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STABILITY OF RIGID BODY MOVION USING THE EMERGY-CASIMIR METHOD
Darryl Holm, Jerrold Marsden, Tudor Ratiu, and Alan Welastain

- ABSTRACT. The Energy-Casimir method, due to Mewcomb, Arnold and
others i (1lustrated by application to the motfon of a free rigid
bady and the heavy top.

§1. INTRODUCTION
In the preceding paper of Welnstein, a general framework for cal-
culating stability criterfa is reviewed. In this note we 11lustrate the
method In the concrete cases of a rigid body and heavy top. The classical
stability results are obtained. The purpose of this note Is to f)lustrate

the basic fdeas of the method with simple “hands-on® examples that should
aid in the understanding of fluid and plasma examples in Hola's lecture
that follows.

Let us recal) the basic procedures used in the "Energy-Casimir method”.

Step A. Equations of Motion and Conserved Quantities
Hrite the equations as evolution equations
$ « xn0 (Em)

where x €P, the phase space and X 13 a vectar field on P,
Find a consesved energy H: P - IR; §.e.

F Hxtt) =0 ()

far any solution x(t) of (EM), and a famlly of conserved quantities

F: P+ IR, (These conserved quantities are typically Casiairs or are gen-
erated by symoetry groups -- See Welnstein's lecture for the definitions
of these and the definition of Liapunov stability).
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Step B. First Varfatton is a Casimir function for (2.2), 1.e. its bracket with any other function

Let L be an equilibrium point; §.e, l(xe) = 0, whose (Liapunov) G s dentically zero, os an easy computation shows. Thus, for aay ¢,
stability we wish to ascertain. Find all F in step A with the property CQ 1s a conserved function.
that ll’, = H ¢ F has a critical point at xe:

B. First Variation

We shall find a Casimir function cé such that “C e H +C, has a
critics) point at a given equilibrivm point of (2.1), Such points occur
. ) when @ 1s parallel to w. We shall assume without loss of generality,
Compute the second derivative d“W(x ) and see If it is definite, that @ and w point in the Ox-direction. Then, after horralizing if

either positive or negative for some F satisfying step 8. 1f P "5 necessary, we may even assume that the equilibrium solution 1s m_ = (1,0,0).
finite dirensional then L is Lfapunov stable -- this follows from con- The derivative of -t

servation of H_." {1t P 1s tnfinite dimensional, as for flulds .and . . 3 2 .
plasmas, then this second varfation test is not.sufficfent for non)inear : "C‘(!) " 'g' "I“f * “"El )
stability; this deficiency can be remedied by convexity estimates.) I
In the next twg sectfons we shall go through these three steps for
our two examples. )
. { This equals zero at m = (1,0,0), provided that
§2. RIGID FREE BODY . |
A, Equations of Motfon and Conserved guantitfes - #11/2) = -y (2.6)
The free rigid body equatfons are

a(h + F)(x,) = 0 (vp)

Step C. Second Varlation

is
g (o)t - (¢ o' (Inj%/2))-t2 . (2.5)

€. Second Variation

@ = da/dt = moxy {2.1) ) Using (2.5) and (2.6), the second derivative at the equilibrium

where m, gEIRJ. w 15 the angular velocity and ® the engular romentun B " 11,0,0) 1s

both viewed In the body; the relation between A and @ 1s given by

LR PO f=1,2,3, where | « “I"Z’IJ) 1s the diagonalfzed moment of .
{nertia tensor, l'. lz. 13. > 0. This system ts Hamiltonian In the Lie-

Poisson structure of 1’ considered as the dual of the Lie algebra of

the rotation group S0(3). Explicitly, for F,G:1R% + IR,

Dtg (o) (on)? < aurta ¢ ¢ Iny 17r2) anl® vim,-6m) 4" Je, 72)

o T o, - ealn ¢ 6" 2
’g'(glg‘l.!/]*O('l)(&l')

AF,8}(m) = -m-(vF{r) x vG({m)) (2.2)
1 1 2 1 "
and with respect to this bracket, [2.1) is easily verified to be Hamiltontan - (r; - 1;) (6, *(1; - 1:~) (&n,)2 + 9" () em)?
fn the sense that (2.1} 1s equivalent to # = (FH) where the H is equal '
to the kinetic energy: : ) (2.1
W) = L g = J-nzn {z.3)
n) =3B 12:1 Yy . This quadrdtic form 18 positive defintte 17 and only 1f
For any smooth function é:IR + IR, the function "(v/2) >0 {2.8)
and
¢ fa) - o(lal %r2) (2.9) ‘ Coh e L2y (2.9)

*See, €.9., siegel and boser [1971], p. 208.
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Consequently, &4(x) = (- 2/l Jx 4 (x - B)z makes the second derivative
of H. at {1,0,0) posltive definite, so stationary rotation
around the longest axis s (Liapunov) stable.

The quadratic fora (2.7) #s indefinite If

L2 '2' lJ > l‘ {2.10)
or the other way around, Consequently, we carnot show by this method that
rotatfon around u:g niddle axis is stable. {la fact, it is unstable,)
Finally, the quadratic form is negative definite, provided
() <0 (2.n)
and
{2.12)

1< lz. l| < 13.
ft s obvious that we may find & function ¢ satisfy!ng the requirements
(2.6) and (2.11); e.q. &(x) = (-¥1, Ix- {x - ':) This proves that
rotation around the short axis is (lhpunov) stable,

He summarize the results in the following well-known theorem.

Rigid Body Stability Theorem. In the eotion of a free rigid body,
rotation around the long and short azes i (Liapunov) etable.

Remarks. 1) It is foportant to keep the Casimirs as geners) as possible,
because otherwise (2.8) and (2.11) could be coentradictory. Had we simply
chosen ¢{x) = -(le‘)x. (2.8) would be verified, but (2.11) not. It is
only the choice of two difforent Casimirs that emables us to prove the two
stabllity results, even though the level surfaces of these Casimirs are the
same.

2) In th!s case,rotations about the intermediate axis are unstable.
This §s true even for the linearized equations as an eigenvalue analysis
shows .

3) The same stability theorem can also be proved by working with
the second derfvative along a coadjoint orbit in llt3; 1.e. 8 two-sphere; see
Arnold [1966 1. This coadjoint orbit wethod also suggests instability of rota-
tion around the intermediate axis, but it has the deficiency of being inappli-
cable where the rank of the Poisson structure jumps.(See Weinstein's
lecture in this volume.)

€
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§3. LAGRAKGE TCP

A. Equations of Motion and Caonserved Quantities
The heavy top equations are

da/dt =p x4 Noty x X
dy/dt =y xu

{3.12)
(3.1b)

where m, y, 0, X € 8. Here L] and @ are the angular mozentum and
e et the v o oot et o ot e
TLPTLEY nsor. The veclor Y represents
the motion of the unit vector along the 0z-axis as seen from the body,
and the constant vector X s the unit vector along the Vine segment of
length £ connecting the fixed point to the center of mass of the body;
M is the tota) mass of the body, and g (s the strength of tha gravitational
acceleratlon, which is along 0z pofnting down.
This system §s Hamlltonlan in the Lie-Poisson structure of IRS x jo7
regarded a; the dual of the Lie algebra of the Euclidean group E(3) =
S0{3) * IR ( % denotes semidirect product). The Poisson ‘braclat is given

.by (see Holmes and Harsden [1983] and references therein):

(Fi6)(m,¥) = -m-(9.F x g 6)

RAVARE R L« 58 (3.2)
The Hamfltonian of this system {s the total energy
Hm,y) = 4g-u ¢ Hoty-X. (3.3)

This can be easily verified directly. For further information, see Ratfu's
lecture in this volume, The functiens me-y and |v|° are Casimir finotfons
for (3.2), 1.e. thelir brackets with any function G:IRS x IR® « IR vanish.
Hence -the same s true for

clmy) = olmey, |2 (3.4)

where & (s any function from ll!z to IR.

We shall be concerned here only with the Lagrange top. This Is a heavy
top for which ll - '2' t.e. It Is syzmetric, and the center of mass lies
on the axis of symmetry in the body, t.e. X « {0,0,1). This assuaption
simplifies the equations of motion (3.1a) to
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by = (1, - Iglmpyl, 1y - Hotv,
Ry« (Fy - 1)mym /1 1y ¢ Koty
63 ol (I Limm/1,1,.

Since
of m

l' - Iz. we have ny " 0;

thus L and hence any function ¢(m3)
is conserved. .

3

8. First variation .

We shal) study the equitibrium solution 8, " (0.0.’-'3). Yo " (0,0},
which represents the spinning ofa symmetric top in fts upright position.
To begin, we loak for conserved quantities of the form H°..- H+e(mey, |!|2) +
‘(“3) which have a critical point at the equiVibrium.

The first derivative of "0.0 is glven by

Oy () (80,80 = (0 +8my. Iy1%ly)-da + Doty ¢ Hmep, Iy[%)m

2 (mey, Iy 12)y)-ap ¢ ¢'tmy)ea,, (3.5)
where & = 3/3(a-y), © « 20/3(|y|%). At the equilibirun solution B Yoo
the first derivative of IIe A vanishes, provided that

EJ + 6(33.1) + 0'(53) = 0; 53 - EJII._‘

Mot + 5(33.1)53 + 200 (B0 - 0

(The remaining equations, tnvolving indices ) and 2 are trivially verified.)
Solving for “EJ.I) and °'GJ") we get the conditions:

s(ija" i (}; + 0(53));3

LR CERA ) SRR (2.6)

C. Second Variation

We shall check for definitencss of the second variative of H, , at
the equitibrius polnt & = {0,0,5,), y, = (0,0,1). To stmpltfy notation
we shall set .

o c ¢°(&,)
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b = 47(By,1)
¢ 3(53.1)
¢ = 28 (By.0).

With this notation. (3.5}, and (3.6), we find that the matrix of the
second derivative at Br Yo is

[, 0 0 5,0) 0 0 T
0 i, 0 0 Nis.l ) 0
0 0 (13)se0c 0 0 8(Fy 1) T d
s,,1) 0 0 28'(5y,1) 0 0
0 &) 0 0 2¢' (®,,1) 0
| o (] iﬁa.l eZmycid 0 0 2% (EJ.I)&boﬁgcoﬁad~

(3.7
I this form is dafinfte, 1t must be positive definite since the (1,1)-entry
ts posttive. The six principal determinants have the following values,
{recall that I - Iz):

",

2
v

1y e8 s ed
]%(113 ras c)(ﬁ (8,1 - 5(63.1)2)
(T% o (@) - 3(63.112)2(113 tae c)
(£ ¢ @pn) - e Yize @) o o o il ee )

- {iE ) B + 0]

Consequently, the quadratic foram given by (3.7) is positive definite, 1f
end only §f
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tatc>0 (31.8)

¢ @) - B2 50 {3.9)

-:1& u—‘-

(20* (B0 + b oigc + Za,d) il; va s r.) - (5(53.11025:,: saiZ>0  (3.40)

Condittons (3.8) and (3.10) can always be satisfied §If we choose the numbers
a, b, ¢, and d appropriately; e.g. a=c ~d =+ 0 and b sufficiently
large and positive. Thus, the determining condition for stability is (3.9}.
By (3.6), this becomes

1 1 uz Vsl 1 e yy&=2
w K—G + ¢ (03))n3 - Ngl]- (-f; +té (na)) a3 > 0. (3.
* Me can choose "(53) so that 1‘- ¢ ¢'(%;) = ¢ has any valve we wish.

The left side of (3.11) 1s a quadratic polynomial fn e, whose leading
coefficient s negative. In order for this to be positive for some e,
it 1s necessary and sufficient for the discriminant

@12 - aalugun,
to be positive; that is,
=2
g > eugu‘

which i3 the well-known stability condition for a fast top. We have proved
the following.

Heayy Top Stability Theorea. dn upright opinning Lagrange top is etable
provided that the angular velocity is otriotly larger than /AT,

Remarks. 1) The method suggests but does not prove that one has instability
when ig < Mgt.ll. In fact, an eigonvalue analysis shows that the equilibrium
is Vinearly unstable and hence nonlinearly unstable in this case.

2) then lz . l‘ + ¢ for small ¢, the conserved quantity o(hl)
s no Jonger available. In this case, » sufficiently fast top s still

Vinearly stable, but nonlinear stability can only be established by KAH theory.
* Other regions of phase space are known to possess chaotic dynamics in this case

(Holmes and Marsden [1983]).
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