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GAUGED LIE-POISSON STRUCTURES

Richard Montgomery,1 Jerrold Marsden1 and Tudor Ratiu2

ABSTRACT. A global formula for Poisson brackets on reduced cotangent
bundles of principal bundles is derived. The result bears on the

basic constructions for interacting systems due to Sternberg and
Weinstein and on Poisson brackets involving semi-direct products for
fluid and plasma systems. The formula involves Lie-Poisson structures,
canonical brackets, and curvature terms.

1. INTRODUCTION. Llet G be a Lie group and 03 1its Lie algebra. The
right (resp. left) reduction of T*6 by G produces the + {resp. -)
Lie-Poisson structure on oy *:

F.630 = =, [ £
This construction is now well-known and has been reviewed in the lectures of
Weinstein, Ratiu and Morrison in these proceedings. This paper concerns
the Poisson structure on the reduction of T*B, where m:B - X is a
principal bundle. The Poisson structure on the (right) reduced space G\T*B
is a mixture of Lie-Poisson and canonical structures and will be computed
explicitly.

There are several motivations for considering the constructions presented
here. First of all, these reduced spaces occur in the construction of phase
spaces for interacting systems: see Sternberg [1977] and Weinstein [1978]
for a particle in a Yang-Mills field and Marsden and Weinsten [1982] for the
Maxsell-Vlasov equation. The link between the appreaches of Sternberg and
Weinstein and the physicist's equations (Wong's equations) was given in
Montgomery [1983] and provides a basis for this paper.

The second motivation was to better understand the role of Lie-Poisson
structures associated with semi-direct products of groups G x H. The way
these arise in examples was first systematically explored by Guillemin and
Sternberg [1980] and Ratiu [1980,1981,1982]. The symmetry breaking mechanism
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behind their occurrence is now well-understood for examples whose underlying
configuration space is a Lie group such.as the heavy top, compressible
fluids and MHD (see Marsden, Ratiu and Weinstein [1983] and Ratiu's Tecture
in these proceedings). However, semi-direct products occur in somewhat more
mysterious ways as well; for example in the Tast section of Marsden, Ratiu
and Weinstein [1983], it is observed that in momentum representation the
brackets for the Maxwell-Viasov equations and for multifluid plasmas, involve
semi-direct products. This paper in fact began on the road to Boulder as an
attempt to better this understanding.

The third motivation is to provide a setting for understanding limits of
Poisson structures and for averaging. For example, the Timit ¢ + < in the
Maxwell-Vlasov to Poisson-Vlasov transition can be understood as rescaling
the bracket so the motion on the base X freezes (electrodynamics becomes
electrostatics) leaving only Lie-Poisson motion in the fiber. The dis-
cussions and examples in Weinstein [1983] seem to be consistent with this
scheme. Also, if one averages the Hamiltonian H over the fiber by the G
action, then the average H drops to T*X by reduction. Hopefully, systems
where fast time scales can be smeared out can be understood in this context.
As is well-known (see Kummer [19811), this reduction may involve a modifica-
tion of the Poisson structure by magnetic (or curvature) terms, a phenomenon
we shall see explicitly. In particular, we think one can understand the
quiding center equations of Littlejohn [19797 in this way, as well as other
situations involving averaging, such as MHD and guiding center plasmas.

In the scheme for interacting systems proposed by Sternberg [1977],
Weinstein [1978] and used in Marsden and Weinstein [1982], one starts with a
phase space of the form

B x 5f

where 43 is the Lie algebra of a Lie group H and mB > X is a principal
G-bundie, with G acting by a canonical action on 1;*. In the cases of
multifluid plasmas .and the Maxwell-Vlasov equations, elements of 1}* repre~
sent matter fields, while B represents the pure fields (Maxwell or Yang-
Mills fields). After reduction by G, the couplingmanifests itself in

the Poisson structure on the reduced space

* 03
TBXG#).
An important idea in this paper is to think of T*B x 5f as T¥(B x H)
reduced by H. As in Guillemin and Sternberg [1980], G« H acts on B xH
making it a principal G = H bundle, so
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™8 . “ﬁ* = G % H\T*(B x H)

which reduces the study of T*B Xa 5} to the case G\T*B. (Warning. As
explained in Ratiu's lecture in these proceedings, the right reduction of
T*(B xH) to T'B x 5f by . H is not simply by projection if & acts on
5? on the left, but it is if G acts on jﬁ* on the right).
In this paper we shall describe the reduced brackets on G\T*B in both
the Weinstein and Sternberg representations. (See Marsden [1981] for a
synopsis of the two viewpoints.) On the Weinstein side we deal directly with
G\T*B where G acts by the cotangent Tift. On the Sternberg side one selects
a connection A to split T*B into horizontal and vertical covectors before
reduction. The main new results of this paper are formulas for the Poisson
bracket on the Sternberg side (see §4).
In a more comprehensive paper in preparation we shall
a. Give an intrinsic proof of the global formula in 84,
b. show how the semi-direct bracket formulas in §5 apply to fluids and
plasmas, and .
c. obtain a formula for the brackets for free boundary problems and for
Yang-Mills fluids and plasmas in reduced variables (the analogs of E
and B).
In future publications, we hope to apply the ideas herein to study
Timits of Poisson structures and averaging, continuing the program begun by
Weinstein [1983].

2. BRACKETS IN THE WEINSTEIN REPRESENTATION. Let m:B - X be a principal

{right) 6 bundle. We are interested in the bracket structure on the reduced
space

W = G\T*B

in a Tocal trivialization. This is essential for understanding the Sternberg
side. To begin then, assume B =X x G, so T*B = TX x T*¢ and we can
identify

G\T*B

i

T*X x G\T*G

T % 0.

The second equality occurs because T*G right trivialized is canonically
isomorphic to q}* with its + Lie-Poisson structure. Thus, in this choice of
trivialization, the Poisson structure on the Weinstein side is canonical on

* . . 'k_

T°X and Lie-Poisson on $L+.
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_ F 86 _ 86 6F SFSF
{F,GHx,p,u) = = + 4, [6u’ Gu]>

The first two terms denote, of course, the canonical bracket on T*X. For
computational purposes later we will need to make this a bit more precise.
Assume in the trivialization that X is also a coordinate neighborhood, so
without loss of generality, X 1is Banach space. Then T = X x X*, with
(x,p) €X x X*.  So gg means the first partial derivative d1F(x,p,u):

X > IR, an element of X*. Likewise SF & yxxx

3p and we assume it lies in X,

. SF
_— €
just as one assumes S QI'

3. BRACKETS IN THE STERNBERG REPRESENTATION, LOCAL VERSION. Our version of
the Sternberg space is
="' *
S BXG 0}
where B is the pullback bundle of B to TX:

—_r 5B

=
A< [weind
=

Vv
T —F—> X

The bundle B has a concrete realization as the subbundle of T*8 which
annihilates vertical vectors in TB. Here, 1 1is the cotangent projection,
and T 1is the restriction of the cotangent projection T8 > B. The map

T is defined by

%(ub).vx - O[b'vb
where

*

bB, m(b) = x €X,

% S §b<§ T
and

Vp € TbB is any vector with Tﬂb'Vb =V € TXX.
Note that B is a principal bundle over T*X where the G action is the

restriction to B of the (lifted) G action on T"B and G acts on
by the coadjoint action. S 1is then a vector bundle over T*X. It is an
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associated bundle, also known as the coadjoint bundle to é It consists of
G orbits in B XDJ* where the action is

_ * *
(o.u)eg = (TR* jop, Adg™n).
g

To define a Poisson structure on S we need a connection A on B.
Such a connection can be viewed as an equivariant splitting of TB into hori-

zontal and vertical vectors, or dually, as an equivariant splitting of "B

- - *

BX"}*——————»TB

(1) >y + A

where Ab:TbB > o3 is the connection one-form. We use this isomorphism to
pull back the canonical symplectic structure on T*B in order to get an
A-dependent symplectic structure on B x%‘[*. If We now mod out by G, we
get a Poisson isomorphisim S 3 W.

As before, we are interested in the Poisson brackets in a Tocal
trivialization. So we will assume B = X x G with X a Banach space. Then

B=XxX'xges T'X x T = T8

where G is embedded as the zero section in T*G. And

S =X xX¥ xG6\(G x o) D X x X x o,

In the previous section we showed that the same trivialization induces
an identification of W with X xX" x4* also. It was shown in
Montgomery [1983] that the isomorphism 'S W is then given by

(x5p5 1) — (x,p + A(x)*1)

where A s thegj-valued one-form on X dinduced by the trivialization.
Since this is a Poisson isomorphism we can now calculate the

Local formula for the Sternberg bracket:

{F’G }(xsp’ u) = SS‘E"a*g - ég-GF +

86 SF §F 86
(u, —[A(x)-'—gg, éﬁ] . [/i(x)-—-g, Eﬂ]) - Q(X){SE, 5|
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Here Q@ s the local expression for £, the curvature of A,

Proof. Let

F(x,p,V) = F(x,p - A(x)™v,v)
denote ihe pushforward of the function F on S to F on W. Then

R * _ SF.66 _ &G.¢F
{F,63(x,p,v) = (F,GJ,0xp + AlX)7V,v) = oy - &%

From the definition of F we read off

il

— . e e . * . . . .
dF(x,p, 1) *(x,p,1) = dyFex - dZFodX(A W)k + dyFep - szoA(X)*-u + dyFeu

SF * o OF .. . (SF §F -
[—5~*sz (AUi}X*‘GpP*‘(’gﬁ-A(X)ép;U)

. §F .
—KSXX+_pp+< ,u)

Plugging these results into the previous equations we get

(oo = [ - ape0, (%) 2 - [52- gj000 (8 &

&
o [E - a0 L - A ])

_ 8F.8G _ 8G_oF

) SF 56] [ .86 §_§] [55? 6(5]
+ [(x) o Rl LT 1 B ol B

sF . 86
+ dyGod, (A (A*p)ess - d,F dz(A NE %5

+ G [A0-4E, a0 )
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Comparing this with the alleged local formula, we see that it suffices to
prove that the last two terms equal the curvature term in the local
formula. Since § =d A + [A,A] we need only show:

8F 4G
{ s ) =
b ca0 (G 39

dy6ed (A*u) gk - d Fed (A%1) gg .

The left hand side is

SF [p.867 _ 66 [58F) _ p.[6F a6
5 [ p] P [A 5P] A [Sp’ 8 }>

Now

p P
=EPN %j
o A 5
) * v 8F 86 x 86 6F
= (dX(A n) 3 Y+ (A%, d TR )

o 4 fod (a*i1.SF 86) . 6F)
= dybed (A)- 5« A(dx{—_) %

Subtracting the similar expression with F and & switched and recalling
the local expression for the Lie bracket of the vector fields [gg, gg]
yields the result. &

4. BRACKETS IN THE STERNBERG REPRESENTATION, GLOBAL VERSION. The global
formula for these brackets requires some more terminology. In this section

m:S - T*X

denotes the vector bundle projection. Using the trivialization of the
previous section, w1 is given by
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(x,p,1) » (x,p)

(See Montgomery [1983] for this calculation). Let

denote the pullback connection on E. (It is trivial in the momentum direc-
tions of T*X.) Since S 1is an associated vector bundle to B, we have a
horizontal 1ift h = hﬂ of vectors on T*X to vectors on S. Using this,
we define the covariant differential of a function F:5 ~IR at s €5 to

be that covector dKF(s) at p = mw(s) € T*X given by

diF(s)ev_ = dF(s)}{h(s)-v

A P p

This may be thought of as the horizontal part of dF(s). The vertical
part may be thought of as an element in the dual bundle to S which is the
adjoint bundle

It is given by

The curvature of A 1s

where @ 1is the curvature of A. We may consider @ to be a two-form on
T"X with values in S* by the mapping

(vp,wp)w—[(b, ﬁ(b)(hvp, hwp)]G.

Here b € g, %(b) = p, h denotes horizontal 1ift to @, and the brackets
denote an equivalence class in B x f} under the G-action. From the
trans formation law for curvatures, this equivalence class is independent
of which b & §p is picked. [In the case where B is the frame bundle
this formulation of the curvature is the usual Riemann tensor.]

Finally, if g 1is a covector at p on T*X, then B# denotes the
symplectically dual vector at p given by
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B = w(p)("ae ) s

. *
where w 1is the canonical two-form on T X.

Global bracket formula on S

(F6Hs) = wlp)(dzr(s)’, dza(s)®) + (s, Apiazris)f, o

RO IOIR

where 7(s) = p.
In a future paper a global proof will be presented. Here we will prove the

formula by showing that it agrees locally with the formula given above:
In the Tocal trivialization of the previous section,

- = |SF . SF py, SF
dAF(Xapa\)) - [CSX (\)9 [6\)’ _A_(X) ]>s SPJ

This is seen by considering F as a G-invariant function on B x ?f, which
we will denote F. Then

~

drF(x,p,v) *(xsp) = dF(x,p,e,v)=(h(,p),0)

where h(x,p) = (X,p, - A(X)x) is the horizontal 1ift of (%,p) to
(x,p,e) €B. By the G invariance of ?,
~ ° 3 - _ ~ - - *
dF(x,p, -A(x)*x,0) = dF(x,p,0, adp 4y V)
_ SF . . SF SF.s
= 55 X + (v, [Aﬂx) Xs év] Y+ 5

The covector bracket on T*X is
#
UJ<O‘#9B ) = OL‘I '82 - B'] '0‘2

where o = (u1,a2) € T;(T*X) = X" x X, and likewise with B. If we set
o = dﬂF’ B = dKG and use the formula for dK we find the first term of
the global bracket formula equals the first two terms of the local bracket.

To check that the curvature terms of the two formulas match, note that
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ap) (¢3F(s) ¥, dz8(s)®) = a0 (Teggrs), Trdza(s)?)

and that

Finally, it is clear that the last, pure Lie-Poisson terms of the two
formulas are equal.

5. COUPLING AND SEMI-DIRECT PRODUCTS. Suppose 0* is a canonical right
*
action of G on the "matter-ﬁe]ds"«%. Then we can reduce the total phase

space T*B X-ﬁ*

+ by the canonical G action:

= *, ~F
(o su)+g = (TpR %oy s 0 (g)u).
g
We want an expression for the brackets on this reduced phase space and also
one for the Sternberg side, namely on B *a (0}* ><ﬁ*)+.
Assume 5* is induced by an action
B:G ~+ Lie algebra automorphisms of ‘5,
which in turn is induced by a right action
p:G > Aut H
of G on H by automorphisms. That is
a) = Tolola)): Bm T >,
and
5"(g) = Blg) A AT
is its dual. 1If one thinks of j: as a reduced Poisson space; i.e.

* *
‘6+—H\TH,

then p* is ‘the action induced on '6,* by the 1ift of p actingon TH.
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Using p, one forms the semi-direct product group G X H with
multiplication

and the semi-direct principal bundle B % H whose underlying manifold is

B x M; it has the right G H 'actfon given by
(b,k)=(g,h) = (bg, o(g™") (kh)).

The connection A on B induces the semidirect product connection K on
B xH. A is uniquely determined by the fact that the embedding B £ B x {e}
CB x H maps horizontal subspaces of A onto horizontal subspaces of A
{see Kobayashi-Nomizu [1963], p. 79). Somewhat lengthy calculations prove

the formula

R(b,b) +(up,vy) = Ay wup + Tth_]evh + Tth_1-p'(Ab-ub)
where
p':t?, + Lie algebra of Aut H C ¥(H)
is given by
o' (£)(h) = d—‘i'm plexpt £)+h € TH.

We now apply the results of the previous section with B x H in place
of B. Note that the pullback bundle is

et

BXH=8wHCTB  H)

where as a manifold B o H =8 xH CTB xTH with HCT™H as the zero
section. Now we reduce by G % H in two steps, first by the normal subgroup
H={e} xH, then by G. Calculations show that this results in the com-
mutativity of:
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given

Ny by A

BXHX(O}Xﬁ) Bxde} ﬁ ————-——>TB>< T*H = T*(Bo(H)
}reduce by H }reduce by H

reduce reduce

by - by

G ® H B x 0 x‘gt’; . xéz G H

}reduce by G }reduce by G
p §

o~

Bx H XGKH (@ Xé’)::é XG (9* xﬁ'*)J, —_—— T*B xGﬁi =G & H\T*(B «H)

where the central horizontal map is the isomorphism B xg* - T*B given by
A on these factors, and the identity on the ‘5* factor.
The Lie bracket on 0} X‘g, is

[(g a7y )5 (8pavp) D = ([8758,0 Dyysvpd + 0' (&) vp = 0 (E5) g
where p':ogﬁ der -‘6 is the derivative of p:G —>Aut‘g. In the Tocal

Weinstein formula, we replace u by {(u,v) and replacement of the bracket
theré by this bracket leads to the following

* * ~ * * *
local form of the bracket on T'B ng X ox X*ox oa, x‘ﬁ .

{F’G}(X’ana\)) —————— +

SF,8G _ 86 6F | [_cs_g_as_g>
5X 8p 6% 8p :

oF 46 (6F) .66 _ . {56}, 86
+(V’[ ]+pl6p &v p[éu}6v>

To calculate the brackets on the Sternberg side note that

= (A,0), a 1-form on X with values in DJ/X‘g,

where A is as before and AA is the pullback of A on Bx H =X x G x H
by the identity section x> (x,e,e). And that

g0

= (2,0).
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Plugging these results into the local formula with hats (~) on A and @,
¥ replaced by (u,v), and &} brackets replaced by q? w‘5 brackets, we
obtain the following

Local form of the coupled brackets on the Sternberg side B % (g x-ﬁ*):
X x X" x 02* xﬁ,*:

| OF.%6 _ 86,6 SE 86 96 8F
(.63 0po,v) = G038 - S8 + (u [a()-8F, 8614 [a0.88, O]

* 0o, ot (800058 BE - 5 a0 -SF)-4E

Al &p 6\) — op v
+ Q(X){gg gg}

§F &G
+{u, [ga, Eﬁ] )

6F &6 8F). 86 _ (86} sF
”“’[a*\) av] [) i

Suj oV Snj 8V

As we have mentioned in the introduction, these formulas give, in
particular, the semidirect product formulas appearing in the last section of
Marsden, Ratiu and Weinstein [1983]. Details concerning this and other
applications to Yang-Mills fluids and plasmas and to free boundary problems
will be the subject of another publication.
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