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ABSTRACT. With the heavy top and compressible flow as guiding
examples, this paper discusses the Hamiltonian structure of

systems on duals of semidirect product Lie algebras by reduction
from Lagrangian to Eulerian coordinates. Special emphasis is
placed on the left-right duality which brings out the dual role

of the spatial and body (i.e. Eulerian and convective) descriptions.
For example, the heavy top in spatial coordinates has a Lie-Poisson
structure on the dual of a semidirect product Lie algebra in which
the moment of inertia is a dynamic variable. For compressible
filuids in the convective picture, the metric tensor similarly
becomes a dynamic variable. Relationships to the existing 1iter-
ature are given. ‘

1. INTRODUCTION. There are natural brackets {f,g} defined for f,g:Q}* -+ IR
where q; is the dual of a Lie algebra (finite or infinite dimensional); these
were discovered by Lie in 1887 and are now called Lie-Poisson brackets. These
brackets arise by reduction of canonical Poisson brackets un T*G; the
cotangent bundle of the corresponding group, by left or right iﬁvariance
(giving structures differing in sign) and are compatible with the Kirillov-
Kostant symplectic structures on coadjoint orbits (Marsden and Weinstein
[19747). we reviéw some features of this theory in §4.

Lie-Poisson structures in mechanics have a complex history due% in
part, to lack of communication and ignorance of Lie's original discovery.
We are concerned here with the Tine of investigation initiated by Arnold
[1966], [1969] in which he gave a clear presentation of the reduction from
material (i.e. Lagrangian) coordinates to spatial (i.e. Eulerian) and body
(i.e. convective) coordinates for incompressible fluids and the rigid body.
Arnold used symplectic structures on coadjoint orbits but did not use the
Lie-Poisson bracket. In spite of this, Kuznetsov and Mikhailov [1980], for
example, attribute it to him, we think quite appropriately.
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Lie-Poisson structures for semi-direct products have the following his-
tory. They were noted for the heavy top in Vinogradov and Kupershmidt
119771, They appear, using a quantum mechanical motivation, in Dzyaloshinskii
and Volovick [1980] (see also Dashen and Sharp [1968], Goldin [1971] and
Goldin, Menikoff and Sharp [1980]). For our development, the papers of
Guillemin and Sternberg [1980] and Ratiu [1980, 1981, 1982] are crucial. They
started developing the abstract setting in which Lie-Poisson structures asso-
ciated with semi-direct products appear. Simultaneously, Morrison and Greene
[1980] and Morrison [1980] published brackets for MHD and the Maxwell-Vliasov
equation. It was well-known to workers in the area that the bracket for ideal
compressible flow was the Lie-Poisson bracket for the semi-direct product of
the diffeomorphism group with functions. Marsden and Weinstein [1982] were
the first to put the bracket structures for the Maxwell-Vlasov equation back
in the spirit of Arnold and in doing so, corrected one term in the bracket--

a correction necessary to ensure Jacobi's identity. The Morrison-Greene bracket
for MHD was derived using Clebsch variables and was observed to be a Lie-Poisson
bracket for a semidirect product by Holm and Kupershmidt [1983a].

In Ratiu [1980,1981,1982] and Guillemin and Sternberg [1980] a general
scheme began emerging in which semi-direct products arose by reduction from
T*G by a subgroup. For example, a special case of their result shows that
when T*SO(3) is reduced by an S] subgroup, corresponding to invariance under
rotationsabout the direction of gravity for the heavy top, one automatically
gets the Lie-Poisson structure on the dual of the Euclidean group. Some
improvements in this theory were given by Ratiu and Van Moerbeke [1982] and
Holmes and Marsden [1983]. The sharpest results however, were given by
Marsden, Ratiu and Weinstein [1983], who also incorporated the aforementioned
fluid and plasma examples into the same scheme.

In the present paper we take the point of view of Poisson manifolds and
shall be as concrete as possible, using the heavy top and compressible flow
as detailed motivating examples for the general theory. In Marsden, Ratiu
and Weinstein [1983] we studied the role of symplectic reduction and deter-
mined the symplectic leaves of the reduced spaces for T*G divided by an
isotropy subgroup of a representation of G on a vector space V. These
were shown to be symplectically diffeomorphic to the coadjoint orbits in the
dual of the semi-direct product 04 x V. This provided a satisfactory ex-
planation of why semi-direct products occur in so many examples. Indeed,

TG represents the basic Lagrangian phase space and reduction by the subgroup
of symmetries represents the passage from Lagrangian to Eulerian or convective
coordinates. In addition to the Poisson point of view, the new results in

the present paper are:



REDUCTION AND HAMILTONIAN STRUCTURES 57

a). A demonstration is given (in §4.4) that a generalization of the Poisson
map of Holm, Kupershmidt and Levermore [1983] can be directly constructed from
the setting of Marsden Ratiu and Weinstein [1983]. The basic idea is that by re-
ducing T*(G x V) by V one can pass from a Poisson map of T*(G x V) - (o & v *
to one from T*G X V*’+ (a} % y)*. In addition, we give both the right and
left reductions--they are not trivially related. The generalization to
allow V to be a non abelian group is not hard; for example, it is covered
by Montgomery, Marsden and Ratiu's contribution to these proceedings, dealing
with semi-direct product bundles.

b) A derivation is given (in §5.2) of the Hamiltonian structure for
the heavy top in spatial coordinates (it is usually given in body coordinates).
Here the moment of inertia tensor is a dynamic variable; cf. Guillemin and
Sternberg [1980].

c) A derivation is given (in §5.4) of the Hamiltonian structure for
the equations of compressible flow in convective ("body") coordinates (it
is usually given in Eulerian ("spatial") coordinates.) Here the metric
tensor is a dynamic variable. In a future paper this formulation will be
connected with the results of Simo and Marsden [1983] on the Doyle-Ericksen
formula for the stress tensor (o = 2p%e/9g, where e is the internal
energy and g 1is the metric tensor), which is closely related to the co-
variant Hamiltonian formulation of elasticity (see also Marsden and Hughes
[1983]).

The left-right duality which is emerging as a basic, yet usually over-
looked, ingredient in the Lagrangian to Eulerian map is summarized as follows:

(Lagrangian )

\representation
Left translations Right translations
(body or convective) spatial or Eu]erian)
representation (represenation

If the basic Lagrangian space one starts with is T*G, as isappropriate for

i) . the free rigid body (G

S0(3))

ii) incompressible flow (G = volume preserving diffeomorphism)
or iii) the Poisson-Vlasov equation (G = canonical transformation), the
picture specializes to

1
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T*G

left translation right translation implemented
implemented by J by JL ,

* *

& o)

where ﬁ)f is @?f with + or - Lie-Poisson structures (this is reviewed
briefly in §4.2 below) and JR and JL
to the right and left actions of G respectively.

are the momentum maps associated
If the basic Lagrangian space one starts with is the cotangent bundle

T*(G x V) 1i.e. the basic configuration variables are G XV, then we get
a more detailed picture:

> T%G x v*

=
o0
[
[
[
—

(@(}X V)jc (Q} x'V)j

(convective) (spatial)

Here, J J., d, and ‘jL are momentum maps for the left and right actions

J
R® “R* L
of GXV on T*(G xV) and T*G x V*  These maps include, as special
cases, Poisson maps found by Guillemin and Sternberg, Ratiu, Kupershmidt, and

Holm, Kupershmidt and Levermore. The maps P, and PR are Poisson maps imple-

L
menting the reduction by V; while P, Jjust projects out V, P, involves

a fiber translation by a differential %such maps play an 1mportan$ role in
Guillemin and Sternberg [1980] and in Marsden and Weinstein [1982]). This
asymmetry between left and right occurs because we chose G to acton V

on the left.

The plan of the paper is as follows. In sections 2 and 3, concrete and
detailed expositions of the Hamiltonian structure for the heavy top and
compressible flow are given. Here things are done more or less by bare hands
both to motivate and show the power of the abstract theory, presented in §4.
In 85 we return to the examples to show how the theory works. There are
other examples as well. See Marsden, Ratiu and Weinstein [1983] for MHD,
multifluid plasmas and the Maxwell-Viasov equations, Montgomery, Marsden and
Ratiu [1984, and this volume] for the Yang-Mills-Vlasov equations, Marsden
and Weinstein [1983] for incompressible flow, and Abarbanel, Holm, Marsden
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and Ratiu [1984] for stratified flow.

Acknowledgements. We thank Darryl Holm and Richard Montgomery for useful
comments.

2. THE HEAVY TOP.
2.1 Configuration Space. A top is, by definition a rigid body moving about

a fixed point in three dimensional space. A reference configuration B of

the body is the closure of an open set in IR3 with piecewise smooth boundary.
Points in B denoted X = (X', X2

X', i =1,2,3 material coordinates. A configuration of B 1is a mapping

. X3) € B are called material points and

n:B - IR3 that has certain smoothness properties, is orientation preserving,

and is invertible on its image. The points of the target space of n are

called spatial points and are denoted by lower case letters x = (x],xz,x3)

IR3; x1, i =1,2,3, are called spatial coordinates. A motion of B is a

time dependent family of configurations, written x = n(X,t) = nt(L) or

simply x(X,t) or 5t(§). Spatial quantities are maps whose doman is IR3,
i.e. they are functions of x. They are lower case letters such as z (if
scalar valued) or z (if vector valued). By composition with Nys spatial
quantities become functions of the material points X.

Dually, one can consider material quantities such as scalar maps
Z:B + IR or vector maps Z:B +-IR3. Then we can form spatial quantities by
composition: z, = Zton;] and z, = Ztcn;].

In addition to the material and spatial coordinates, there is a third
set, the convected or body coordinates. These are the coordinates associated
with a moving basis. Although these are defined in general (Marsden and
Hughes [1983]'p. 41) we shall first consider them in the context of a rigid

body.

In 8,5 we shall see the following picture emerge of which the present
discussion is a special case:

(Lagrangian or
material coordinates)
TG

left right
translation translation

g* o3 *
(body or convected (Eu1erian'or spatial
coordinates) coordinates)
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Rigidity of the top means that the distances between points of the body
are fixed as the body moves. This says that if the configuration x(X,t)
represents the position of a particle that was at X when t =0, we have

x(X,t) = A(t)X i.e. x = A;.(t)xj . 1.3 =1,2,3, sumon § (2.1)
where A(t) = (Aij(t)) is an orthogonal matrix. Since the motion is assumed

to be at least continuous and A(0) is the identity matrix, it follows that
det (A(t)) =1 and thus A(t) € SO(3), the proper orthogonal group. Thus,

the configuration space of the heavy top may be identified with SO(3).
Consequently the phase space of the top is the cotangent bundle T’k(SO(3)),
which will be described in 2.4.

Now we are ready to define convected, or body coordinates. Let 51, EZ’
§3 be an orthonormal basis relative to which material coordinates

1,2 3
X =

X', X%,X") are defined and eq> &,» €5 be an orthonormal basis asso-

2
ciated to spatial coordinates. Let the time dependent basis §1, §2’ §3

be defined by

SO 51 move attached to the body. The body coordinates of a vector in IR3

are its components relative to 51' For

v € IR3, its spatial coordinates
v' are related to its body coordinates vd by

i ij
ALV
Y i
where A1j is the matrix of A relative to Ei and e;- 0f course the
components of a vector V relative to Ei are the same as the components )
of AV vrelative to &.. In particular, the body coordinates of X are X].

1

2.2 Euler Angles are the traditional way to express the relationship between
space and body coordinates, i.e. to parametrize SO(3). In what follows we
shall adopt the conventions of Arnold [1978] and Goldstein [1980] which are
different from those of Whittaker [1917].

One can pass from the spatial basis (g],gz,g3) to the body basis
(§1,§2,§3), by means of three consecutive counterclockwise rotations per-
formed in a specific order: first rotate by the angle ¢ around e, and
1 by ON (line of nodes), then rotate by the
angle ¢ around ON, and finally rotate by the angle 1 around §3 (see

Fig. 1). Consequently 0 < ¢, < 2r and 0 <6 < 7. Note that there is

denote the new position of e

a bijective map between the (¢,¥,0) variables and SO0(3). However, this
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Figure 1

bijective map does not define a chart, since its differential vanishes, for
example, at ¢ = ¢ = 6 = 0. The differential is non-iero for 0 < ¢ < 2m,

0 <y<2m, 0 <8 <7 and on this domain, the Euler angles do form a chart.
Explicitly this is given by (¢,y,6) » A, where A 1is uniquely determined by
X = AX and has the matrix relative to E. and e. given by

£q €5
cosy Ccos¢ - cos6O sind siny cosy sing + cosO cosd siny  sinb siny
A =] -siny cosd - cosd sing cosy -siny sing + cosO cos¢d cosy  sind cosw'
sind sing¢ -sind cos¢ coso
(z2.2)

With the aid of the chart given by Euler angles we induce a natural
chart (¢,¥,0, ¢,9,0) on the tangent bundle T(SO(3)) of the proper rotation
group SO(3). Then using a Legendre transformation given by a certain metric
on SO0(3) uniquely determined by the mass distribution of the top, we will
define a mapping to the natural chart (¢,¥,0, p¢, pw, pe) on the cotangent
bundle T*(S0(3)) which is the canonical phase space. This will be done in
§2.4.

2.3 The Lie Algebra so(3) and Its Dual. In order to simplify the computations

and identify the geometrical structure of the Hamiltonian of the heavy top, a
summary of the Lie algebra s0(3) and its dual are needed.

The proper rotation group SO0(3) has as Lie algebra the 3 x 3 infini-
tesimal rotation matrices, i.e. the space so(3) of 3 x 3 skew-symmetric
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matrices; the bracket operation is the commutator of matrices. The Lie

2
algebra 40(3) is identified with IR” by associating to the vector

3 3

v = (v],vz,v ) €IR’, the matrix V € 40(3) given by

0 -v3 v2
[ A L (2.3)

-v2 v1 0

Then we have the following identities:

(uxv) = [u,v] (2.4)
dey = uxy (2.5)
[Gv]ew = (uxy) xw (2.6)
usv = - 5 Tr(l). (2.7)

Moreover if A €50(3) and v € IR3, then the adjoint action (conjugation)
is given by

~ ~ ~ -l

(Av) = Adyv := AVA" | (2.8)

Consequently, since the adjoint action is a Lie algebra homomorphism, for all
A €50(3), u,v € IR3 we recover the vector algebra identity

Alu x v) = Au x Av.. (2.9)

In what follows we shall identify the dual 40(3)* with IR3 by the
inner product, i.e. m € 50(3)" corresponds to mE 1R3 by m(v) = mev,
for a1l v € IR". Then the coadjoint action of S0(3) on 40(3)* is repre-

sented by the usual action of SO(3) on IRS, i.e.

Ad* -m = Am (2.10)

=1, T

since (A7) =A.

2.4 The Hamiltonian. If X €B 1is a point of the body, then the trajectory
followed by X 1in spaceis x(t) = A(t)X, where A(t) € 50(3). The material or
Lagrangian velocity V(X,t) is defined by

V(X,t) = ax(X,t)/at = A(t)X, (2.11)
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the spatial or Eulerian velocity !ﬁl,t) by

v(x,t) = ax(X,t)/at = V(X,t) = f\(t)A(t)']L, (2.12)

and the body or convective velocity j«}3t) by

V(X,t) = -9X(x,t)/at = A(t) TA(E)A(t) T x

n
i

ACE)TA(E)X = A(E)TTV(X, 1) = A(E) T v(x,t). (2.13)
Let po(l) denote the density of the body in the reference configura-

tion. Then the kinetic energy at time t 1is, by (2.11), (2.12), (2.13),

and the invariance of the Euclidean norm under SO(3),

K(t) =5 IB oo (XY (X, )12 ¢3¢ (material) (2.14)

= % f DO(A(t)_?gﬁxﬁl,t)Hz d?ﬁ (spatial) (2.14)
A(t)B

-3 jB oo (X IU(X,£)1% &3 (body) . (2.16)

Differentiating A(t)TA(t) = Identity and A(t) A(t)T = Identitysit follows
that both A(t)-]A(t)'and A(t)A(t)'] are skew-symmetric. Moreover,
by (2.12), (2.13), (2.5) and the classical definition of angular velocity,

it follows that the vectors gs(t) and EB(t) in IR3 defined by
(1) = A(wA)™! (2.17)
8y(t) = A TAt) (2.18)

are the spatial and body angular velocities of the top. Note that gs(t) =
A(t)gB(t), or as matrices, és = AdAéB = A@BA']. Using the Euler angle
parametrization (2.2) of SO(3), (2.17), and (2.18), wg and wp have
the following expressions

6 cos‘¢+ @ sin ¢ sin 6 6 cos ¢ + ¢ sin ¢ sin ©
wg = 6 sin ¢- y cos ¢ sin e}, wg = -? sin ¢ + ¢ cos P sin 6 (2.19)
¢ + U cos 6 b cos 6 + P

Due to the fact that in (2.14) and (2.16), 0 is independent of time,
the kinetic energy can be expressed in a simple manner in the material and
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reference configurations. We have by (2.16) and (2.5).

K(t) = J{B oo(X) Mg (£) x XI2 ¢y, (2.20)

Using (2.19), the kinetic energy of the body is a function of (0,%,0,9,9,6)
or of Y- To give it a more familiar expression, introduce the following
inner product on IR3,

4
<ap > | oopN X X x X)d%, (2.21)

completely determined by the density po(l) of the body. Then (2.20) becomes

<w , w> . (2.22)

Now define the linear isomorphism I:IR3

>IR3 by Ia*b =<a,b> for
all a,b € IR3; this is possible and uniquely determines I, since both
the dot product and <€, > are nondegenerate bilinear forms .t 1t is clear
that I 1is symmetric with respect to the dot product and-is positive. To
gain a physical interpretation of I we compute its matrix. Let (Q],EZ,E3)
be an orthonormal basis for material coordinates. Thus,

I oo0X e, i 14
/ (2.23)

[ ] eowam? - )26, 171 - g
B

which are the expressions of the matrix of the inertia tensor from classical
mechanics. Thus I represents the inertia tensor. Since it is symmetric,
it can be diagonalized; the basis in which it is diagonal is a principal axis
body frame and the diagonal elements I]’ I2, 13 are the principal moments
of inertia of the rigid body. In what follows we work in a principal axis
body frame.

To get from (2.22) a function defined on s0(3)" = IR3 we must take into
account that 40(3)* and IR3 are identified by the dot product and not by
< ,>» . Consequently, the linear functional <w,,°*> on 40(3) = IR3 is
identified with Iw :=m € 50(3)% 2 1IR3 since mea =<yg.a>» for all
QVGEIR3. Hence (2.22) becomes, for [ = diag(I],Iz,I3)9

m2 m2 m2\

Km) = pmel'm = g+ 72+ TQJ (2.24)
- 1 I

-

Assuming the rigid body is not concentrated on a line.
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which represents the expression of K on 40(3)"; note that m = log s
the angular momentum in the body frame.

By the second formula in (2.19) and the definition of m for I =
diag(I],Iz,I3),it follows that
11($ sin 8 sin P + & cos V)
m = IZ($ sin 8 cos ¥ - 6 sin v (2.25)
13(é cos 6 + 1)

This expresses m in terms of coordinates on T(SO(3)). Since T(SO0(3)) and
T*(S0(3)) are to be identified by the metric defined as the left translate

at every point of €, », the canonically conjugate variables (p¢, pw, pe)
to (¢,w,§) are given by the Legendre transformation p, = K/ 96, P, = 3K/ 3,
Py = 9K/96 of the kinetic energy on T(S0(3)) which is obtained by plugging
(2.25) into (2.24). We get the standard formulas

Py = I](é sin 6 sin ¢ + 8 cos ¥) sin 6 sin Y
+ Iz(é sin 0 cos Y- 6 sin Y)sin © cos Y+ I3($ sin 6+ y)cos O
Py = 13($ cos 8+ 1) (2.26)

Py = 11($ sin @ sin y + 6 cos P)cos Y- 12($ sin 6 cos Y- & sin ¥) sin P
whence by (2.25),

[(p¢ - Py cos 6)sin Y+ Pg sin 6 cos ¥]/sin 6

m = [(p¢ - Py, C0s 8) cos - p, sin 6 sin ¥]/sin 6 (2.27)

Py

and so by (2.24) we get the coordinate expression of the kinetic energy in
the material picture to be

2 I

. . 2
" B [(pQ,_ p, €0S g)sin y + Pg Sin 6 cos vl
$sPs8sP 5P ,pe) 5 5
¢ v I] sin“e
(p, - p, cos g)cos y- p, singsin w]z p2
T d + Y (2.28)

I, sin

2 0

w

The potential energy V for a heavy top is determined by the height of
the center of mass over a horizontal plane in the spatial coordinate system.
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Let g2y denote the vector determining the center of mass in the reference
configuration (i.e. the body frame at t = 0), where ¥ 1is a unit vector
along the straight 1ine segment of length & connecting the fixed point with

the center of mass. Thus, if M= j 3 du(x) 1is the total mass of the body,
IR

g fis the gravitational acceleration, and k denotes the unit vector along
the spatial 0z axis, the potential energy at time t is

V(t) = Mgk-A(t)ex = MgRA™ kex = Mgfy-x = Mgtke)
where y = A"1E_ and A = AX. Consequently,
V = Mgtk -AX (Lagrangian or material) (2.29)
= Mgfk =X (Eulerian or spatial) . (2.30)
= Mgfy-x (convective or body) (2.31)

Thus, by (2.24) the Hamiltonian has the following expressions

3 ,
Hmy) =5 T 75+ Mgry,  (body) (2.32)

+

) . 2 L
. lﬁé[(P¢-pw cos6)siny +p, sing cosy] [(p¢-pw cos6)cosy - py sind siny]
2

D . 2
11 sino 12 sin-6
o2 .
+ —?-13 + Mg? cose (material) (2.33)

The table at the end of this subsection (which appears in Holmes .and Marsden

[1983]) summarizes and completes the relations between m, Yy, ¢, ¥, 6, &, i,
0, Py Py Por .

We close with a study of the invariance properties on H on T (S0(3)).-
By (2.7) (2.18), (2.24), and (2.29), the Hamiltonian in the material configura-

tion equals

H=- % (1A AaTTA) + Mgk -AX . (2.34)

Consequently, if B 1is a constant matrix in SO(3) and we replace A by BA
(Teft translation), it is easily seen that the kinetic energy does not
depend on B, i.e. it is invariant under the maps At BA. The potential
energy however is only invariant if Bk =k, i.e. under rotations about the
spatial 0X3 axis. The corresponding conserved quantity is, by Hamilton's
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equation written in terms of (¢,y,6, Pps Pys pe), Py = MY, since fJ¢ =
-9H/3¢ = 0 by (2.33). There is one more conserved quantity in body coordin-
ates namely HJ(_II2 = 1. The importance of mey and lllll2 will become
apparent in 2.6 and in §4.

Finally, let us note that H depends on the parameter Mgfk. What
HappenS if this parameter is changed will be explained in Sections 4 and 5.

m = [(p¢-pw cos 0) sin Y + Pg sin 0 cos yl/sin 6 I](qgsin B sin ¢ +6 cos V)

m, = [(pq)—pw cos 6) cos § - Pq sin 6 sin yJl/sin 0 Iz(ésin 6 cos ¥ -Bsin )
my =Py, = 13(chose + )

Y= sin 0 sin- ¢

Y, = sin © cos ¢

Y3 = COS 6

Pq) = Moy = I](fb sin 6 sin Y + 8 cos Y) sin B sin ¥ + Iz(zpsin 6 cos -
- 8 sin Y) sin 6 cos Y+ 13(¢ sin 6+ ) cos O
Plb =m, = 13(;1> cos 6+ 1)
-/ 2 .. . .
Py = (Y2m1'Y1m2)/‘/1'Y3 = 11(¢ sin 6 sin ¥ + 6 cos Y)cos P
- - 12(¢ sin 6 cos Y- 6 sin y) sin ¥
™Y MaY2

L
¢= -_— + 2
I 1-y§ 1-%5

PR T R W 2
*1

3 I](l-Yg) ' 12(1-Y§>

m Yy mo"

7 7
1= Tov1-13

2.5 Equations of Motion. Hamilton's canonical equations

. oM .3 - oM

e, Viup, % T e,

¢ v ]
(2.35)

;o o=.oH o _3H o= oM

Po= "% Po™ " PoT %0

in a chart of T¥(S0(3)) with H given by (2.33) become after a lengthy com-
Putation in which ¢,9,0, Py» Py» P are replaced by (m,y), the Euler-

Poisson equations
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: 3 =_‘I ..]_
My = agmymy + Mga(XgY, - X,75)s 2y I, T,
m, = a,mm + Mg2(X, Y, - X,Y,)s a, = S
2 =My P HOMKYy - B Gt T T
m, = a.mm, + Mg{(X.Y; - X, Y,), a, = L]
37 4mm, 921X12’312 T
(2.36)
_ MYy Mg
e sl v
3 2
MY My
Yo 517 T
1 3
s My MY
Y3 =17 71
2 1

3 3

2 IR” x IR3 whereas the
canonical equations were on T*S0(3)). This is an instance of a general fact

Note that these equations are on Ao(3)* x IR
that will be explained in section 4.

2.6 Poisson Bracket in Body Coordinates. For F, G: T*(S0(3)) ~ IR, i.e.,

F, G are functions of (¢,y,0, p¢, pw

. pe), the canonical Poisson bracket
is given by

oF 96 _ _OF 3G , 8F 3G _ oF 3G , oF 3G _ dF 3G

{F,G}H¢,1,6,PysPysPg) = 55 3 - + o5 04 oF oG
O ¥ $>TY*re 3% 8p¢ 8p¢ 36 W Bpw BPW 3 * 36 dp Bpe L]

(2.37)

This bracket becomes after the change of variables
(¢9¢aes pd)’ Pw, Pe) > (ng_) s (2.38)
(2.39)

{F,6}(m,y) = -m'(zﬂF XZEG) - 1'(ZﬂF x EIG + VlF x Zmﬁ)s
where V_ and EY denote the gradients with respect to m and y. Clearly
(2.39) defines a bilinear, skew-symmetric operation on functions of (m,y).
A computation shows that it also satisfies the Jacobi identity, i.e. (2.39)

is a Poisson bracket on IR3 X IR3. Moreover

F = (F.H)
with H given by (2.32) yields, for F equal to mi, yq, i=1,2,3, the
equations of motion (2.36). Note that .whereas (2.37) is non-degenerate, i.e.,

{F,G}=0 for all G 1implies F = constant, the bracket in (2.39) is -degen-
erate. It is infacteasy to see that
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{F,6}m,y) =0

if G(m,y) = @(W{HZ) or G(m,y) = ¥(mey) forarbitrary real valued functions
9, ¥ of a real variable. Note that unlike the case of the free rigid body
where the bracket consists only of the first term of (2.39), an arbitrary
function of "g“z does not commute with every function of m and y. Recall
also that mey and Hlﬂz are the only conserved quantities for the heavy
top, if no other symmetries are present. The geometric reason of (2.39.) and
the existence of the above two functions will be given in Section 4.

In Section 5 we shall discuss the equations in the spatialpicture.

3. [IDEAL COMPRESSIBLE ADIABATIC FLUIDS
3.1 Configuration Space. Let Q be a compact region in IR3 with smooth

boundary 23n, filled with a moving fluid free of external forces. A con-
figuration of the fluid is chosen and called the reference or Lagrangian

configuration; its poipts, called material or Lagrangian points, are denoted

by X = (X ,XZ,X3); X' are referred to as material or Lagrangian coordinates.

A configuration of the fluid is an orientation preserving diffeomorphism n

of Q with certain smoothness properties.* We shall not be specific here
about the correct choices of function spaces and refer the reader to Ebin

and Marsden [1970] and Marsden [1976] where this is discussed in great detail
for incompressible fluids; obvicus changes have to be made for the compressible
case. The manifold Q, thought of as the target space of a configuration

N, i.e. a configuration of the fluid at a different time, is called the
spatial or Eulerian configuration, whose points, called spatial or Eulerian
Points, are denoted by lower case letters x. A motion of the fluid is a

time dependent family of diffeomorphisms, written

x =n(X,t) =n.(X),

or simply x(X,t).
Given the mass density po(x) and entropy 00(5) of the fluid in

the reference configuration, both functions of X, denoting by Jn (5) the
t

In principle, one can develop the theory of fluids as we did for rigid
bodies in Section 3.1, considering the fluid and the containing space as

two different manifolds. The configuration space is then a space of
mappings from the fluid manifold to the container manifold, and it becomes

a group only when a reference configuration is chosen. Although this
viewpoint is actually necessary in-elasticity theory, we have used the

more conventional approach here, in which the fluid particles are identified
with their positions in space at t = 0.
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Jacobian determinant dx/dX of the motion n, at X, we shall see in 3.3

that the mass and entropy density satisfy

(x, t)J (_) = ot(x (x) = po(x) and o(x,t) = Ot(l) = UO(X).
T.

Consequently, the Eulerian mass density and entropy p and o are completely
determined by the motion and 0 and % respectively. Hence, the con-
figuration space of compressible fluid flow with a given mass and entropy

density in the reference configuration is the group of diffeomorphisms

Diff(Q) of Q. Consequently the phase space is the cotangent bundle
T*(Diff(R)).
There are two problems with this approach. First, the configuration

space requires a choice of o and og- But f0 and % have to be changed
in accordance with the choices of initial conditions. How this is done will
be explained abstractly in Section 4. The change of fo and % is akin

to the change of the parameter Mgfk in the heavy top problem. We shall

think of 0 and 00 (exactly as we did of Mgtk in the previous section)
as a parameter. The second problem is much more serious. We think of the
fluid as moving nicely in §, at any time filling Q. However, under certain
conditions, shocks and cavitation can occur. The present approach cannot

deal with such problems and represents a serious limitation.

For a motion x =n,(X) one defines three velocities:

t{
a) the material or Lagrangian velocity

V(X,t) = V. (X) = an(X,t)at; (3.2)

b) the spatial or Eulerian velocity

v(x,t) = ve(x) = V(X t), T.e. vioen, = V3 (3.3)
¢) the convective or body velocity
Y(Xt) = V(X) = -3K(x,t)/3t = -an (x)/t. (3.4)

Taking the derivative of (nt°n;1)(é) = x and denoting by Txnt the Jacobian
matrix dx/dX of n, at X, we get N

V(%) = (Tgnt)-ut(l) (3.5)

Note that both V. and v, are tangent to Q at x =ng(X). This

t
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means that Vi is a time dependent vector field on Q. On the other hand,
tangency of !t(l) and n.(X) says that V. 1is a vector field over n, on
Q, 1i.e. Mt is a map from Q to the tangent bundle TR such that

!t(X) is tangent to Q notat X, butat nt(x). Finally, notice that

Yy is a tangent vector at X, i.e. VU, is also a time dependent vector
field on .

We summarize the relations between V, v, and V in the following
commutative diagram, in which vertical arrows mean vector fields.

Tnt
LY > T
v v
-t —t
Ve T
Q >
Nt
Figure 2

Let Z(X,t) be a material quantity, i.e. a given function of (X,t)
and let z(x,t) = Z(X,t) be the same quantity expressed in spatial coordinates.
Then by the chain rule

¢ 2923, (3.6)
In particular, if Z représents different components of a vector Z, we have

= = ° i s = = ___J
=5 + (vey)z, i.e. + 3V (3.7)

The right hand side of (3.6) or of (3.7) is called the material derivative
of z or z and is usually denoted by z = Dz/Dt or z = Dz/Dt; it
represents the time-derivative of 2z holding the material point X fixed.
As opposed to that, the usual partial derivative 23z/3t represents the

time-derivative of z holding the spatial point x fixed. One can develop
analogous formulas for the convective velocity. We will return to this point
in §5.

We shall determine the phase space T*(Diff(ﬂ)) and elementary Lie
group operations on Diff(Q), on its Lie algebra, and its dual.

71
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3.2 The Lie Group Diff(R). There are two ways in which Diff(Q) can be made
into a Lie group. The most obvious one is to consider only ¢® diffeomor-
phisms. It turns out that in this way Diff(Q) becomes a Fréchet manifold,

i.e. its model space is a locally convex Hausdorff, complete vector space.
Composition of diffeomorphisms and taking the inverse are smooth operations,
so Diff(Q) becomes a Frechet Lie group (see e.g. Leslie [1967], and Omori
[1975]). The main drawback of this approach is that in Fréchet spaces
special hypotheses are needed for inverse function theorems to hold;the same
is true of existence and uniqueness theorems for integral curves of differ-
ential equations. Use of the Nash-Moser theory is not necessary.

The second approach is to use diffeomorphisms of Sobolev or Holder class.
It turns out that if the Sobolev class W°P or Holder class Ck+d is high
enough so that such diffeomorphisms are at least C1, then they-form a ¢” Banach
manifold and one has the usual existence and uniqueness theorems for solutions
of differential equations. Unfortunately only right translation is smooth
whereas left translation and taking inverses are only continuous. Thus ws:P.
Diff(f) (or Ck+a-Diff(Q» is now a topological group which is a Banach mani-
fold on which right translation is smooth. One may now make Diff(Q) into a
"Lie" group by taking the inverse limit as the differentiability class goes
to « (Ebin and Marsden [1970], Omori [1975]).

We next determine the tangent space Tn(Diff(Q)) of Diff(R) at n.
Let thm, be a smooth curve with Ng = M- Then (dnt/dt)]t=0 is, by defi-
nition, a tangent vector at n to Diff(Q). If X €Q, then tr n.(X)
is a smooth curve in Q through n(X) and thus

dn, (X)

dt € Tn( f

£=0 X)

where Tn X Q is the tangent space to 2 at n(X). Consequently we have
amp XEQw (dnt<£)/dt)|t=0 € Tn(l)g’ i.e. (dnt/dt)lt=o is a vector field
over mn. Thus

T, (Diff(a)) = {yn;sz - mun(y € Tn(l)ﬂ}. (3.8)

In coordinates, if x = n(X), yn(z) = vi(z)(a/axi).

In particular, if e denotes the identity map of Q, Te(Diff(Q)) = %(Q),
the Lie algebra of vector fields on . It turns out that the Lie algebra
bracket of X(Q) is minus the usual Lie bracket of vector fields, i.e. [U,V]i
= W(au'/ax’) - vI(av'/ax’). Thus the Lie algebra of Diff(Q) may be iden-
tified with X(Q), with the negative of the usual Lie algebra structure.

To determine the dual of (q) and the cotangent bundle of Diff(Q), we
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take a geometric point of view. Instead of considering the functional analytic

dual of all 1inear continuous ﬁuncti‘onals on ¥(Q), we will be content to
find another vector space ¥(Q) and a weakly non-degenerate pairing

¢ XQ)* x %) ~ IR;

this means that ( , > is a bilinear mapping such that if (M,Vv) =0 for

all v €X¢Q), then M =0. Clearly X(2)* is a subspace of the functional
analytic dual. With this definition, it is easy to see that X(q)* consists
of all one-form densities on Q, i.e.

x@* = 19 @ 1@ (3.9)

The notation in (3.9) is the standard one: Ai(sz) denotes the set of all
exterior i-forms on & and [A3(Q)| denotes the densities on Q. Thus a
one-form density.is of the form gd"'z(_ with o a one-formon Q, so locally
it is (ai(g(_) dX]) d3L. The pairing ¢ , ) between X(2)* and ¥(Q) is

(gd3&_\£)= fﬂ 9(!)(5)d3l or in local coordinates, f o (l)v" (deL

Q
Finally, in view of (3.9), T*(Diff(Q)) consists of all one-form densities
over n, i.e.,

THDIFF(R)) = {o:0 > TR ® 123(2) (12, (X €Tr )2 ® |Ai(Q)|},(3.10)

This meani that gn"= _g_nd3l(_, where g_n ‘is3a one-form over n on Q, i.e.
gn('_x_) GTn 0%, Locally, o = (gi(l)dx”d X, where (x') = x = n(X) and
gn(ﬁ) =g (X)dx'. We shall denote the action of one-forms £ over n on
vector fields over n by gﬂ(ln); the result is a function of X which
locally equals giV1. The pairing ¢ , ) between T;(Diff(ﬂ)) and Tn(Diff(Q))
is given by (a, V)= fﬂ'gﬂ(yn)(l)dﬁ it o = §_nd35; locally this has

the expression J/Q & (})!1 (5)d3§.

Left and right translations are defined by

Ln:Diff(Q) -~ Diff(Q), Ln(¢) neg

Rn:Diff(Q) + Diff(Q), Rn(¢) éon

for n,0 €Diff(Q). Both are diffeomorphisms of the Lie group Diff(q). It
is easy to see that their derivatives have the following expressions:

, T¢Ln:T¢(D1'ff(Q)) - Tn°¢(oiff(a)); T¢Ln(1¢) = Tnel, €3.11)

and

TeR T, (DIFF(Q)) > T (Diff()); T Ry(Y,) = Vyen (3.12)

¢ ¢ ¢ -
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for- 1¢ € T¢(Diff(Q)). The physical interpretation of these formulas is the

following. Think of ¢ as a relabelling or rearrangement of the particles

in © and of n as a motion. Then (3.11) says that the material derivative

of the motion n followed by the relabelling ¢ equals TnoV,. In local

coordinates, if ¢(X) =Y and n(Y) =y, then y¢(5) = vi(g)(a/avi) and

T =2 v 2. (3.13)
' ay 3y

(ﬁ12!¢)

On the other hand, (3.12) says that the material derivative of the relabelling

¢ followed by the motion n equa]s. 1¢°n. In local coordinates, if
n(X) = x, ¢(x) =y, then Vy(X) = V'(X)(3/3") and
(Lgem) () = (vIon) (0 (3/2y"). (3.14)

Simply put, left translation by n transforms V¢(5), a vector at ¢(X) to
a vector at n(¢(X)) whereas right translation merely changes the argument
from X to n(X).

By (3.12), the derivative of right translation is again right transla-
tion, so Rn is C€”. However, if n and ¢ are diffeomorphisms of a
given finite Sobolev class, Tn looses one derivative. (This is basically
the reason why left translation is only continuous in WS:P-Diff(Q).) In
C*-Diff(Q) however (with differentiability suitably interpreted), left trans-
lation is C .

As an application, note that by (3.3) and (3.5), the material velocity
!t is the right translate of the spatial velocity Vi and the left translate
of the convective velocity U,.

If Vex(Q), a diffeomorphism n € Diff(R) acts on V by the
adjoint action, the analogue of conjugation for matrices. The definition
combined with (3.11) and (3.12) gives

Ad V := T (L

= TR Y = T (TR (1))

TnoVen™! = neV,

i.e, the adjoint action of n on V is the push-forward of vector fields:

Ad Y =, (3.15)

For example, by (3.3) and (3.5), Yy = Adn j&, which is similar to the

t
formula which relates @ to @ in the previous section. Finally, we
compute the coadjoint Ad;‘1u action of n on a EE}KQ)*. By the change

of variables formula we have
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an®V = J n, Vs

(
(Ad*_j0,V ) := (a,Ad V) = )
n 1Y)

n 9]

here aV in the integrand signifies the pairing between one-form densities
and vector fields so that o°V is a density on Q. Thus

*
Ad _q0 = M,0; (3.16)
n
n«o is the push-forward of the one-form density a; the push-forward operates

separately on the one-form and the density.

3.3 Equations of Motion. We review the derivation of the equations of motion
in Eulerian coordinates from four principles: conservation of mass, entropy,
and momentum. Conservation of energy will follow by imposing the adiabatic
equation of state.

a) The principle of conservation of mass stipulates that mass can be
neither created or destroyed, i.e.

3 3
pr(x)a% = [ pp(x)¢
fnt(w) t W 0
for all compact W with non-empty interior having smooth boundary. Changing
variables, this becomes :
* 3 - 3 * =
n (o, (x)d7x) = po(l)d X or (nie)dng) = 0ps (3.17)

where J(nt) = |dx/dX|is the Jacobian determinant of ny and n: is pull-back
of forms or functions as the case may be. Using the relation between Lie

derivatives and flows, (3.17) is equivalent to the continuity equation
_3Q 1 =
st + div(py) = 0. (3.18)

b) By the principle of conservation of entropy, the heat content of the
fluid cannot be altered, i.e.

3, _ 3
jn oy e pp0 = jw (%) (D%

for all compact W with non-empty interior having smooth boundary. By a
change of variables this becomes

30y (0 py()d%) = 0y (X) pg(X)d%

and by (3.17) we get
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”:(Gt(i)) =o4(X), or 29 4 yeyo, = 0; (3.19)

the second relation follows by taking the time derivative of the first. The
last relation says that no heat is exchanged across flow-lines.
~¢) Balance of momentum is described by Newton's second law: the rate

of change of momentum of a portion of the fluid equals the total force applied
to it. Since we assume that no external forces are present, the only forces
acting on the fluid are forces of stress. The assumption of an ideal fluid
means that the force of stress per unit area exerted across a surface element
at x, with outward unit normal n at time t, is -p(x,t)n for some
function p(x,t) called the pressure. With this hypothesis, the balance of
momentum becomes Euler's equations of motion:

st (eRy =- =V (3.2

1
*]
with the boundary condition v parallel to 3@ (no friction exists between
fluid and boundary) and the initial condition v(x,0) = 10(5) on Q.

The proof of conservation of energy is standard. The kinetic energy of
the fluid is % J p(l)"l(x)“z d35.

Q X

means that the internal energy of the fluid is [Q p(x)w(p(x), 0(§))d%§ with
the equation of state p(x) = p(l)z(aw/ap)(l) satisfying aw/dp > 0. In
the next computation the following two vector identities will be needed:

The assumption of an adiabatic fluid

2
vl
(veV)v = y( 5 > +w x vV, where w = curl v, the vorticity

vlw + odw/30) = yp/p + (W/30)Vo.

We have by (3.18), (3.19), and (3.20)

hvi?
(-2— + pw( pw))

1 oW,
Vp + 'a-(;_V_G]

-d'iv(pl)[% 1vi% + w(p,0) + o ﬂ] ouel(veT)y + 2 ¥

p

. 1 2 ow
-d'lV(p_\L[ﬁ lvl™ +w + o a—p—])

Consequently, the total energy

oJIo)
pert

Hv.p.0) = 5 jg o(x) Ivi2d3x + jﬂ olw(p(x), o(x)) d’x, (3.21)

which represents the Hamiltonian of the system, is conserved.
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The physical problem to be solved now consists of the continuity equa-
tion (3.18), entropy convection (3.19), and Euler's equations (3.20) with
p = pZBw/ap, where the internal energy density w(p,o) is a known function;

the boundary condition says that v is tangent to 3@ and the initial condi-
tion is v(x,0) = 10(5), vo @ given vector field on Q.

Recall that 09p/9p is the square of the sound speed, so that 9p/dp >0
represents a very reasonable physical condition. We also mention that
Bp/Sp >0 1is exactly the condition needed to prove local existence and
uniqueness of solutions.

3.4 Hamiltonian in Lagrangian Coordinates. Theequations of motion just

described are not on T*(Diff(R)) which is the phase space of the problem.
To describe the dynamics in T*(Diff(Q)) using Hamilton's equations, the
Hamiltonian (3.21) must be expressed on T*(Diff(Q)), i.e. in material
coordinates.

We start with the potential energy. Perform the change of variables
X = nt(l) in the potential energy and use (3.17) to get

J(Q S(n(p0) 008 = [ o (Mo 010, (e (3.22)

The right hand side is a function of N¢ and hence definedon Diff(Q) so
that by lifting we get a function on T*(Diff(Q)).

To express the kinetic energy as a function on the cotangent bundle, we
need first its expression in terms of the material velocity. This is
accomplished by performing the same change of variables x = nt(l). We have
by (3.3) and (3.17)

] 23 1 2.3
Vi JQ p(x) v, ()1°d°x = JQ P (XY (X)N°d™X (3.23)

But A S Tnt(Diff(Q)) so that (3.23) represents the expression of the

kinetic energy on the tangent bundle. Note that the mapping

N 3
<Y W > X)V (X)W .
v jﬂ PRV (1) 4 (X)X (3.28)
for yﬂ, yﬂ € Tn(Diff(Q)) and the dot in the integrand signifying the
metric on @ (in our case the usual dot product), defines a weak Riemannian
metric on Diff(q) and (3.23) is its kinetic energy.
In finite dimensions, a metric on a manifold induces a bundle metric

on the cotangent bundle as we have seen in Section 2. In infinite dimensions,
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as in the present case, this bundle metric does not exist in general and

in examples it must be constructed explicitly. Let gﬂ, g%]e T;(Diff(Q)),
i.e. a gnd3x Bn =L, d3X with E and § one-forms over n. Con-
sequently, a Apo d X)— g /p0 B ﬂpo d X) 14 /DO are one-forms over n,

so evaluated at X they are e]ements of T* (X)Q' But @ 1is a finite
dimensional Riemannian manifold (with the EucTidean metric in our case) so
to every one-form at n(X) there exists a unique vector at n(X) associated
by the metric. Explicitly, if E& E'TXQ, the one-form QE € T:Q is defined

by ub(w ) =u_ew for all w_ €T Q. In this way, the index Towering action
! T Ay XX

$:TQ ~ T*Q is a bundle isomorphism. The inverse of b 1is denoted by
#:7°Q > T2 and is called the inqex raising action. In coordinates, if

g = (gi.) is the metric and (913) is the inverse matrix of (gij)’ we
have for u =u (B/BX ), o= aidx], )

W - g 40 Jax', ot - g'Jo(arax').

Now define the bundle metric on T*(Diff(Q)) by
(ept) = | o000 %, (06 (3.25)

_ 3 _ 3t e ; o
for !n = (gn/pod 1) . En = (§ﬂ/pod X) Tn(D1ff(Q)). Denote by lell the
bundle norm defined by the metric (3.25) and let

M- pV2a’x € T (DifF(0)) (3.26)
be: the materia]momentum density of the fluid. With this notation, (3.23)
becomes HM 12 /2 and so by (3.22) the expression of the Hamiltonian on
T™ (D1ff(Q)) becomes

) = 5 i1 jg py W (eg (R (X), 00 (XD’ (3.27)

We want to investigate the symmetry properties of H. We shall prove that H
is right invariant under the subgroup

Diff(Q)po’OO ={p € Diff(9)|(po°¢)d¢ = Pgs9y°¢ = op}- (3.28)

For the potential energy this is easily seen, for if one replaces n by no¢
with ¢ as in (3.28), both arguments of w do not change. To right translate
M by ¢ means to compute the dual map of (3.12). Let y be an arbitrary
diffeomorphism and E% = gndgl. By a change of variables, we have for any ¥
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*
(TF RMD, V) =ML TR

N o= (M, Vv oy )
- L Y = - I L
oyt VTN They ey ! n

v
ney noy

Lz én(y(inow'] (ux)x ¢°

n

- W 0 Y =G e Y
Q n

1 - o
ney v v n°y
Consequently, if

.3 * B wir g3
LN =g dX, then T ) -1Rw(ﬂn) Jq}_](gn P )dvX . (3.29)

. b3 s ps * _
Thus, if %n3' poynd X and ¢ satisfies (3.28), then T _]R¢(Mn) =

90(!n°¢-]) d”X, so that by (3.25), a change of variab1es?°gnd (3.29) we have

I R (M2 = f o (I (671 ()12 a3x
nog™! #M g 07

2 3, _ 2.3
[9 oo DI, (123,06 = [ ogoiny, (01 &y

2
HMnH s

i.e. the kinetic energy is invariant by right translations with diffeomorphisms
of the form (3.28).

3.5 Poisson Bracket in Eulerian (Spatial) Coordinates. The dynamics of
the Hamiltonian (3.27) on T*(Diff(Q)) is equivalent to

F = {F,H} (3.29)

for F an arbitrary function on T*(Diff(g)) and { , } the canonical Poisson
bracket of the cotangent bundle. If E is a function space on © modelling
the manifold Diff(Q), then E x E* models T*(Diff(Q)); the dual E* has
to be taken in the same geometric manner as we discussed in 3.3. If n €E,
v e_g*, the Poisson bracket (3.29) is given by

{F,6}(n,v) = f (ﬁf 86 _SF é‘—5)d3x (3.30)
q\on oV n

where the functional derivatives SF/én G_E* and G6F/év €E are defined by
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D F(n,v)en' J SF (1) d3X, for any n' €E
(R F T n' €E

D. F{n,v)ev' v‘(§£>d3xj for any v'€ EY

A -7

where DnF, DvF denote the Fréchet derfvatives of F with respect to n
and v. By (3.26), (3.3), (3.17), and (3.29), the expression of ﬂn in
Eulerian coordinates x = n{X) is

B0 = o0V, (1)°6°X = ey (X)u(x) Jn_1(x)d3l
= olv(x) P = TR (),
where the quantity !
Mx) = p(x)v(x)®a® = TR (1)(%) (3.31)

is called the Eulerian momentum density of the fluid. Consider the map

B0+ (M), 0(x)d %, o(x)) (3.32)

from Lagrangian to Eulerian coordinates, where M 1is given by (3.31) and

p=4Jd _](poon_1); o = Ooon-1 . (3.33)

n
Note that (3.33) is simply a rewriting of (3.17). Then a computation shows

that the bracket (3.30) via the change of variables (3.33) becomes
(F.6)(ie) - | W {(‘SG 7) & - (<. z)ﬁi] ¢’

Q M M M SM
{ s s 3

o () Lz )]
AR5

+ j [ ( ) ——_t: (V ——)] d3§ (3.34)
Q &M

where ﬁ(ﬁ) = p(x) v(x) 1is identified with M 1in (3.31). The computation
that transforms the bracket (3.30) via (3.31), (3.32), (3.33) to (3.34) is
tedious; see Kaufmann's Tecture in these proceedings for a different example

1

where such a computation is carried out. An even longer computation shows
that (3.34) which is bilinear and skew-symmetric, also satisfies the Jacobi
identity. In 8 we shall give an abstract theorem which includes these
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results and allows one to efficiently bypass such computations yet obtain the
correct answers.

The equations of motion (3.18), (3.19), (3.20)in terms of M, o and o
can be obtained from (3.34) and the dynamics F = {F,H} by taking for
F the functions Qp@)d&) Qp@)c@)d&,JQMﬂl)d%}i=1,Ll

Also, note that the map (3.32) is defined on” T*(Diff(Q)) with values
in X'(Q) x F*(Q) x F(Q), where ¥*(Q) denotes the one-form densities on
Q in accordance with (3.9), F(Q) denotes the space of smooth functions on
Q, and F*(Q) denotes the geometric dual of F(Q), the densities on Q.
The pairing between F(Q) and F*(R) is integration of the product.

If w=curl v denotes the Eulerian vorticity, the Eulerian potential
vorticity is defined by

Q: = wVa/p. (3.35)

From the equations of motion, it is easy to see that o and Q are conserved.
In fact, a computation shows that any functional on F*(Q) x F*(Q) x  F(Q)
commutes (using the bracket (3.34)) with

Fol0,) = | plx)e(otn),alxa’s, (3.36)
Q

where @ 1is an arbitrary real valued smooth function of two real variables.
Consequently, (3.34) is a degenerate bracket, unlike the canonical bracket
(3.30). The significance of the functionals F® will be explained in the

next section.

4. MECHANICAL SYSTEM ON DUALS OF SEMIDIRECT PRODUCT LIE ALGEBRAS

4.1 Poisson Manifolds and Momentum Maps. Throughout this section we employ
the following sfandard notations and conventions. For a smooth manifold P,
F(P) and %(P) denote the ring of functions and the Lie algebra of vector
fields on P respectively. The Lie algebra bracket of ¥(P) is minus the
usual Lie bracket for vector fields i.e. minus the bracket given by

YT = x93t 7ad) - v sedd). (4.1)

A Lie group G 1is a smooth manifold which is a group in which multiplication
and taking inverses are smooth maps. The tangent space TeG at the identity
‘e € G has a bracket operation obtained in the following way. For &,n€ TeG,
one defines vector fields Xe(q) = TeLg(E), Kn(g) = TeLg(n)’ where

L4168 > G Lg(h) = gh  is left translation and TelgiTe6 > T G s the
derivative of Lg, a linear map from TeG to the tangent space TgG to

G at g. Then [&,n] = [Lg,xn](e). With this bracket, T,G becomes a Lie
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algebra, called the left Lie algebra of G, or simply Lie algebra of G,
and is denoted by # . Of course the same construction can be performed with

right translations Rg(h) = hg, and again a Lie algebra structure on TeG
would result. The latter structure is anti-isomorphic to @}, i.e. its
bracket has the opposite sign of that of @}.

¥(P) is the right Lie algebra of Diff(P); (see Ebin and Marsden [1970],
or Abraham and Marsden [1978], ex. 4.1.G, page 274.) Since Lie algebras
are usually thought of as left Lie algebras of Lie groups, we must introduce
certain minus . signs in the definitions that follow, in order to obtain the
standard formulas in the Titeraturesin particular, the left Lie algebra
bracket of ¥(P) 1is minus the usual Lie bracket of vector fields.

Let P be a smooth manifold. A Poisson bracket on P is a multiplica-
tion { , }on F(P) making (F(P), {, }) into a Lie algebra and a map
f Xf €XP) such that Xf(g) = {g,f} that is a Lie algebra homomor-
phism-of F(P) into X(P), i.e. X{f,g} = -[Xf,Xg]. A manifold P endowed
with a Poisson bracket is called a Poisson manifold. A map a:(P19{ . }1) >

(PZ,{ 9}2) between Poisson manifolds is called canonical, if
o*{f,g}, = {a*f,a"g}y (4.2)

for any f,g € F(PZ), where the upper star denotes the pull-back operation.
Functions € € F(P) such that {C,f} =0 for all f € F(P) are called
Casimir functions. Note that a canonical map a:P]+ p
of h € F(P]) into trajectories of o*h € F(PZ)‘

A Lie group action on a manifold P is a group homomorphism &:G -
Diff(P), where Diff(P) denotes the group of diffeomorphisms of P, such
that the map {(g,p)#> & (p) 1is smooth. If P s a Poisson manifold, & is
called canonical if all the diffeomorphisms @g’ g € G, are canonical maps

takes trajectories

2

of P. A Lie algebra action (infinitesimal generator) on a manifold P is

a Lie algebra anti-homomorphism ¢:%<¥¥(P) such that the map (&,p) » ¢(&)(p)
is smooth. If 8, happens to be the (Teft) Lie algebra of a Lie group &
acting on P, then ¢ = ¢, where the upper prime denotes the Lie algebra
homomorphism induced by & i.e. .®' = Teén If P 1is a Poisson manifold,

the Lie algebra action ¢ 1is said to be canonical if for any & € q} and

f], f, € F(P),

2
$(E) (F2F,1 = 1O(E)F . Fpd + {F.0(E)F, . (4.3)

If the Lie group G with Lie algebra 61 acts canonically on the
Poisson manifold P, a momentum mapping J:P » @f is a map satisfying

¢(g) = Xj(E) (4.4)
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for all ¢ e)}, where 3(g) € F(P) is defined by '3(5;)(;;) =J(p), E) >
where { , ) denotes the pairing between g_* and o. J is said to be
equivariant, if

oJ (4.5)

for all g € G; here Adg:q} > q}.denotes the adjoint action of G on oy
and Ad;:Q}* -»ﬁ}* is its dual map. If we deal with a canonical Lie algebra
action ¢ of 83, on P, the definition of the momentum mapping is unchanged,

but equivariance is replaced by

TpJ(¢(£)(p))= -(ad £)*(a(p)) (4.6)

for all £ € 0], p €P; here TpJ:TpP +A}* denotes the tangent map (dif-
ferential) of J at p €P. Lie group (algebra) actions on a Poisson mani-
fold admitting equivariant momentm maps are called Hamittonian actions.

In duals of the Lie algebras, a Casimir function is characterized by
the property of being invariant under the coadjoint action. This means that
= F(d}*) is a Casimir function if and only if

CoAd* ;= C, or C(Ad"_jm) = C(n)
9 9

for all g€ G and u € 0}*,

We now give examples of the concepts above. Any symplectic manifold,
in particular any cotangent bundle, is a Poisson manifold, the Poisson
bracket being defined by the symplectic 2-form. The Casimir functions are
constants. As we shall see in the next subsection, duals of Lie algebras
are Poisson manifolds. If G =S0(3) and P = Hla, an example of an action
of G on P is o(X) = AX, where A €sS0(3) and X eR’. If 6=
Diff(q) and P = X(q), F(Q) or F(Q) (the densities on @), an action
of P on G 1is given by push-forward. The adjoint action of SO(3) on
s0(3) 1is conjugation, and the adjoint action of Diff(Q) an %(Q) 1is push-
forward.

The momentum maps used in this section are all defined by actions which
are cotangent 1ifts. This means that G acts on the manifold Q and one
considers the induced action on T*Q. Thus, if @:G - Diff(Q) is a (left
or right) action, then

(g, 0 )+ T, o (o) (4.7)
q 2 (a) g

is also a (left or right) action; here g € G, uq € T;Q, where T;Q denotes

the cotangent space at ¢ to Q and T¥  _y fis the dual of the
<I>g(q) ¢
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tangent map (derivative) of @ e In particular, if Q = G, then the

g
left and right translations Lg and Rg can be 1ifted to Teft and right
actions also denoted by Lg and R_g, of T*G by (4.7), namely

. * J R
LG xT6~>T6, Lg(orh) : Tgth_1(%) : (4.8)

¥ . * = TH
R:T G xG=>T86, Rg(OLh) : Tthg_1(0Lh) . (4.9)

Noether's theorem gives a formula for the momentum map of the actions
(4.7). 1f g&. denotes the infinitesimal generator of the action of G on
Q, £ € 6}, then the equivariant momentum map

J:TQ - off
i = 4,10
is o, ) () (ags F,Q(q) ) (4.10)
for ocq € T:Q, g € @, and ( , ) the pairing between T*Q and TQ. In

particular, the two commuting actions (4.8) and (4.9) have the equivariant
momen tum maps

u* *
J TG 6", JL(OLg)

] (TR (o) for L (4.11)

e'g
(TeLg)*(ocg) for R. (4.12)

* *
RiT e84 dplay)

4.2 Duals of Lie Algebras. The dual &}* of a Lie algebra ¢3 is a Poisson
manifold with respect to the =+ Lie-Poisson bracket given by

) §f &g '
{F93,(0) = =, {w au]’ , (4.13)
for u € 6}* and f,g functions on 03_* here ( , ) denotes the pairing
between and *. The "functional derivative" §f/su e % is the derivative
Df(u) regarded as an element of 63, rather than 9}**, i.e.

DF(u) e v= <v,«§—f> (4.14)

for W,V € oa_*. (For infinite dimensional o}, the pairing is with respect
to a weakly non-degenerate form and the existence of &f/&u 1is a bona fide
hypothesis on f.) The space 0} endowed with the =+ Lie-Poisson bracket
is denoted by %+ The Hamiltonian vector field defined by the function h

on ﬂg; is given by
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% (w) = ¥ ad(%w*(u), (4.15)

where ad(g)en = [E,n] is the adjoint action of 41 on g and (ad(g))ﬁz}* - ﬁ*
its dual map.
An important property of equivariant momentum maps is that they are

canonical. More precisely, if J:P - q}* is an equivariant momentum map of
a left Lie group or algebra action then YJ:p +—3}i is canonical, i.e.

{0*f,0%q} = J¥{f, 93, (4.16)

for all f,g € F({}*) and { ,} the Poisson bracket on P. An equivalent
formulation is

~

(el = {3(8),d(m)} (4.17)

for all &,n €41. If left actions are replaced by right actions, all the
signs in (4.16) and (4.17) have to be changed; J:P-*vf is canonical.
For example ; '
LT *
JL.T G+0}+
and
-* *
JR.T G~ 0

given by (4.11) and (4.12) are canonical maps. By (4.11) and (4.12) JL is

right invariant and JR is left invariant. Another important example is
provided by the following.

Let 03"5 be Lie algebras and o:ep fi a linear map. The dual map
a*:jf >0 s canonical if and only if o is a Lie algebra homomorphism.

For a study of the local structure of Poisson manifolds the reader is
referred to Weinstein [1984] and his lecture in this volume.

4.3 Semidirect Products. Let V be a topological vector space and assume
that & is a Teft Lie group action on V such that each ¢&_ is linear,
i.e. ©:6 > Aut(V) 1is a group homomorphims, where Aut(V) is the Lie group
of al1 T1inear continuous isomorphism of V. Such an action is called a
(left) representation of G on V. The Lie algebra of Aut(V) is the space
End(V) of all linear continuous maps of V into itself, with bracket the
commutator of linear maps [A,B] = AB-BA, A,B € End(V). The group repre-
Sentation @ induces a Lie algebra representation @':¢7 + End(V), so ¢
1s a Lie algebra homomorphism.

Given G,Vs and @, we define the semidirect product S as the Lie
group with underlying manifold G x V and multiplication
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(550, (5p5u,) = (9,9, up + 0(3)(u)) (4.18)

where 915 9 € G, Ups Uy €V. S is usually denoted by G & V, the action
of G on V being known. Let 5 = Q}K V be the Lie algebra of S; its
bracket equals

[0g)5vq) s (850v,) 1= ([E7,55], 0 (5)v, = @' (Ep)vy) (4.19)

for ‘E;I’ EZ € 09-, Vis Yy €V. The adjoint and coadjoint actions of S on
4 and s* are given by

Ad(g,u) (&) = (Ad 2, 2(g)v - ¢'(Ad E)u) (4.20)
and
[Ad ]]*(v,a) = Ad*L(v,a) = (AM*_ v+ (9))"(9(g))a, 9,(g)a) (4.21)
(gsu)_ (g’u) g

where g €6, u,v €V, \)GQ} and a €% 010y >V 1sg1venby¢(€)
¢'(E)u and (g,u)” -1 (g , -%g )u) Recaﬂ that a Casimiy functwn is
characterized by being invariant under the coadjoint action. Formula (4.21)

will be used in examples to determine whether a given function is a Casimuir.
The =+ Lie-Poisson bracket of F,H:s* » IR is, by (4.13) and (4.19),
equal to

B SF 6H SF ((SHY.6F
TR}, (ma) = £, [éu 6u])i @,0'(§0)-3h = a,00($H).4F, (4.22)
where u 50}* a €V*, and as in (4.15) SF GO;Land SF ¢ V. From formula (4.15)
s s ’ ° 9 u 63 . . 9

we compute the Hamiltonian vector field of H:s* - IR to be

- SHY* ' W SHY*
Xy(u,a) = ¥(?d(gﬁ> W@ ra, 0 (gﬁ) a (4.23)
Ta
, ey OH R .
where @' : top > Vo is given by 9¢'g,(E) = ¢ (E)°33"’ and o' is its adjoint,
Ta Sa Ta
The left and right translations on S, for (ay,v,a) € T?h ")

ThGXVXV are

(Gxv) =

LU0 (eov50)) = (Tl %o u + ele)vo(g™)"),  (4.24)
9

R((gsu)s(ahsvsa)) = ((Tth _‘l)*ah - df;( _-]) (hg),,v +<I>(h)u,a) (4.25)
g g Ju
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where fﬁ(g) is the "matrix element" <(a,d(g)u’) and dfﬁ(g) its differen-

tial. The corresponding momentum mappings are by (4.11) and (4.12)

J TS 4%, 9, (agavia) = (T<e,o)R(g,v))*(ag,v,a) = ((TeRg)*oLg + (o)) a,a)

(4.26)
and
IpiT's > %, Jplag,vsa) = (T(e’O)L(g’v))*(ag,v,a) = (T L )*ag, 8(g)"a).

(4.28)

9

Recall that Jp is left invariant and JL is right invariant; both are
canonical.

4.4 The Theorems. In many physical examples a Hamiltonian system on T*G
is given whose Hamiltonian function Ha depends smoothly on a parameter
a €Vv*, In_addition, Ha is left invariant under the stabilizer Ga =
{g EG|<I>(g'])*a = a} whose Lie algebra is %, = (£ € ®lo'(g)*a = 0}. We
can think of this Hamiltonian also as a function H:T'G x V* - IR,
Ha(ag) = H(a_,a), where T¥G X V* has the direct sum Poisson structure:
the bracket of two functions on TG x V¥ 4s their bracket on T¥G. (If
V were a Lie algebra, a case not discussed in this lecture, V* would be
endowed with its own Lie-Poisson structure.) We wish to study the motion
determined by H on a "flat" space whithout losing any information about the
original motion on T*G x V*. The key to this approach is the momentum maps
(4.26) and (4.27).

We start with the left action of the semi-direct product S = G& V on
T*S. The momentum map JR is invariant under the left action and the sub-
group V CS acting on the left on T*S has a momentum map given by the
second component of JL (see (4.26)), i.e. (ag,u,a)|+ a. This is a canonical
map if V¥ s thought of as having the + Lie-Poisson structure, which is
trivial since V s an abelian Lie algebra. Moreover, the canonical projec-
tion T*S » T*G is clearly canonical, so that the map ’

P :T*S » TG x V"

L » P

L(ocg,u,a) = (ag,a) (4.28)

is canonical. Now it is easily seen that JR factors through PL:
T oLT* * * 3 - *, *
JgiT76 x V¥ > 47, JR(ug,a) (TeLg(ag),®(g) a) (4.29)

T.e. the following diagram commutes
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N

"6 x y* ———-—————-—>/5
R

Consequently, JR is a canonical map.

A similar situation occurs when one considers the right action of S on
T"S. The momentum map JL is right invariant,*and the subgroup V CS
acts on the right in a Hamiltonian manner on T S with momentum map given by
the second component of (4.27), i.e. (aggu,a) H~®(g)*a. This map is' there-
fore canonical. Moreover, the map

(o ,u,a) » o + dfd (g) = 0o + T*R (@')*a
-1 -1
g a(g” ) (u) § 94

being a projection followed by a translation with an exact differential on
the fibers, is a canonical map s > 7%, Consequently

PpiT's + TG x v*

= * vy F *
PR(agau,a) = (ug + TgRg_1(®u) a, ®(g)a) (4.30)
is canonical. It is easily shown that JL factors through PR:
3 Te v > 8%, 3 (a,a) = (TR (o), o(g™)"a) (4.31)
L + L g’ eg¥g’r M9 ’

i.e. the following diagram commutes

T*G * v*

Consequently, JL is the reduction of JL by V, so is a canonical map.

A few comments arein order regarding the difference between right and
left in the previous construction. The space T* x V* is diffeomorphic
to the orbit space of T*S by the left or right V-action. The explicit
diffeomorphisms are [ag,u ale (ug,a) for the left V-action and [a_,u,a]

ng + df? o -1 {g), 2(q) ) for the right V-action, where [ug,u ,a] denotes the
L9 :

left or right V-orbit through (qg,u,a). Via these diffeomorphisms
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the canonical projections become PL and PR respectively. (As we remarked
in the introduction, the asymmetry between left and right is because we have
chosen a left action of G on V.). We refer the reader to Marsden, Ratiu,
Weinstein [1983] for an analysis of the symplectic leaves of T*G x V. We

suymmarize the results in the following.

Theorem 1. The maps

3 (0 a) = (TR (), o(g™")*a)

g 3 * *
JL,JR:TGXV ")'éi ) L g e g

~ _ * *
JR(OLg!a) - (Tel—g(o"g)s @(g) a)
are canonical; in fact, these maps are reductions of the momentum maps

by the action of \V and are themselves momentum maps for the action (left
or vight) of G % V on the Poisson manifold T*G x vE.

See Holm, Kupershmidt,and Levermore [1983] for a direct verification of the

canonical nature of JL in some examples.

After this kinematic theorem we turn our attention to dynamics. Let
H:T"6 x V* > IR be a Hamiltonian and assume that the function Ha:T*G - IR,
Ha(ag) = H(ug,a), a €V*, 1is invariant under the Tift to T*6 of the left
action of the stabilizer Ga on G. Then it is easily seen that H induces

a Hamiltonian function H :4* > IR defined by H oJR = H, i.e.

HL(T;Lg(ag), ®(g)*a) = H(a ,a). For right invari;nt Hamiltonians interchange
"left" by "right", and "-" by "+". However, since the maps JR and JL
are different, we have HROJL =H, i.e. HR(T:Rg(ag), @(g_])*a) = H(a_,a).

It is of interest to investigate the evolution of a € V¥ in 575 we
work now with a Teft action. Let ca(t) € T*6 denote an integral curve of
Ha and let ga(t) be its projection on G. Then t H»(caSt),a) is an
integral curve of H on TG x V¥ so that the curve t H—JR(ca(t),a) is
an integral curve of H on Af. Thus tl»—@(ga(t))*a is the evolution
of the initial condition a in Af. For right actions, if ca(t) and
ga(t) are as above, the curve t H-JL(ca(t), @(ga(t)'1)*a) is an integral
curve of H on T*G x V¥ so that th JL(ca(t), @(ga(t)'1)*a) is an integral
curve of HR on A:. Hence t H-@(ga(t)'])*a is again the evolution of
the variable .a in A:. The difference between the integral curves of H
for Teft and right actions is due to the different formulas for P and P

We have proved the following.

R*

Theorem 2. ILet H:T*G x V¥ - R be left invariant under the action on T*G
of the stabilizer G, for every a €V . Then H induces a Hamiltonian

H, € F(s*) defined by H(T;Lg(ag), o(g)*a) = H(ag,a), thus yielding Lie-
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Poisson equations on Af. The curve ca(t) € T*G s a solution of Hamilton's

equations defined by Ha on T*6 if and only if J (ca(t),a) is a solution

R
of the Hamiltonian system defined by H —on Af. In particular, the evolu-
tion of a €EV* <is given by @(ga(t))*a where ga(t) is the projection

of ca(t) on G. For right invariant systems, interchange everywhere "left"

by 'right," "-" by "+, set Hp € F(A:), HR(T:Rg(u ), <I>(g'])*a) = H(ug,a),
and the evolution of a is given by @(ga(t)'])*a.

We conclude this section with some general remarks. In many examples
one is given the phase space T*G, but it is not obvious a priori what V
and @ should be. The phase space T*6 is often interpreted as 'material’
or 'Lagrangian' coordinates, while the equations of motion may be partially
or wholly derived in 'spatial® ('Eulerian') or 'convective' ('body')
coordinates. This means that the Hamiltonian might be given directly on a
space of the form Q}* % V*, where the evolution of the V* variable is by
'dragging along' or 'Lie transport' i.e. it is of the form t = &(g(t))*a
for left invariant systems (or t » @(g(t)-])*a for right invariant ones),
where a € V* and g(t) is the solution curve in the configuration space
G. This then determines the representation ¢ and shows whether one should
work with left or right actions. The relation between HL©T HR) and Hy in
Theorem 2 uniquely determines Ha’ which is automatically Ga—invariant,
and (4.20), (4.21) give the corresponding Lie-Poisson bracket and equations
of motion. The parameter a € V* often appears in the form of an initial
condition on some physical variable of the given problem.

5. APPLICATIONS. In this section we shall consider the heavy top and the
adiabatic fluid equations in both space and body coordinates. The convective
picture for the heavy top and the Eulerian picture for fluids are classical.
The other two pictures are less common but are also interesting; see Guillemin
and Sternberg [1980] for some indications in this direction.

5.1. Heavy Top in Body Coordinates. We shall apply the theorems of the
previous section first directly and then backwards.

The direct approach starts with the Lagrangian picture. The Hamiltonian
(2.34) (or (2.33) in terms of Euler angles) is invariant under rotations about
the spatial Oz-axis. This means that we deal with the standard left repre-
sentation of SO(3) on IR3

b

a(A)x = Ax, (5.1)
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A €50(3), x € 1R 3, By Theorem 2, H defines a Hamiltonian H on e(3)*,
where e(3) = 50(3) « IR3 is the Euclidean Lie algebra. The Lagrangian to
body (convective) map 5R:T*(SO(3)) 3 IR3 + e(3)* s given in this case by
v _ -1

To gain a physical interpretation of this map, we must determine a,, if

t » A(t) s a solution of the problem. If A(t) is the tangent vector

to SO(3) at A(t), then QB(t) = A(t)"]A(t) €40(3) and m = Ig@ € 50(3)*.
Now recall that by definition when working in body coordinates, o =
T (m), i.e. o, is the momentum in the material picture. Thus, if «a
Amp-1"— =A _ iy
is és above,

Jolay, Mgtk) = (m, Mgy).

In coordinates this is the map (2.38). Thus, the Hamiltonian HL has the
familiar expression (2.32). By Theorem 2, the evolution of k is given by
A(t)-lﬁ, where A(t) is the solution of the problem in the configuration
space SO(3). Note that y = A(t)_1£ is the dynamic variable in e(3)* in
accordance to the general theory. It is clear that Mgk 1is a parameter
Tn the problem. It represents the direction of gravity and the momentum

of the body around the fixed point.

By the general theory, HL given by (2.32) defines Lie-Poisson equations
on e(3)f. The bracket is given by (4.20) and the equations of motion by
(4.21). To write the bracket and the Lie-Poisson equations explicitly, we
note first that ':40(3) » End(IR) is given by ©'(£)x = &x, & € 40(3),
x€R®. For F,G:e(3)* » IR,%£ = (sz)A, %5 = ZXF(VE,jL denote the usual
gradients with respect to m, y € IR3) and ;énce

1 [8F) 86 - =
® [ } (Y‘EF) v G G,

Smj Sy

44

%
* *
N L N ' [SE - SFl =

® [5@ oy VE‘_F Xys LSX) Y VX_F X Y, and ad[sm}om = -ZEF X m,

With these formulas, the bracket (4.20) becomes (2.30). The Lie-Poisson
equations (4.23) become for this case

rﬁ=-ymeg-nyxl
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or, explicitly taking into accountthat ymH = ey ==, == and YVH = MgX,
this system is (2.36). - -
Theorem 2 of the previous section can also be applied backwards. Then
one starts with the Hamiltonian (2.32) on IR3 X IR3 and the equations of
motion (2.36). The last three equations say that vy 1is dragged along
by the group action. So y = A(t)_]k. where A(t) is the solution of the
problem in the configuration space SO(3). This implies by Theorem 2 that
we are dealing with a Teft invariant system and the standard representation
of SO(3) on RS, Consequently, one easily computes J, and H which,
of course, turns out to be (2.34). Thus, onceagain, (2.36) are Hamiltonian
with respect to the bracket (2.39).
To determine the Casimir functions, note that “XHZ and mey are
conserved by (2.36). By (4.21) applied to e(3)”, the coadjoint action is

given by

AdY
(A,u)

—

my) = (Am + u x Ay, Ay).

With this formula, it is easy to see that

¢, (my) = o(ly1®), Cylmy) = v(m-y)

are invariant under the coadjoint action, for arbitrary real-valued functions

of a real variable & and ¥. In other words, C] and C2 are Casimir

functions.

5.2 Heavy Top in Space Coordinates. To study the motion of the heavy top

in space coordinates, we again apply the theorems of the previous section.
As remarked at the end of §4, we first have to investigate the invariance
properties of H under right transiations A AB, B € SO(3), a constant
matrix. By (2.34),

H(AB) = - § Tr(BIB™ AT TAATIA) + Mgtk-ABX ,
so that H(AB) = H(A) if and only if

BIB =1, Bx=X.

Thus, the parameter a in the general theory is, in this case, the pair
(I,X)u So far, we have thought of I as being a diagonal matrix, which was
consistent with the body coordinate approach: an observer sitting on the
body perceives I as constant, so he can choose once and for all a body
coordinate system in which I {s diagonal. However, an observer who is
spatially fixed sees I moving. Thus, even if I 1is initially diagonal,
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it will not stay so; i.e. I must be a general symmetric covariant (indices
down) two tensor, the vector space of all them being denoted by SZ(IR3),

We see that (I,x) belongs to SZ(IR3) x RY = v*. The dual of SZ(IR3)
is SZ(IR3), the space of contravariant symmetric two-tensors on IR3,
with the pairing given by contraction on both indices, i.e. the trace of
s2(1R%) x 1R3, and the action of 50(3)
on V is conjugation in the first factor and the standard action on the
second. The Lagrang1an to Eulerian map J :T*(s0(3)) xS (IR3) x IR3 N

(20(3) & (S2(1R%) x R%))* s given by

the product. Consequently V =

~

3 (ooLaX) = (T"Ry(ay)s ALATT, AX) .

L( A’

To gain a physical interpretation of this map, recall that I was computed
in a body frame. The spatial frame is obtained by a rotation by A(t)-],
where t = A(t) is the trajectory of the motion. Consequently, the moment
of inertia I.s in space coordinates is Is = AIA']., Thus, the map JL
becomes

(o015 Mgx) = (m., I, Mgi)

n

where A = AX and Es =1 w Am. The Hamiltonian becomes

Hg (mgs 1 52) =ms°lsis + Mgk -2

and thus

8H . 8H 6H,

S - _.._.S__= —_— =
Sm. Ismg o A Mgk I s @ ug

where g.C)Q. represents the symmetric matrix whose entries are a; b.
The + Lie-Poisson bracket on (50(3) x (S2(IR%) x IR3))* is by (4.21)
equal to

SF ) 3G 3G ) SF
(FL6}mg,15,0) = me(7, F x ¥ G’”’“(‘ ([“ ’“‘]'[“"3 D)
n" " \(Gey) - o1t |- () =
+ A«(YESF X VAG + YESG X Y;F).

The equations of motion are by (4.22)

SH v
n - X
-3 YﬂsHs x Mg [E_Q’ I;] ¥ zﬁHs 2

3
]

~

Ll )]

= I Mg x 2
Ts

> .
I
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where VY:s0(3) » 1IR3 is the inverse of . Using u-v = u x v and

the "back-cab" identity A x (B x C) = B(A-C) - C(A°B), one sees that for
our Hamiltonian the first two terms of the ﬁs equation cancel. Thus, we

o

have
m = Mgk x A
I“s B [Isﬁé%J
A o=uwo XA

where m = 1 This is the spatial form of the heavy top equations and

W .
S5
they are thus in Euler-Poisson form; i.e. Lie-Poisson for a semi-direct
product.

The coadjoint action is given by

* _ -1 -1
Ad(A,J,E)(ES’IS’A) = (A@S +u x Ax + [, AISA 1, AISA JAN) .

Let M, Ty, Ty be the three invariants of the matrix Is‘ Since they are
invariant under conjugation, they are invariant under the above coadjoint
action. Consequently, these give Casimirs. There are in fact six inall:

Cym I 52) = & (m)

m SI 9&) = Qz(ﬂz)

Calme,I 52) = @

s 3(TT

3)

_ 2
c4(ms,ls,3) = <1>4(II_>\_II )
Cs(msslssﬁ) = QS((IS_)_\_I”}_)

_ 2
Colm >I51) = o (1T A1)

The generic orbit in our twelve dimensional Lie-Poisson space (40(3) %
(s2(R%) & 1IR3
point, a six dimensional isotropy subgroup with A = Identity and u = ISAJ
J =0, [J,,ISJ = 0 (three dimensions) and ul 2,
J = 0 (two dimensions)) which is consistent with the existence of six
Casimirs. There is, in addition, the constant of motion Egog_ for our

))* s six dimensional (the coadjoint action has, at each

A® As (one dimension); u

special Hamiltonian corresponding to invariance under rotations about the
z-axis., Thus, we can reduce again getting back to the four dimensional
reduced phase space (T*Sz) of the heavy top. (For the Lagrange top there
is, of course, an additional conserved quantity).
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The above shows concretely the duality between the spatial and body
descriptions of a heavy top. In fact they form a dual pair (Weinstein [1983]).
We shall see a similar situation for fluids in Sections 5.3 and 5.4 following.

5.3 Ideal Compressible Adiabatic Fluids in Eulerian Coordinates. The

Hamiltonian (3.27) was shown in §3 to be right invariant under the subgroup of
Diff(Q) given by (3.28). This means that we deal with the representation
of Diff(R) on FQ) x F*(Q) by push-forward, i.e.

o(n)(f,u) = (nf> nen)

for fe& F(Q), H € F(2). The induced Lie algebra representation is by
minus the Lie derivative. The Lagrangian to Eulerian map

3 T(DiFF(0)) x F(9) » F&) ~ (€0)  (Fa) x F ()}
is given in this case by
3 _ -1 3 * *
I (@ sus £) = ((g o )Jn_1d X, MR, N f),

where _gn(z) = Enﬁl)dsla,l =n(X). Thus, if Yy is the material velocity,
(3.26) gives the material momentum density, M = poibd%X and the above

n
formula becomes

3 3 _ 3
JL(M s de _)Egoo) = (M: pd 5,0')

where M(x) = p(ﬁ)vb(z)d%x. This is exactly the map (3.32). By Theorem 2
the evolution of pod3x_ and oy is given by t H—n:(podéﬁ), te n;Oo,
where Ny is the solution curve in Diff(Q). The Lie-Poisson bracket
given by (4.21) 1is easily seen to equal (3.34) and the equations of motion
(4.22) are (3.18), (3.19) and (3.20). The change of the parameters o and
Oy corresponds to choosing different initial conditions.

The coadjoint action of Diff(Q) « (F(Q) x F*(Q)) on (€(Q) x (F*(Q) X
F(2))* s given by (4.20), (3.16)

Ad* a4 pdsi,c) = (nM+ fn (pd31) + kO, N (pd33<_), Nx0) .
(n, 1) * * *

Let now « = curl v be the vorticity and denote by @ = w.Vo/p = div(ow)/p.
It is then easy to see that the functional

C(M,p,0) = mﬂ o(x)ola(x), a(x))d3x,

for an arbitrary real-valued function ¢ of two real variables, is invariant
under the Ad*-action. Consequently, the functional C is a Casimir function.
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"The theorems of §4 can also be applied backwards in order to interpret
(3.18), (3.19), (3.20) as Lie-Poisson equations. Start with the configura-
tion space Diff(Q), the physical energy function H(M,p,0) given by (3.21),
M(x) = p(é)vb(i)dsé, conservation of mass and entropy (3.18), (3.19) and
balance of momentum (3.20) with equation of state p = pzaw(p,c)/ap. Then
remark that (3 18), (3 19) are equivalent to Lv(p(i)dsé) = 0"LV(G(§)) =0,
i.e. X)) = oy(0)a3, n¥(o(x)) = oy(X), “for pg, oy theinitial
mass and entropy dens1ty Hence the dual of the representation space is
F*(Q) x F(R) so that V = F(Q) x F*(Q). Moreover, the prior push-forward
formulas show that the left representation of Diff(g) on V” is push-forward
so that by Theorem 2, the representation of Diff(Q) on V is also push-

forward. Then, again by Theorem 2, since H o is invariant under
0°-0
Diff(Q) , equations (3.18), (3.19), (3.20) are + Lie-Poisson equations
DOU * *
on (X(2) wO(F(a) x F Q).

5.4 Ideal Compressible Adiabatic Fluids in Convective Coordinates. To study

the motion in convective coordinates we have to investigate the invariance
properties of H wunder left translations n& yen,  a time independent
(orientation preserving) diffeomorphism. Since

* _* 3
T L) =T WE EX

ney
for M =5,nd35, formula (3.27) yields
- 3
HOT QL)) = 0T L) +[ 00 W (oo (037! (X), (X))
nownp 2 ot vy g %o 0'8Yyon 2> 90

If g 1is the metric on @ and T denotes adjoints with respect to g,
yPad X, using the definitions in 83.4 we see that

then if Ml’l = po_,n
* # +
(Tyg N* = (),
so that
* 30 +
(T atultn)/eg0" = (7w

Thus the Hamiltonian becomes

T L) = 5 [ o 012+ [ og00w (097 (08 (n(x)),
Not
5p(X)d’ -
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This expression coincides with the one for H(M,) if and only if (Tw)+ = Ty and
hence Ty is an isometry,and p(x) Ji}(ﬁ) o(x), where po(x) = oo(ﬁ)J'T(l).
If ¢ 1is an isometry, then J, = 1; consequently, H 1is left invariant

Y
under the group

Diff(Q) ={y €EDifF(Q)|y is an isometry for gl.

Thus, the parameter a in the general theory is in this case g. The space
of all the g's does not form a vector space, but it is an open cone in
the vector space of all symmetric covariant 2-tensors SZ(Q). The dual of
SZ(Q) is SZ(Q) C)[A3(Q)| the vector space of contravariant symmetric two-
tensor densities. The convected p and o have trivial equations of motion
corresponding to the dependence of a only on g. However, we can include
them for comparison with the spatial case (this is analogous to adding the
trivial equations I = 0 to the heavy top equations in body coordinates.)
Thus, we take v o= SZ(Q) x F'(Q) x F(Q) and hence V= SZ(Q) C)}A3(Q)| X
F(Q) x F(Q)*. The representation of Diff(Q) on V is by push-forward in
every factor.

The Lagrang1an to convect1ve map J T (D1ff(Q)) xS (Q) x F (R) x
FlR) - (Diff(R) = (52(2) @ [A%(@)] x F(2) x F()™)" is given by

JR(Mn’gsp’G) = (TeLn(MT])’ n*g, n*p n*s) := (M,G,R,S)

where [ s the convected momentum density, related to the spatial momentum
density M by

. . : b
Using the identity va = (V M{b + % dHlﬂz, we find that the equations of

motion for (M,G,R,S) are

W _1 2
=t = 7 Rd(IMlg) - dp
86 _
ot LEG
R _ 83 .
ot 0, ot 0
where "Mué is the length of M in the metric G, P = n*p = RZBW/BR is
the convected pressure and U s the convected velocity: M= RQ?. By the

general theory, these equations are Lie-Poisson on the space of tuples
(M,G,R,S); of course R and S are 'cyclic' variables. As in the heavy
top, what were Casimirs in the spatial picture now become special constants
of the motion, and new Casimirs appear (integrals of functions of G, R and
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S). Note finally that G, analogous to h for the heavy top, is advected in
the convective (body) picture, but is static in the spatial (Eulerian)
picture. Likewise R and S, analogous to [ are static in the convective
picture and dynamic in the spatial picture.

As mentioned in the introduction, the duality between the spatial and
convective pictures and its relationship to the stress formulas of Doyle-
Ericksen-Simo-Marsden (see Simo and Marsden [1983]) as well as to covariance
of energy balance under body (right) and spatial (left) diffeomorphisms
will be the subject of a future publication.
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