), where Mj: 
1 G j d n - 1 are of the same order (O(1)) (for clarity, 
assume all aj are the same). We expand in powers of the 
small perturbation parameter p to obtain the following 
(expanded) Hamiltonian: 

(~,““J 

Fig. 5. Closed orbits of a pendulum (subsystem i, 16 i < n - 2). 

n-2 

H”= ,gl $+p,r~~-&[cos(o,+&)-cos(A;)] (B) For each i, i =l; . ., n -2, the subsystem (i) 

-&-l[cos(un-l+ A;~,,-cos(A;~~)]] 
which is a nonlinear oscillator with amplitude-dependent 
frequencies (this is a property of the closed orbits of a 

+a~f[~~~~itaw.-~~+ap[~~~P~4+aPA-I] 
pendulum phase portrait (see Fig. 5)). Denote a solution 
curve of the oscillator i, which is a projection of a homo- 
clinic orbit of the total unperturbed system on the sub- 

n-2 

+ap c &sin(ui+AS,) c 
[ ~~~uk + aun~l]+o~a2p2) ‘Pace !y by (q,‘i)* 

(AB) Fmally we identify the terms of order p as a 
i=l perturbation energy function, H ‘, 

+ a2p&-l sin(u,-, + A;-,) [ilIuk + aunp1l c 

+0( a3p2) (4.14) 
If1 = +a[ ‘i’q + at.dnelr+ a[ ‘i2pnoi + apaqPl] 

i=l i=l 

n-2 

where pk = Fk’,/gk, pk = Bk/ak, and so on. 
At this point one may identify the subsystems as fol- 

+a c &sin(ui+A;) c 
i=l 

[:;;“k+aun-l] 

lows: 
(A) The subsystem (n - l), + a2&-l sin(u,-, + Asn-l) [ ;I”k + aun-l]e c 

aF(un-,,on-l) = a +&_I - pn-l~n-~ 
i 

-&-l[cos(un,_l + Asn_,,-c~s(ALl,]) 
V. THE EXISTENCE OF ARNOLD DIFFUSION 

We now investigate whether the conditions of Section II 
can be verified. First one notes that the solutions of each 

(the Hamiltonian of a pendulum with constant forcing), subsystem i, 1 d i < n -2, are all closed orbits. Thus the 
which possesses the homoclinic orbit den_oted (3- 1, Z&p 1) solutions of the combined (n - 2)-subsystems lie on (n - 2) 
and shown in Fig. 4. Let F( iY,,-,, GnPl) = h. dimensional tori and a transformation to action-angle vari- 
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ables is possible. In fact for each subsystem i the action is 

~,(h,)=~~~m~[2(hi+p,oi+~,cos(o,+A~)]1’”doi 
lrnl” 

(5.1.i) 

where 

&:=h;-cos(A;), hi < - pi(r - A;)+&cos(As,) 

hi 
‘i,,(‘im,,) 

energy constant such that Gi(ai, wi) = hi 
is the maximum (minimum) value of ui 
at which the energy level curve, Gi( ui, wi) 
= hi crosses the a,-axis. 

If pi = 0, the integral (5.1.i) may be transformed into an 
elliptic integral which can be looked up in Integral Tables. 

Secondly, the frequencies Qi of the closed orbits of each 
subsystem i, 16 i < n - 2, are amplitude dependent. There- 
fore, one may select energy constants Gi ( ui, wi) = hi, 1~ i 
< n - 2, such that these frequencies are rationally indepen- 
dent. Thus the first three conditions of Section II ((Cl), 
G?, and (C3N are clearly satisfied. Now we seek to satisfy 
condition (C4), so we compute the Melnikov integrals. 

Using the perturbed Hamiltonian HP, (4.14), and 
evaluating the integrals along a homoclinic orbit 
(irl,...,~~n-l,sjl,...,~~csI-l), oneobtains 

fi,:=J_“_(c;,H’) dt 

00 

/ i( [ 

n-2 
= -q a -&cos(ai+A;) c ~~+aa,-, 

--oo k=l Ii 
i n-2 

+ar c Pj-Pjsin(aj+A>) 
j=l 1 

+ a2(pne1 - pnpl sin(a,-, + A$-i)) 
I 

[ 

n-2 

+(Y c ~~+(~zj,-i (Pi-&sin(i$+A~))dt. 
k=l 1 

(5.2.i) 

We note that only a product of the oscillators variables 
(subscripted i, 1~ i < n - 2) with the homoclinic orbit vari- 
ables (subscripted (n - 1)) would produce nonvanishing 
terms. 

The Melnikov integral measures the separation between 
the stable and unstable manifolds by measuring the energy 
differences along two curves which are, respectively, 
asymptotic to the invariant torus as t + cc and t + - cc. 
Because these curves need not be close on the torus, the 
limits of integration must be chosen carefully. Such terms 
arise from products of oscillator variables in (5.2.i). These 
terms are zero when the appropriate limits are chosen, and 
so may be omitted from (5.2.i)-see Appendix A. (A 
similar phenomena occurs in the pendulum oscillator ex- 
ample of Holmes and Marsden [26] although they did not 

discuss it). Hence the integral of (5.2.i) above reduces to 

ATfi=J_-~(-a’(~[ pj-Pisin(a,+A~)])o,-, 

+a2[pi-&sin(&+A:)]7;i,-, 

-~2[Al-P,Pisin(o,_l+A\-,)]Zi)dt. 

One may divide by a2 to obtain the Melnikov integral 
independent of the (scaling) parameter (Y. Letting 

hi= !$ 

ki=JP,(-($[ P;-8isin(o,(s(t-ti))+h”,)])o,-l(t) 

+[~~-&sin(~?~(O~(t-t~))+A;)]~j~-i(t) 

- [P,-~ -Pn-lsin(~n-l(t)+ll”,-l)l 

-i&(L$(t - ti))) dt (5.3.i) 

where the variables ai, wi are periodic in t, and with 
(amplitude dependent) frequency Q. Note that 

q(s$t) = ~~i(eit). 

Similarly, along the same homoclinic orbit (a,, . . . , 
a,-,, q; * -, O,- i) one computes 

i13~-~:=/~ {F,H'} dt 
--oo 

= 
/ 

co 
- aq-, a’( - ~n~lcos(a,~l + A”,-,)) 

-CO ( 

1 

n-2 

’ k;lck + @-1 1 
( n-2 

+a2 Ir;p,-P,sin(q+4) 
I 

+ CX~(P,-~ - &, sin(a,-, + &i)) 
I 

I 

n-2 

+ (Y2 k;l wk + a(;j,-l 1 
-c~(p,-~ --&ml sin(a,-, + A”,-l)) dt. 

(5.4) 

As before, products of oscillator variables can be omitted 
and so only a product of variables of subscripts {i = 
1; * .) n - 2) and {n -l} contribute to the evaluation of 
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the integrals. Hence the Melnikov integral reduces to and 

xl-,= O” -a3 

ii [ --w 
$(p,, -Pn-1si4%-1 + al,,))] 

n-2 

[ 

n-2 

. C ck--ly3 C (p,-pisin(O;+A;))W,-, 
k=l j=l 1 

n-2 

+a3 k~l(pn-l-P,l-lsint~n-l+aF,,-l))rj, [ Ii dt 

which shows that the Melnikov function can be made 
independent of LY, (a does not affect the transversal zeros), 
we, therefore, scale the Melnikov integral as follows. Let 

tin-1 fin-, = - a3 
so 

tin-, = k2 jm (-$[ pn-l -L1 sin(%l+ ALl)l k-1 --w 

Wk(Qktt - tk>> 

= f: - jO,ajsin(jQk(t - ik)) 
j=l 

J 

= c (-@j~k)[Sin(j~kt)cos(j8ki,) 

j=l 

This expansion seems useful for computational purposes 
when the unperturbed solutions ak, Wk are not available in 
a closed analytic form. Of course one should obtain an 
upper bound on the error for this approximation to be 
meaningful. In the case when the amplitude of the periodic 
solutions are very small one can approximate these solu- 
tions by the first terms of the Fourier expansion, with some 
small error term. This is treated next. 

*‘k@k@ - tk)) VI. A RESTRICTEDCASETO SMALL OSCILLATIONS 

-[Pk-pksin(~~(ak(t-tk)+A~)]w,-l(t)}dt. 

(5.5) 
We may now state the following result. 

Theorem 5. I 
Let h > h be such that the subsystems i, 1 G i G n -2, 

possess closed orbits only. If the Melnikov integrals de- 
fined by (5.3) and (5.5) possess at least one transversal 
zero, then, for a sufficiently large machine M, (i.e., for p 
sufficiently small), Arnold diffusion arises on the energy 
level h. 

Following remark 4 on p. 672 of Holmes and Marsden 
[26] (which is due to Weinstein), it is noted that transversal 
intersection of the perturbed stable and unstable manifolds 
of the invariant tori occurs for almost all Hamiltonian 
vector fields. We note that our system has a specific vector 
field even though there is a freedom to change parameters 
(e.g., pj, ej, etc.). Thus we must test explicitly if the 
Melnikov integral equations possess transversal zeros. 

Remark: One may consider the Fourier expansion of the 
closed curves ijk, Wk, k = 1,. . . , n - 2, up to any integer J, 
as 

‘k@k@ - tk>) 

= j$lajCOS(in,(rl,)) 

J 

= C ai[cos(jQkt)cos(jC2Jk)+sin(j!Jkt)sin(jQkik)] 

If one requires that the solution orbits of each unper- 
turbed subsystem i, 1~ i 4 n -2, is of a sufficiently small 
order of magnitude, then one can derive explicit conditions 
for a transversal zero. 

Consider the original Hamiltonian equation (4.12) (be- 
fore scaling in (r). Assume that (r is sufficiently small and 
that the closed unperturbed solutions of each subsystem i, 
1~ i < n -2, is of order (Y in magnitude, i.e., one may 
substitute au, (respectively, u.+) for ai (respectively, oi) 
for all l~i~n-2. Let jinP1,pk=p, k=l;..,n-2. 
After cancellations and collections of terms we obtain 

n-21-- 
Hl=a c +w; +ani2 

i=l i=l 

n-2 

+a2 c &cos(A;) 
i=l ’ 

+ ;M,_lw,z-l- p,,-l 1 
-q-1 cos(u,-l + A;-,)-cos(A;J 

- a2 Si+,-, + A;-,)+O(d$) 1 
n-1 1 1 2 

c pwk 
k=l 

j=I - where 1= 1 and s = 2. We may write the Hamiltonian in a 
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scaled form. 

This formulation is particularly interesting since it re- 
sembles Arnold’s first example of “Arnold diffusion” (see 
Arnold [ll]). We shall show that the Hamiltonian, Hi will 
meet all the requirements of Section II. 

One may consider /.L as a perturbation parameter which 
couples the Hamiltonian system, and (Y as a small (non- 
zero) parameter which measures the “size” of the neighbor- 
hood of the stable equilibrium point of the decoupled 
(p = 0) subsystem i, 1 G i G n -2, within which solutions 
are restricted. 

For a fixed (II > 0 set p = 0 to obtain the decoupled 
system. We note that the nonlinear oscillators are ampli- 
tude dependent due to higher order terms in (Y. 

Again one may identify the subsystems as follows. 
(a) The subsystem n - 1 with Hamiltonian 

1 
F(un-l,w,-l):=~W”Z-l-Pn-lun-l 

-Pn-l,“b+-l + A”,-1)-cosP-,)I 
possesses a homoclinic orbit (a,-,, w,- 1) of energy level 
F($l, CJ-~) = h, and 

(b) Each subsystem i, i = 1, * * . , n - 2, with Hamiltonian 

is a nonlinear oscillator. Note that 0( (r2), which is indepen- 
dent of CL, is responsible for the amplitude dependent 
frequencies of which 

(&co~(A;))“~ 
is the first term of the Taylor expansion. 

(C) The coupling Hamiltonian is the following function 
ofpandar 

(6-l) 

Integrals of products of oscillators (subscripted 1 d i < n - 
2) vanish as before, so (6.2.i) reduces to (see Appendix A). 

~i=jrn ((pi,COs(A~))[-cJi~~-1+Sj,_l~i] 
--co 

+ Oi[Pn-l-P*-l,n sin(En-l + h”,-,)I) dt 

Noting that ai = A, sin(Qit)+O(cu), first substitute in the 
Hamiltonian equation (6.1), then rewrite the Melnikov 
integral as 

iii= jm {Gi,H’}dt 
--oo 

= (~inCoS(A~)[(~~_,AiCOS(~it))~,COS~iti 

+(17~~~A~sin(~~t))00,sin~~t~] 

m + 
[j 

Vl{ - QiAisinQit} dt cos(Qiti) 
-co I 

- 
V 

m V,{ - C2iAicos(s2i)t} dt sin(Qiti) 
-CO 1 

(6.3.i) 
where we have used 

d-- -- 
~"iU,-l=Wi~~;t-l+UiO,_l 

and 

I’, = -2(&,co~(A~~)a,~, + p,pl 

-~nB,_l,nsin(~n’,_,+A”,-l). 
Similarly, one computes the following Melnikov integral 

n-l n-l 

i=l k=l k=l k=l 

2+O(a1pS) 

where s = 2 and I=l. 
We now compute the Melnikov integrals along a homoclinicorbit (i$; . ., i;s,-l, Cl; * *, Cnel). 
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ii?-,= j* 
-03 

{F,Hl}dt= j-1 -~~~l,~cos(4,+~~~~)~~~~k-~~~(P,,co.~~)f 

n-1 

+(~,-l~&-l,nsin(~~-l+A~-l) - c 5, .(~~-l-P,-l,.sin(a,-,+A~-,) Ii I dt 
k=l 

(6.4) 
which, with p,- ,:=p,-, and &l:=&l,n, reduces to (see 
Appendix A) Equation (6.7.i) gives 

+knCOS(A;)tJn-li?~ dt 
1 

by direct COIIIpUtatiOnS and noting that uk(t - tk) = 
A,cos(t - tk), one obtains 

~n-l=n~2([pn~l-j3n-lsin(~n-l+A~-l)] 
k=l 

*~,df?~t)(a,cos~~tk 

+([&I-&-lSin(%-i+ A~n-i>l 
. A, sinQkt)?, sinQZktk 

+2(/- [~n-l-Pn-lsin(ri,-l+A~-l)l 
-cc 

~O,A,sinSl,tdt cosn,t, 
1 

-2 
(j O” [Pn-l-Pn-lSin(%-1 + At-1>1 

-m 

‘tikAkcosf&tdt sinfiktk 
1 

-(j -~~(P,.cOS(A~))Ls,,AkCOS(~kt) dt) 

*cos(!&t,) 
- (1 _mm(pI, cOS(h”k))Zjn-lAksin(~kt) dt 

.sin(aktk). (6.5) 
From Appendix A and (6.3.i) one obtains 

$fi ( ti) = ail cos Piti + b, sin Sliti (6.6.i) 

where ail, b, are nonzero consta=nts for all except a dis- 
crete set of frequencies Qi. Thus iWi has isolated zeros in ti 
(two in each perizd 2(7r&)). Also at these (isolated) 
discrete zeros, dMi/ati # 0. Indeed, we set i%& = 0 in 
(6.6.i) to obtain 

tan(Q$i*) = - ?. (6.7.i) 
11 

Let us define 

Thus 
Qiti* = -tan-l (6.8.i) 

f$(tT) =-ailQisinQitF + 52ibilCOStiit~ 
1 

~(t;)=i2i[/&%q zo. 
I 

Thzrefore, for almost all frequencies Oi, ki(tT) = 0 and 
i%kfi/&,(t,T) # 0 on the set 

(tr E R](eq. (6.8.i)) is satisfied}. (6.9.i) 

From Appendix A and (6.5) it follows that 

&,(t,,* * *, tn-3, tn-2) 
n-2 

= k~la~-l,kEOS(Bktk)+b.i,*Sin(B*fx) (6.10) 

where an-l,kp &-l,k are nonzero for all k, 1 G k G n ; 2. 
To obtain a transversal zero for the (n - 2)-vector M we 

observe that 

k(t,,*. . ) t,-2) = (&,* * *, icfp3, iGn-l>’ 

has the Jacobian determinant 
n-3 akk a&, 

det[D&]= kclr.p at,-2 * (6.11) 
k 

This follows since tik is a function only of tk, k = 1, * . . , n 
- 3, hence the Jacobian matrix DM is a lower triangular 
matrix. Thus if a transversal zero t$ of each Mk, k = 
1; . a, n - 3 is substituted into (5.10), then one would only 
require that the Melnikov function of (6.10) possess a 
transversal zero in the variable I,-,. In this way, (6.11) wiil 
be trivially satisfied and it then follows that the vector M 
has a transversal zero. 

To establish these claims, first subxtitute in (6.10) the 
transversal zeros tf, t2*, . . . , tze3 of Mk, k = 1,. * ., n - 3 
and obtain 

n-3 

+c 
an-l,kbkl- bn-l,kakl 

k=l ( ai1 + bil)1’2 

where we have used the following two equalities obtained 
from (6.7), 

sin( fdktz) = - akl 

(a,& + b:1)1’2 

cos( i&t;) = + 
b kl 

( ai1 + b&)l’* 
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Thus for & _ i = 0, one requires 

bpr-l,n-2 b,-d[ :(;y;;;;] 
n-3 

= k;l _ aklbn-l,k - bk,;;2-,,k 

Ml + bil) 

Taking derivatives of (6.10) with respect to tnm2, 

(6.12) 

chaotic orbits) in the special case of the two degree-of-free- 
dom swing equations (three machines). This is similar to 
the case considered by Kopell and Washburn [29]. 

Holmes and Marsden [26] have developed a technique 
which may be employed to show that, on certain energy 
surfaces, Arnold diffusion can survive suitable positive and 
negative damping perturbations. It would be interesting to 
see if this technique can be applied in the case of the linear 
damping of the swing equations (i.e., Di # 0). 

We finally summarize our conclusions and suggestions 
for future work in the following. 

(a) Theoretical Work: 

a&-, 
-=QlZ-2[bfl-l,n-2 

I[ 

COS52n-2tn-2 

%I-2 
-an-l,ll-2 SinQ _ t _ ’ 

n 2n 2 I 

(6.13) 

To ensure that (6.13) does not vanish, we require that 

where k, E R, giving 

Theorem 6.1 
If (6.12) and (6.14) are satisfied for some (tne2) then, for 

a sufficiently large n th machine (M,,), Arnold diffusion 
arises in the Hamiltonian system (6.1) on every energy level 
h>z and h isnearh. 

We note that (6.12) and (6.14) are in fact satisfied by 
discrete values of t, _ 2. 

If one requires that the sum in (6.12) vanishes, one 
obtains the following condition: 

where k, is a nonzero real constant. Then (6.13) becomes 

+ = k2~,-,[(b,-,,,-,)2+(a,-,,._,)2] +o. 
Therefore, a sufficient condition for the Melnikov vector 

& to possess a transversal zero is 

n-3 aklbn-L k - bkl%l, k 
C( =o W) 

k=l u,& + b;1)1’2 

or equivalently (using (6.12)) 

tan(i-l,-,t,-,) = - ab^y2. 
n 1,n 2 

( w 

We state the following: 
Corollary: If (AA), (or (BB)), holds, then for sufficiently 

large machine (M,), Arnold diffusion arises in the 
Hamiltonian system (6.1) on infinitely many energy levels 
h>x. 

VII. CONCLUSIONS 

Theorems 5.1 and 6.1 can be extended to the case when 
the small parameter c (see Section IV) is nonzero. This is 
possible as long as e is in the order of p2 (i.e., O(e) = O(p2)) 
and thus it will have no effect on the existence of transver- 
sal zeros. This follows since the Melnikov method respects 
only the first terms of a perturbed solution expansion in a 
power series in CL. 

Our results ensure the presence of horseshoes (and hence 

(1) In Melnikov integrals for n degree-of-freedom sys- 
tems terms due only to products of oscillators may arise. 
These terms are not a measure of the separation between 
stable and unstable manifolds. They, rather, measure 
asynchronous distance between the oscillators. This phe- 
nomena, found by the present authors, ‘needs to be ex- 
plored more systematically. 

(2) The Melnikov approach can be extended to con- 
sider more terms in the approximation of the separation 
between the stable and unstable manifolds. This seems 
appropriate from applications point of view since it is 
tuned for computations. 

(3) Allowing for certain positive and negative damp- 
ing in the theory of Arnold diffusion has been mentioned 
in Holmes and Marsden [25], [26]. The affects of damping 
needs to be explored for the case of the classical model of 
power systems. 

(b) Applications: 
(1) Many model systems in the physical sciences and 

engineering exist which satisfy the conditions of the theo- 
rems on chaotic behavior or Arnold diffusion. One needs 
to test for the presence of complicated dynamics of these 
models. For example, a study of the Josephson junction 
circuit (with negligible damping) can be conducted on lines 
similar to our approach. 

(2) Computer simulations would verify the presence 
of complex irregular dynamics in the swing equations 
under the conditions provided in Section IV. Moreover 
they would display these dynamics for possible further 
studies. In the case of periodic but not necessarily small 
oscillators, tests can be conducted computationally. 

(3) The effects of a small amount of damping should 
be studied. This allows for a more realistic modeling of 
many engineering systems. 

(4) For large perturbations (large p) one can get many 
other effects, such as collision of nonresonant tori (see [l] 
and the references therein). The systematic exploration of 
these would be useful for many engineering systems in 
general and power systems specifically. 

APPENDIX A 
THE SIMPLIFICATION OF THE MELNIKOV INTEGRALS 

FOR SMALL AMPLITUDE OSCILLATIONS 

We perform explicit calculations first to show that the 
integrals of a product of variables of oscillators over the 
infinite integral domain vanish. Second we show that in- 
tegrals of products of oscillator variables with the homo- 
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clinic orbit variables (subscripted n - 1) result in (6.6.i) converging to cc such that \k = 0. To see this, write 
and (6.10). 

Equation (6.6.i) Case I: Products of Oscillator Vari- *l= (L$Q,) {COS[(iJi +Qk)L] cosP,ti* 
ables 

From (6.2.i) we note that the products of oscillator - sin [ ( fJi + Q,)] sin $ti* 
variables are composed of the following basic integral. 

*=jm wi(t-ti)ck(t-tk)dt (A-1) 
-(c0s[-((P,+S2,)L]c0sw 

-CO -sin]-(Oi+61,)L]sin,i,~j] 
where the bar denotes the unperturbed solutions given by 

&ik(t) = d,COS~,t +.@Y2) 
= (oi:o 

k 
) {-2sin[(~i+Qk)L]sinPit~}. 

LuGi = - aA,Q,sinf&t +O(a’) Similarly, 

where (Y is sufficiently small. Perform a change of integra- 
tion variables on (A.l) and obtain q2= (&-ik) {c0s[(L$-P,)L]c0sP.tir I I 

*=Srn Gi(T+ t,- ti)$&)dr. 
-m 

-sin[(& -&I,)] sinfJitr 

For i = k, ti = t, and so -(cos[-(~i-P,)L]cos~iti* 

Y=/” i&(+i&) d7 -sin[-(Oi-P,)L]sinQ?)} 
-m 
00 

= 
/ - A:i-ik SiIl (+) COS ( nk7) dr = (Q, T ~ 

-m I k 
) { -2sin[(Qi - Q,)L] sin$ti*}. 

= ck/-mm + sin (2Qk7) dT 
Then consider 

~=(&+~,)(fii--i$,)\k 

= Fmm 2 [cos(L)-cos( - L)] = 0.. =A{(Qi-Ok)sin[(52,+Qk)L] 

Note that we have substituted the first terms of the expres- +(Qi+S2,)sin[(Qi-Qk)L]}sjnQiti* 

sions for the unperturbed solutions. The error terms, O(a’) 
are included in the higher order terms that do not affect 

T=Asin51,ti*{(Pi-Slk) 

the Melnikov integrals. To see this, first substitute the ‘[sinaiLcos&L +cos&$LsinStkL] 

small oscillation variables in the Hamiltonian function and +(&+&)[sin&Lcos&L-cos&Lsin&L]} 
thus the O((u2) term will be collected with the higher order 
terms. Now rewrite the Melnikov integrals. ~=ASin~tt~{SinPtLCos~kL(~i-Pk+~t+~k) 

For k # i, let tj+’ = t, - ti, then +cos$LsinSt,L(52, - P, - Qi - Qk)} 

y=JL - riiAkQisin8i(~+t~)cos(fi2k~)dr = 2Asin$t,f+ 
-L ‘{~i(Sin~iLCOS~2,L)-Ok(COSPiLSin52kL)}. 

= -A;A,Q,I_LI.[sin[(Qi+Qk)r+!@r] Consider the quantity in braces 
{ Gisin52iLcosQkL - flkcosQiLsinQkL} 

+sin[(& - Gk)7 + Slit,*]] dr. which we equate with zero and obtain 

To get conditional convergence for a fixed i and k, write tan(&L) = ztan(Q,L). 

\k=A,A 3 lim 
i 

cos[(Oi+fJk)7+Qq L A simple sketch of these functions shows that there exist 

k2 L-+m sii+a2, 
a sequence L, of time, L, -+ 00, values at which the 

-L equality holds. (Rational independence of the frequencies 

+ cos[(Oi-s2k)T+~it~] is sufficient for the existence of this sequence.) 

fJi - iik 
Case 2: A product of a homoclinic and oscillator varia- 

bles 
Let The basic product components of the Melnikov integral 

(6.2.i) are as follows: 9 = cos[(Oi+~k)~+~i~~l L 
1 oi + Q2, 

-L 

\k = cos[(Qi-qT+~iti*l L 

2 ai - 8, 
-L 

We claim that there is a sequence L, of values of L 

Jm Wi(T- ti)Fn-l(T) d7 
-00 

(A.2a) 

Jrn sjn&)tii(~ - ti) d7 

j’mi3i(, - ti)Gn&) d7 
-m 

(A.2b) 

(A.2c) 
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where ti is the initial phase. 

Irn Gi(vti)Gn&)dT 
-m 

Noting that lim L - ,sj,-,( f L) = 0 (the velocity compo- 
nent of the saddle of the homoclinic orbit equals zero), 
then 

= lim - 
L-r00 1 J 

L 3,iZR,_,dr 
-L 

=L@m -([Si(~-t~)~n~l(+r)]~L 

/ 
L - %$(v t,*)a,&)d7 vLdr . 

Again the first limit goes to zero. First note that 

Zi(,-tT)=-Aislisin(8,(7-tF)) 

= Gi(7)cos(Giti*)+QiCi(7)sinOiti* 

and 

+-t;)=Aicos(Gi(~-t;)) 

= ~i(r)cos(8,t:)+~Wi(7)sin(Pit:) 
[ I I 

where we neglected the error terms which do not affect the 
Melnikov integrals. Then the first term of (A.2c) becomes 

where we wrote Ai COS!J~+T for ci(r). Note that i?,, 

(A.3) 

1 is the 
component of the homoclinic orbit such that 

lim 
M-too 

I?~-,( f M) = S”-,( f cc) = (77 -2bn-,) 

where the saddle point is (m -2~Y~-,,0), and hence (A.3) 

vanishes. Therefore, 

Jrn Gi(vti)6&7)d7 
-m 

= 
/ -mm$6i(, - ti)ir,&) d+T 

= - qm Wi(7 - ti)iin-,(T) dr 

=- flf/‘C$(~ - ti)&(T) d7 

Thus the basic terms are those ofTA.2a) and (A.2b). 
The integral of (A.2b) is treated the same way, 

-lrn a,&~)w~(~-t~)d~ 
-m 

(A.41 
where the first term vanishes (see A.3) and hence (A.4) 
reduces to (the negative of) the integral in (A.2a). Thus 

Wa), = i-1 G&T - tT)Cn-,(-r) d7 

= (~~mm~~&)Gi(~)d~)cosg,r~ 

+(~i/-mm~~~,(7)4(7)dr)Sin~it~ 

where each integral in the braces is well-defined and is a 
nonzero constant for all except a discrete set of Pi (see 
Kopell and Washburn [29] or Holmes and Marsden [27]). 

Collecting terms and noting that the coefficients of these 
integrals are different due to the different parameters 
Mj, Bj, etc., one obtains the following: 

&(ti) = a,,cosC&+ + bi, sinGit; 

where a, and biI are nonzero constants for all except a 
discrete set of 52,. 

Equation (6.10): 
The terms of the integrand of (6.4) are composed of the 

following expressions: 

&d&-l,. sin(a,-, + AS,-,)] ~~,-r (A.5.a) 

%[I&1+-1.n sin(cn-, + A;s,-I)] ak, l<kgn-2 

(A.5 .b) 

Gn-lck, l<k<n-2 (A.5.c) 

[ pnpl - /3n-l,n sin(iYn’,_, + AS,-l)] G,-r (A.5.d) 

[Pn-1-Pn-1,“Sin(4-1+A’“-l)]Sjk=(~”-l)gjk. 
(A.5.e) 

We first consider the terms with vanishing integrals over 
the infinite domains; namely (A.5.a) and (A.5.d). 
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Consider the integral of (A.5.a) and perform integration 
by parts. 

m d 
s_,;i;[ &I - L,, sin(c”-r + Asn-l)]ii,,n-ld7 

= lim 
N-+m ( %&)[Pn-1 -Pn-14 sin(~~-l(7)+A~-l)]lrN 

- jfLh-I -P,-1,.sinta,-,(7)+AS,-1)1 Tj,-lb) d7). 

The first term vanishes as N + cc since 

.)mrn [Pn-l -Pn-l,n sin(&I(N)+A\-l)] 

= $rnmGn-,(N) = 0 + 
where G,-r( + cc) is a component of the saddle 

(q-1( k oo>, ij,-l( * cg) = &-I( r!I c&o). 
Thus the term of (A.5.a) is the same (except for a minus 
sign) as the term of (A.5.d). Consider now the integral of 
(A.5.d) 

m 

/ [ P,,-~ - Pn-l,nsWn-l + Ah)] %h) d7 
-m 

=jm &,_,(7)S;i,-,(T)d7= f,“mmG~-I(r)/“,=o. 
-m -+ 

That is, the “kinetic” energy at the saddle, referenced to 
itself, is equals to zero. Hence the terms of (A.5.a) and 
(A.5.d) produce vanishing integrals. 

The term of (A.5.c) is the same as the one in (A.4). The 
terms of (A.5.b) and (A.5.e) are the same if one performs 
integration by parts on (A.5.e). 

Thus it is left only to consider the term (A.5.b) for a 
given k, l<k,<n-2, 

ji’ :m $ Pn-1 -iL,n sin(a,-r + As,-,)] Sk) d7 

=/_ma$[ pn-l-Pn-l,nSin(a,_,+A’“_l)]ak(t-ttk)dt 

=j_“_$[;.-&?,(t-t,)dt, l<k,<n-2. 

Noting that 
ifk(t - tk) = AkCOSiik(t - tk) 

= A,[cosO,t,cos%~, + sinfi2, sin&$,] 

then the integral becomes 

Jrn (A.5.b)dr= 
-m [ 

Ak~-~$(~~-I)COsnktdt]cosa*t, 

+ Ak 
[ 1 

-~$(4,)sinQ,tdt]sinn,l,. 

We note that no cancellations between the integral terms in 
(6.4) can occur since the coefficients of the integrals are 
different for different parameters. Define 

an-l,k =Akj-~mm~(4,,(t))COS~ktdt , 

687 

and 

bn-l, k = Ak j-mm~t’n-l (t))sinQktdt 

where a,-, k and b,,-, k are well defined and vanish only 
for a set of discrete values of Qi. This follows from the 
analyticity of the integrals in ti2, with the rate of accelera- 
tion term (i.e., (d/dt&-,(t)) is nonvanishing along the 
homoclinic orbit (see Kopell and Washburn [29] or Holmes 
and Marsden [27]). 
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