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1. Introduction

There are at least four possible alternative pictures useful in the descrip-
tion of the motion of an elastic continuum: the spatial, Lagrangian, convected
an rotated pictures. The description of the motion in the rotated picture is
obtained essentially by pull-back of the spatial picture with the rotation part of
the deformation gradient, as described in Section 2.3.

Our purpose is first to discuss the remarkable duahty ex1stmg between
these alternative descriptions. A key role in describing this duality is played by

the spatial formula connecting the spatial metric g and the Cauchy stress
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tensor: 0 = p 8P/ dg. due to Doyle & Ericksen [19568]; and its material counter-
part connecting the material metric tensor G and the rotated stress tensor:
¥ = pd¥/ 3G, due to Simo & Marsden [1984]. These formulae illustrate the fact
that regardless of the description employed, the stress tensor in that descrip-

tion is obtained by varying the corresponding metric tensor.

Reasons for the importance of these formulae are discussed in Marsden &
Hughes [1983], and Simo & Marsden [1984]. One of these reasons, the covari-
ance approach based on a covariant formulation of the balance of energy prin-
ciple, is briefly considered in Section 4.. The essential idea is to extend notions
of invariance under superposed spatial isometries that go back at least to Noll
[1963], Toupin [1964], and Green & Rivlin [1964], to the general notion of invari-
ance under arbitrary spatial diffeomorphisms, which makes elasticity a fully

covariant theory.

In most of the continuum mechanics literature, constitutive theory is often
discussed in terms of the second Piola-Kirchhoff stress tensor. However, some
continuum theories capable of including elasticity as a particular case are best
formulated in a different picture. Simple examples of this are the notion of
hypo-elasticity (Truesdell [1955], Truesdell & Noll [1965]), which is formulated
directly in the spatial picture, and the generalized hypo-elasticity of Green &
Mclnnis [1967] which is formulated in the rotated picture. Another example of
practical importance is furnished by most of the computational models
employed in finite deformation plasticity, which are often formulated directly
in the spatial picture (see e.g., Key & Krieg [1982]). In this situations, a direct
use of the spatial and material versions of the Doyle-Ericksen formulae in con-
Junction with the Lie derivative results conceptually simpler and often is com-
putationally far more convenient (see Simo & Pister [1984]). A simple example
which illustrates the practical value of these formulae is considered in Section
5.

2. Some Basic Nolation.

Our notation is summarized as follows. Consider smooth orientable
Riemannian manifolds (5,G,) and (S,g) endowed with Riemannian metrics G,
and g, respectively. We speak of B as the fized reference con figuration of the
physical body of interest, and we refer to S as the ambient space in which the
evolution of the body takes place. Denoting by
C={p:B->S | a C” embedding] the con figuration space, a motion of the
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body is curve of configurations: £€R » ¢, €C, and we write z = ¢, (X) = p(X.t).
XehB.

Associated with the motion ¢, one has the material velocity v, :B - TS
defined as Vi(X) = 9y, (X)/ 8t, XcB; and the material acceleration: A, :B - TS,
A;(X) = 8V;(X)/ 8¢; where we have denoted by TS the tangent bundle on S. The
spatial velocity v :¢,(B) - TS and spatial acceleration a; :¢;(B) — >TS associ-
ated with the motion are defined as vy = V;op,! and a;, = A, 09/

We denote by F = T¢, :7B -+ TS the deformation gradient, andlet C= FTF
be the right Cauchy-Green Tensors. Employing the standard notation of cal-
culus in manifolds (Lang [1972], Abraham, Marsden & Ratiu [1983]) we have

C=o(g) ie. Cup=F%Fg. 00 (2.1)

Let G be another metric on B which may be arbitrarily chosen. In particular
one may (and often does) take G = G,. By the polar decomposition theorem we

write
F=RU ie., F% = R% U5, (2.2)

where R:(7yB) » T4, (x)S is a two —point tensor called the rotation tensor, and

U :(7TxB) - (TxB) is the material stretch tensor. Since Ris an orthogonal tensor
we have the relations

RYRYgaop: = Gy, RLUBGy = Cup (2.3)

To emphasize the geometric meaning, relations (2.3) will be written employing a

pull-back/push-forward notation as
* *
G=R (g). cC=vU"(g) (2.4)

One should carefully note that the right Cauchy Green tensor C can be
regarded either as a function of F and g through representation (2.1), or as a
function of U and G through representation (2.4),. Indeed, the former point of
view leads to spatial Doyle-Ericksen formula, Doyle & Ericksen [1958], whereas

the latter yields the material version of this formula.



3. Alternative Descriptions in Elasticity.

In this section we shall consider the possible alternative descriptions of the
motion of a continuum: the spatial, material Lagrangian, material convected
and material rotated descriptions. Confining our attention to non linear elasti-
city, our purpose is to emphasize the duality that exists between these four
possible alternative pictures of the given motion. In describing this duality, the
formula first derived by Doyle & Ericksen [1956] connecting (Cauchy) stress
tensor and spatial metric is crucial for understanding the spatial description.
The material version of this formula plays the dual role in the rotated descrip-
tion and completes the duality between the four alternative pictures of the

motion.
3.1. Convected Material Picture.
First, recall that associated with a given motion t -+ ¢, €C one defines the
convected objects by pulling —back their spatial counterparts to the reference

configuration (B.G,). Accordingly, the convected velocity v; and convected
acceleration a, are vector fields on B defined as

vi = pi(v). o = p(a,) (3.1)

We note that if 7 = Jo denotes the Kirchhoff stress tensor and S is the sym-
metric Piola-Kirchhoff stress tensor, then S = @((T), and hence S and C = v (g)
are simply the convected (Kirchhoff) stress tensor and convected metric tensor.

Next, recall that for a thermoelastic material the free energy function ¥
depends on the motion locally through the point values of C = ¢,(g) (Coleman &
Noll [1958]). Following standard abuse of notation we write
2(X.C(X).8(X).G, (X)) for this dependence. The classical constitutive equation
for the stress tensor S then takes the form

S = 2ppy g?é- (3.2)

where pp, is the mass density in the reference configuration. Equation (3.2) is
nothing but the relation connecting stress tensor, energy density and spatial
metric expressed in the convected picture, as the discussion of the spatial and

rotated pictures will clearly reveal. The rate form of (3.2) is

$S=C:C+m:0 (3.3)
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2
where CEEp,w aa—cgic— is the material second elasticity tensor, and

2
M =2pp, 5%7;1% the material thermal coefficients.

Remark: One must include G, as an argument in ® since it is needed to

form scalars from C; e.g., tr C = C,5 GAE

3.2. Spatial Picture.

Associated with the motion t + ¢,€C one has in the spatial description the
spatial velocity v;, the spatial acceleration a; and the Cauchy stress tensor o.
It might appear somewhat surprising that to complete the spatial description
one must also include the spatial metric tensor g This need for including the
metric tensor was first recognized by Doyle and Ericksen [1958], and may be
motivated as follows.

Since C= ¢, (g) = F.g.F, the right Cauchy-Green tensor C depends
parametrically on the metric g. As a result, the spatial free energy ¥ defined by
Y(z.g.F.0,G,) = ®(X.p,(g).F.0,.G,) depends on g and this dependence, as first
recognized in Doyle & Ericksen [1956), must be tensorial. Indeed, a simple
argument involving the chain rule (see e.g., Marsden & Hughes [1983]) shows
the equivalence between the classical formula (3.2) and the following spatial
formula:

=2, 3
o=2p o8 (3.4)
Formula (3.4) puts in evidence the fact that the spatial stress tensor is in fact
obtained by varying the internal energy with respect to the spatial metric ten-
sor g. Notice that formula (3.2) responds to the same concept although

expressed in a different picture.

In applications concerned with inelastic behavior it is often necessary to
consider the rate form of {3.2); a typical example being rate independent finite
deformation plasticity.

Rate Constitutive Equation. The rate form of the spatial formula (3.4)
involves measuring the rate of change of the stress tensor o relative to the
Jlow of spatial velocity field v,; this flow is given by Vs = @sope ! 9 (B) » ¢ (B).
The standard way of forming rates is to employ the notion of Lie derivative (see
e.g.. Abraham, Marsden & Ratiu [1983]). For any spatial tensor field t;, its Lie



derivative relative to the flow ;s = ¢; 09! is defined by

(W) = 35| (rt) = m[g’t-w;(t. )] (3.5)

In particular, for the metric tensor g one has the following key formula:
L{g) = ¢: 4(C) = 2d (3.6)

where d = Yy, *(C) is the spatial rate of deformation lensor. By applying the
Lie derivative to both sides of the Doyle-Ericksen formula (3.4) we are led to the

following rate constitutive equation:

-}I—Lv(.fa) =c:d + m.0 (3.7)

2
One calls ¢ = 4p 5%‘% the spatial second elasticity tensor, and one refers to
=n, 0¥ - Tici = = i
m=2p— as the spatial thermal stress coefficients. ¢ = L,‘(T)/J = s

9g oo
known as the Truesdell rate of Cauchy stresses.

2.3. Material Rotated Descriplion.

If one introduces the polar decomposition: F = RU, an alternative descrip-
tion of the motion ¢t - ¢, €C is obtained by R-rotating the spatial objects (felds
on ¢;(B)) back to the reference configuration 8. The rotated velocity VF and

rotated acceleration Af are thus vector fields on B defined as
* &
VE=R (v), Af =R (a;) (3.8)

The rotated stress tensor I is defined in the obvious manner by setting
= R‘(a). To complete the description in the rotated picture one needs to
introduce the metric tensor G=R’(g). The reason for this is that, since
C=U"*(U), the free energy ¥ in the rotated picture may be defined as

¥(X.G.U.0,G,) = ¢(X,U’(G).0.G,). Indeed, a argument involving the chain rule
shows that the material formula (3.2) or the spatial Doyle-Ericksen formula

(3.4) are equivalent to the following formula

T =2p g% (3.9)
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To emphasize the duality between the spatiel and the material rofated pic-
tures we consider the rate form of constitutive equation (3.9) which may be

regarded as the material version of the Doyle-Ericksen formula (3.4).

Rate Constitutive Fquation. Let us introduce the material stretch Lie
derivative by formally replacing pull-back/push forward operations with the
deformation gradient F in definition (3.5) with the stretch part Uof F. That is,

for any material tensor fleld T, define its material stretch Lie derivative as
0 *
LU(T;) =U * ['é't‘ U (Tg )] (3.10)

It can be shown that definition (3.10) is simply the Lie derivative with respect to

the rotated velocity field V# = R‘(v‘) or, equivalently, the R-rotated Lie deriva-
tive. The motivation this definition is that by applying (3.10) to the metric ten-
sor G we obtain the following formula dual to (3.8):

Ly(G) = U ,(C) = 2U ,(p, ’d) = 2R"(d) = 2A (3.11)

where A = R‘(d) = isthe rotated rate of deformation tensor. By applying the
material stretch Lie derivative to both sides of formula (3.9) one obtains the fol-
lowing rate constitutive equation dual to (3.7):

%14,(.12) =5 A+ MO (3.12)
w -~ = ae¢ )
e refer to X =4p 363G 25 the rotated second elasticity tensor, and to

2

M=2 -a-%-g—ef as the rofated thermal stress coefficients. T= JY = R*(T) is sim-

ply the rotated Kirchhoff stress tensor.

Finally, we consider the most commonly emnployed description of the
motion in nonlinear elasticity.

3.4. Material Lagrangian Picture.
In the Lagrangian description, the motion is characterized by the material
velocity V; :B » TS and material acceleration A, :B »7S. As noted in Section 2,
these are vector fields covering ¢, :8 - S obtained from their spatial counter-

parts v; and a; by composition with the motion ¢¢- Similarly, tensor fields



8

characterizing the motion become two —point tensor obtained from their spa-
tial counterparts by partial pull-back. Thus, the stress tensor in the Lagran-
gian description becomes the non-—symmelric Piola —Kirchhoff tensor:
P* = J(oop)F~ 7 ¥, and in the Lagrangian description the stress-stored energy

relation takes the classical form

P! = pry ot (3.13)

We note that this formula is consistent with the spatial Doyle-Ericksen formula
(3.4). In fact, formula (3.13) may be obtained directly from (3.4) through a
chain rule argument, by noting that F* = (boy,) F plays the same role as that
played by g° in the spatial picture.

For convenience and comparison purposes, the variables entering in the
four descriptions discussed in this section together with the particular form
taken by the stress-stored energy relation, have been collected in TABLE 1.
below. It should be noted that the representation for the stress tensor in the
alternative descriptions may be all thought of as a particular case of the spatial
Doyle-Ericksen formula.

Remark. The covariant argument described in Section 4 shows that the
spatial free energy ¥ in the spatial picture depends on F only through its rota-
tion part R That is one has: ¥(z.R.g.G,) in the spatial picture, and ¥{X,U.G.G,)

in the rotated picture.

¥ The symbol (- )* indicates "contravariant” components (indices up), whereas ( « ) indi-
cetes "covariant” components {indices down). See e.g., Marsden & Hughes [1983], Sect. 1.4,



TABLE 1.
Alternative Descriptions: Variables Involved.

Spatial Convected Rotated Lagrangian
\/ v =90V Vg, = R, Vi =vop
] *
By a; = ¢y ay Ap, =R a A = ajo0p
3 C =gg" G* =R'g F = (g’ o) F
ot St =Jg, o ¢t = R* ot P* = (atop)F T
= m = -a—?L = @— - ?E.
7=2p 5a S=2pms 5¢ Z=2p36 P=pmr 3F
=4p Y = B0 g, 0% I
©=4P5gog CT4Pmracec S = 4P5gag A =Py 3F OF

4. Covariant Formulation Based on Balance of Energy.

At least two procedures can be employed to formulate elasticity as a fully
covariant theory. One can make use of the Hamiltonian formalism and proceed
either materially [Marsden & Hughes 1983] or spatially [Marsden, Ratiu & Wein-
stein 1983]. Alternatively, one may base the formulation on a covariant version
of the balance of energy principle. In this section we shall focus on some of the
aspects involved in the later procedure. Reasons for the importance of the
covariance approached based on a covariant balance of energy principle are
discussed in Simo & Marsden [1984] and Marsden & Hughes [1983]. Our purpose
here is to emphasize the duality between the spatial and rofated pictures

which is clearly put in evidence through the covariant argument.

The essential idea behind the covariant approach is to extend the balance
of energy principle to hold, not only for superposed spatial isometries as
stated in Green & Riviin [1964], but for superposed arbitrary
dif feomorphisms. To achieve this invariance one introduces, in addition to the
balance of energy principle, a covariance assumplion on how this principle
must hold for a given motion. Summarized below are these two basic
ingredients.

(i) Balance of Fnergy: Consider a fized motion ¢t :B~» S, and let (JCP be
any compact region with smooth boundary 80. In addition, let b{z.t) be the
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external body force per unit of mass, t(z.t,n) the Cauchy fraction vector,
e(z.t) the internal energy per unit of mass, 7(z,t) heat supply per unit mass
and h(z,t,n) heat fluz; n{z) being the normal to the boundary ¢ (). We say
that balance of energy holds if:

%- f ple + ¥<v, w>)dv = fp(<b.v,>+'r)dv + f (<towy> + h)ds(4.1)
[} Q) Pt () 0¢y m

(i1) Covariant Assumption: For the fized motion ¢, :BF - S satisfying (4.1),
consider an aerbitrary spatial diffeomorphisms ¢; :S » S, and postulate that the
new motion Py = £ oy, also satisfies the balance of energy equation (4.1) pro-
vided: (a) velocities, forces and accelerations are transformed according to the
standard dictates of the (Cartan) theory of the classical spacetime, and (b) the
metric g is replaced by ¢,"g.

Thus, the crucial part of the covariant assumption is that the internal
energy must depend fensorially on the metric g and, consequently, transform

according to
g(Z.t.g) = e(z.t.&'g). £ =¢(z) (4.2)

For a justification of this tensorial dependence see Simo & Marsden [1984], and
for background motivation on this covariance assumption consult Marsden &
Hughes [1983].

As in the Hamiltonian approach, with the covariance assumption at hand
one may now proceed either spatially or materially. To put in evidence the dual-
ity between both approaches we review the basic constructions involved in

terms of the polar decomposition.

Spatial Picture: The basic idea is to evaluate the balance of energy equa-
tion (4.1) for the given motion ¢, :B+S and for the superposed motion
¥t = €10y with the change in metric resulting from the covariance assumption

accounted for.

As in the Green-Rivlin argument, use of the transport theorem, the diver-
gence theorem and the Cauchy tetrahedron construction yields the laws of
motion. However, since one now considers not only isometries but arbitrary
dif feornorphisms., the equality é = § can no longer hold. Indeed, if it were true
the stress tensor would vanish identically. In the present argument, use of the

covariance assumption and the definition Lie derivative yields, on account of
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the arbitrariness of L,(g) ', the additional condition:

That is, the spatial Doyle-Ericksen formula emerges as the crucial condition
which serves the purpose of relaxing the "rigidity” of the covariant assumption
demanding that balance of energy must hold under superposed arbitrary spa-

tial diffeomorphisms.

In terms of the polar decomposition the argument just outlined amounts to

the construction summarized in the following diagram:

U R
(TyB) (TxB.G) (Ty,nS:e)
R Té,
(Tag(x)s'g)
We note that:
E=¢ .(8). R=T¢oRof!, TU=u (4.4)

Thus, the metric G and and the stretch tensor U remain unchanged through the

argument and, as a result, so does C= U‘(G). Only the rotation tensor R is

changed by the superposed spatial diffeomorphism.

Material Rotated Picture In the rotated description of the motion we allow
G to change with superposed spatial diffeomorphisms by introducing a con-
struction dual to that summarize above. Accordingly, we now hold the rotation
tensor R fized while U and G change in a way that leaves C unchanged. One is
then led to the situation summarized in the following diagram in terms of the

polar decomposition.

U R
(TxB) (TxB.G) (Ty,(0)5.8)

MHere w:p,(B)+ TS is defined as w= &, where ¢ ={(, is chosen so that

4
di je=t,
& t=e, = identity.
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U H T¢,
_ R
where, His such that
H=R'oT¢oRopi! =R 04, (4.5)

One should carefully note that although the metric G transforms tensorially,

the metric G, in reference configuration remains unchanged.

If we define the material form E(X.t,G) of the internal energy in the obvi-

ous tensorial manner by setting

E(X.£.0) = e(p, (X).L.R ,(G)). (4.6)

an argument analogous Lo that of the spatial picture again yields the laws of
motion. In addition, use of the covariance assumption in conjunction with the
definition of material stretch Lie derivative introduced in Section 2.3 leads, on

account of the arbitrariness of Ly(G) ™, to the condition:

£=2p32, (4.7)

which is the formula dual to the spatial formula (4.2) in the the rotated descrip-

tion. The duality between both pictures is thus complete.

Remarks: (1) Note that the formula dual to to formula (4.2) in the con-
vected description can be obtained as a particular case of the construction
developed in the rotated picture by adopting a particular choice of metric G.
By chosing G(X) = ¢,"(g) = C(X): i.e., the convected metric, one obtains the for-

mula:

3k (4.8)

= 2
S'Ja

(2) Our material covariant argument is a material formulation of the
notion of invariance under superposed spatial diffeomorphisms. It does not
involve, nor does it imply, the assumption of material covariance which embo-

dies the notion of invariance under superposed material diffeomorphisms. (See

MMHere we have set W = R* (w).
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Simo & Marsden [1984]).

5. A Simple Example: Isotropic Nonlinear Elastostatics.

As a simple example which further illustrates the complete duality existing
between spatial and rofated pictures through the two versions of the Doyle-
Ericksen formula, we consider the case of isotropic elastostatics. Our purpose
is to illustrate the conceptual simplicity and computational convenience of a
direct formulation employing the Lie Derivative & the Doyle-Ericksen formulae.
In situations where representation theorems are sought in a specific picture,
typically the spatial picture, it is conceptually more clear and computationally
far more convenient to proceed directly rather than constantly refer back to a
convected representation in terms of the second Piola Kirchhoff stress tensor.
Thus, although not often recognized, the spatial and material Doyle-Fricksen
formulae make the direct development of constitutive theory in the spatial or

rotated pictures as easy as in the often favored convected picture.

Spatial Picture: A simple argument involving material frame indifference

shows that the stored energy function for a isotropic material depends on the

invariants of the left Cauchy-Green tensor b* = g, +(Gf). To develop a
representation for ¢ first note that

)
Lybt) = ¢ , :—tsoz'b‘ = ¢t 43¢ G' =0 - (5.1)

A direct application of the definition of Lie derivative then yields for the invari-

ants Iy, 1l 11l the formulae
L(lp) = Lo(b?:g") = 2b?:d
L(Ily) = BL(IE - [b*]2: g*)
= 2[Iyb? - (b?)?]:d = 2[I,gf — Ill,b"}]:d (5.2)
Le(11ly) = Ly(J?) = 2111, g :d

Thus, defining: W(z Iy 1y 11Iy) = pP(z,F.g). from the rate form of the spatial
Doyle-Ericksen formula

pif«=a=dsp%§:1~(g>sp1~(v) (5.3)
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the classical result follows directly:

_2f[ aw rla 3w ., oW . _,
o= Jhu., S * s amb} g+ bt~ b (5.4)

Remarks: (1) One can carry out exactly the same argument directly in the

rotated picture. The essential observation, dual to (5.1), is that

Ln(d)au*%u*c'su*;—tu‘cﬂso (5.5a)
and all that is needed is to replace L .) by Ly(-), o by £ and bf by C* in equa-
tions (5.2) to (5.4).

(2) By this type of direct calculations one can, for example, show that a
nonlinear material with constant, isotropic spatial elasticities ¢ for all possible
configurations g€C cannot be elastic (Simo & Pister [1984]). Indeed such a
material furnishes a non-trivial example of a hypo-elastic material in the sense
of Truesdell, which is not elastic. This result and related results in the rotated

picture are specially relevant Lo finite deformation plasticity theories.
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