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J E MARSDEN
Hamiltonian structures for the
heavy toptplasmas

Qur purpose Is to discuss Lhe use of symmetry groups in a study of the
chaotic dynamics of a heavy top and the Hamiltonian structure of the equa-

tions of plasma physics.

THE FREE RIGID BODY

We begin by presenting the equations of a free rigid body. The body is

assumed to rotate freely about its center of mass and have a fixed angular
-»

velocity vector u seen by an observer fixed on the body. The body angular

womentum & s defined by
o= le

where | = dlag(ll.lz.l3) 1s a diagonal matrix coming from the moment of
inertia tensor. Assuming that ll > 12 > 13 Euler's equations written in
terms of M are:
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where a, = (ll - 13)/l2I3 etc. Two basic constants of motion are

Jotal Angular Momemtum ¢ defined by - “12 + m,‘,2 + sz (2)

Energy o) = 4 I mjzllj (3)
i
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tavariance of 22 in time follows directly from the identity

The orbits are explicitly known in terms of elliptic and hyperbolic func-
a3 ta, tag 0 and invariance of H follows from the identity

1 tions. For example, the heteroclinic orbits lie in the invariant planes.
h,.%.%

+ +~=0, 3
O neifi

The trajectories of (1) are given by intersecting the ellipsoids H = 1
constant from (3) with spheres £ = constant from (2). For distinct moments and are given by
of intertia the flow on the sphere has saddle poiats at (0,22,0) and F)

P P ' ml'[t) s 82 '-a_l sech (- /ajaq 1t)
centers at (:£,0,0), (0,0,22). The saddles are connected by four heter- 2
+

oclinic orbits, as indicated in Figure 1. @, (t} = 2 tanh (- /alaa 2t)

a
my'(t) = u/:—g sech (- /iy et)
3
for my = ;—l-ml and by
my7(t) = @ *(-t)
m,"(t) = m,"(-t)
@y7(t) = -m,'(-t)

la
= - ’_3
for o 3 @,

{Note that al >0, a; > 0 and "2 < 0). This may be checked by direct

PO

- 0, computation or by consulting one of the classical texts.
1 R
He now introduce a Poisson Bracket for equation (1). Given functions
F,6:R> « R we define
{F,G)(m) = -m » (VF x ¥G) (4)
This makes R3 into a Poisson manifold. This means that on C IRJ). the
Figure 1. The spherical phase space of the rigid body for fixed total 3
smooth functions on [R”, the bracket { , } 1{s a Lie algebra (( , } is
angular momentum £ a/ mlz + mzz + m:'2 H ll > Iz > 13
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real bilinear, skew symmetric and verifies Jacobi's identity) and is a
derivation tn each of F and G. Later we shall explain where this bracket
comes from in group theoretic terms: Here the group ¥s S0(3) and m lives
in so0(3)" 3 lRJ. the dual of the Lie algebra of SO(3). By a straight-

forward calculation one can verify that '(l) is equivalent to
f = (F,G) (5)

THE HEAVY T0P

We now turn our attention to the heavy top, i.e., a rigid body moving above
a fixed point and under the influence of gravity. We let A bea given
rotation in SO(3) with corresponding Euler angles denoted (¢,3,0}. The
conjugate momenta are denoted PO.PW.Pe so that (0.#.0.%.%.%) coordi-
natize T S0(3). We Jet m denote the body angular momentum and let

ve A'l k where k is the unit vector along the spatial z-axis. We assume
that the center of mass is at (0,0,2) when A 1is fidentity. Coordinates
for the vectors ({m,v) are most conveniently expressed in the bedy co-
ordinate system; see Figure 2.

The phase space for the heavy top is T.SO(J). The system has, however
an s! symnetry corresponding to rotations about the z-axis. A classical
process called reduction enables one to eliminate two of the six varfables.
(Reduction s described in Arnold [1978) and in Abraham and Marsden [1978).)
Onc gets a reduced space for each value of the angular momentum about the
z-axis. One can show {see Marsden, Ratiu and Weinstein [1982) and refer-
ences therein} that the reduced spaces for the heavy top are sympletically
diffeomorphic to I'Sz and to a coadjoint orbits for the semi-direct
product SO{3) x r3 s .e., for the Euclidean group EJ. The Lie algebra
of £y s denoted ey ® S0(3) x R . The mapping giving this
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(0,0,2)

Figure 2. The heavy rigid body, t1lustration space (x,y,z) and

body (1,2,3) coordinates, and the Euler angles ($.¢,0).
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diffeowmorphism {s

A:(’l o O.PO-PW-FQ) I"' {m,v)

Tables in Molmes and Mardsen {1983} give explicit formulae relating these
quantities and summarize the relationships between the "Euler angle” spaces
and the co-adjoint spaces. A suitable bracket for functions of (m,v} is

given by
{F,G){m,v} = -m°(va xvm(S) - v-(vmf xva HIVF xvmﬁl (6)

Like (4), (6) is a special case of a general construction for Lie groups

that will be explained below. The Poisson bracket equations are
f = {F,G}

where the Hamiltonfan Il {s given by
k]

2
m
Him,v) = % le —i—; + “‘J"vil

and M {is the total mass. These equations yield
my = am, - Mglvz

m, = a;mmy ¢+ Mgtv,

b T
m,v m,V
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One can check that these are equivalent to the classical equations of a
heavy top; see Holmes and Marsden [1982). This description of the heavy top
in also found in Guillemin and Sternberg [1980).

The foregoing system has ||v|| and P, =@V 25 constants of motion.
This reflects the conservation law p0 = constant and the preservation of
the co-adjoint orbits by the equations. The conditions ||v|| =1 and
Qv = p0 = constant also provide the identification of the co-adjoint orbit
with T°s%, Indeed, ||v|| = 1 describes the unit sphere $? and mev =
pO speciffes m as a linewr functional on the unit sphere normal to Sz
leaving M restricted to Tvs2 free. Thus @ determines by restriction
an element of T;SZ. The coordinates 6,y are essentially spherical co-
ordinates on $°.

We discuss the Lagrange top in this framework., For ll a lz we get an
additional Sl symmetry, namely invariance under rotationsabout the 3-axis.
This Sl action corresponds to the Sl action of rotation through ¢ in
the Euler angle picture. Also the momentum map can be readily checked to
be just my. As with the free rigid body, the lLagrange top has a homoclinic
orbit that has an explicit expressica in terms of hyperbolic functions.

For the case of a ncarly symnetric top, we have:

Theorem (llomes and Mardsen {1983})). If I‘IIJ is sufficiently large,

l= 1 +e and € >0 fs sufficieatly small, then the Hamiltonian system

for heavy top has_transverse homoclinic orbits (close to the homoclinic
orbit for ¢ = 0) in the Poincaré map for the ¢ variable on each energy

—————

surface for H = constant in a3 certain open interval.

—————

The proof of this theorem involves integrating the Poisson bracket
lﬁo.lll) where H = “0 +cH O(r,z) around the homoclinic orbit for the

lagrange top. These techniques are based on Melnikov [1963].
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One concludes that the heavy top close to the symmetric top has no ana-

Jytic integrals other than the energy and angular momentum about the verti-

cal_axis.

pL AL

Transverse homoclinic orbits implies the presence of Smale horseshoes.
Thus, in the motion of a nearly symetr'ic heavy top, the dynamics is complex,
having perfodic orbits of arbitrarily high periods and aperiodic orbits
embedded in an invariant Cantor set and so the system admits no additional
analytical integrals.

Further examples of Hamiltonian systems are provided by Euler's equations
for perfect fluids {see Marsden and Weinstein (1982b] and Marsden, Ratiu
and Welnstein (1982) for details). In the incompressible case the analogue

of m for the free rigid body is the vorticity w and the bracket is
« (o2 36
(F,61 J;m 2, %, (8)

where &F/& is the functional derivative and [ , 1 is the Lie bracket

of vector fields. In the compressible case the bracket on functions of the

momentum density m = pu and the density p {is

(F.6) j;]m(am.m]*fp[m - 2Y4h. (9)

The dynamics of the incompressible case is analogous to that in the rigid
body and that of the compressible case parallels that of the heavy top.
Other examples are provided by the MHD equations and the plasma equations
described below,

LIE-POISSOH BRACKEYS

W2 now discuss generalities on bracket structures associated to Lie groups.
Let G be a Lie group and &f be its tie algebra. For £, n ety [£.nl
denotes the Lie bracket of £ and n . Let ‘j denote the dual space of
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~
of . For F: & ~ IR and the variable in &f denoted by y, define
»
8F/6u: 61 g by

DF(u)ev = <v, g—:}

where < , > denotes the pairing between y: and -y and OF(u): &/~ IR
is the usual Frechet derivative. It is understood that 3F/3y {s evaluated
at the point p. The Lie-Poisson bracket of two functions F,G: y' - IR is

defined by

6F &G
(F.G) = -<p, [6—;1 s (10)

The bracket defines a Poisson structure. This can proved directly or by
understanding the relationship of {10) with canonical brackets described
below -- see formula (12). From the latter, it is obvious that one obtains
a Poisson structure. The bracket (10) is due to S. tie (18901, p. 235, 294.
The Kirilov-Kostant-Souriau thesrem asserts that orbits of the co-adjoint
representation in 65,7 are symplectic manifolds. See Arnold (1978} or
Abraham and Marsden (1978} for the proof. Thus, "j is a disjoint union
of symplectic manifolds. Ffor F,G: :f -+ IR, a Poisson bracket is thus

def ined by
“ le(ll) = (F Io“'ﬁl ”,(U] ‘ll)

where o 'j. oll is the orbit through 4, Flou is the restriction of F
to 0, and { , ) on the right hand side of (11) is the bracket on ou.
This method shows that the bracket (F,G) is degenerate; however, it deter-
aines a symplectic foliation on each leaf of which it is nondegenerate. The

leaves are just the co-adjoint orbits,
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Another method of ascertaining the Poisson structure is by extension.
A A
Given, F,G: ?‘ + [R extend them to maps F.G:I'G + R by left iavariance.

A A
Then using the canonical bracket structure on I'G, form {F,G}. Finally,
regarding g as I;G < T‘G restrict to ey';

N A
{F,G) = (F.G]|e’. (12)

formulas (11) and (12) both glve (10). (If left invariance is replaced by
right invariance, *-" in (10) is replaced by “+%.)

Both of the foregoing methods are related by reduction; i.e., the reduced
symplectic manifolds for the action of G on T.ﬁ by left translation are

the co-adjoint orbits (Marsden and Weinstein (1974)).

MAXKELL *s EQUATIORS

In order to review and motivate reduction in more detai) we shall now con-
sider the Hamiltonian description of Maxwell's equations. As the configura-
tion space for Maxwell's equations, we take the space ot of vector fields
A on m3. These are vector potentials related to the magnetic field B
by 8= v x A. (In the more general situations of Yang-Mills fields, one
should replace &C by the set of connections on a principal bundle). The
corresponding phase space is the cotangent bundle ‘l'ﬂ( with its canonical
symplectic structure and a suitable function space topology. Elements of
Tec may be identified with pairs (A,Y) where Y 1s a vector field den-
sity on m3.

(We shall not distinguish Y and Ydx). The pairing between

A's and Y's is given by integration so that the canonical symplectic

structure o oOn s given by

N((Alrv‘jn(Azovz)) = ’l'; (YZ'Al - vl'Az’dl . (13)
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with the associated canonical Poisson bracket

{F,G} = f[%% £ - 5% Lyax (14)

Choosing the Hamidtonian
2 i 2
H{AY) = %5 []¥]%dx + % | [cur) A, {15)

tamilton's equations are easily computed to be

6E = Q-A— =
3t curl curl A and 5t Y. (16)

If we write B for curl A and E for -Y, the Hamiltonian becomes the

usua) field energy

‘sflilzdx . t,fmz dx (7
and the equations (16) imply two of Maxwell's vacuum equations

S xcurl B and £ = -curl E . (18)

SE &8
st &t

The two remaining Maxwell equations will appear as a consequence of gauge

Iavariance. The gauge group G consists of real valued functions on lR3;

the group operation i addition. An element ¢ ¢ G acts on &( by the rule
A+Aryy (19)

The translation (19) of A extends in a standard way to a canonical trans-

formation (“extended point transformation®) of & given by
(AY) - (A +9g,Y) (20)

We notice that cur Hamiltonian (15) is invariant under the transformaticn

(20). This allows us to use the gauge symmetries to reduce the number of
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degrees of freedom of our system. The action (20) of G on Tz( has a
momentum map J:T.G( wof vhere the Lie algebra ¢ of G is identified
with the real valued functions on IRJ. This map J is associated to the
symuetry group G in a way that genera.lizes the way conserved quantities
are related to symuetries by Hoether's theorem in classical mechanics. We

may determine J by a standard formula {(Abraham and Marsden [1978]1}: for
veds

<J (AN e f(vo\!o)dx o - (div v)eax
Thus we may write

J(A,Y) = -div ¥ {21)

If p 1is an element of ﬂg' {the densities on IRJ). J'l(p) = ((A,Y) ¢
I"ﬂl div Y = -p). In terms of €, the condition div Y = -p becomes the
Maxwell equation div E = p so we may interpret the elements of %’ as
charge densities. By a general theorem of Marsden and Weinstein (1974), the
reduced manifold J'l(p)IG has a naturally induced symplectic structure.
Computation leads to the following.

Proposition. The space J'l(ol/G can be identified with Max = {{E,B){div

E=p, divB = 0) and the Poisson bracket on Max is given in terms of

€ and 8 by

66

(£,6) = f( curl curl ‘E) dx {22)

Maxwell's equations with an ambient charge density p are Hamilton's

equations for

WE.B) = & frlel? « 1812) ox
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ey as o

on the space/Max.
The bracket (22) was first introduced, using a different argument, by
Born and Infeld (1934).

THE HAXWELL-VLASOY EQUATICHS

We consider a plasma consisting of particles with charge e and mass m
moving in Euclidean space ®? with positions x and velocities v. (for
simplicity we consider only one species of particle - the case of several
species of particles can be treated in an analogous fashion). Let f{x,v,t)
be the plasma deasity at time t, E{x,t) and B(x,t) the electric and’

.

magnetic fields. The Maxwell-Vlasov equations are:

of vxB

{a) —attv.—o-(ff— 3 a 0
1238 _

{b) cat° - curl E

{c) 1 3E . curl B - §, where j = £ [ vf(x,v,t)dv {23)
c at * c e

(d) diveE= pgs where pg = eff(x.v,t)tlv

{e) divB=0

Letting ¢ » = Jeads to the Poisson-Vlasov equation:

o . 3f e M o

.._4 =

™ Tm Xt

vZp, < o (24)

In what follows we shall set e=m=¢ =2 1.
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n(f,E,B) nfl,|v|2f(x.v.t)dxdv 0f's[|€(x.t)|z + |B(x.tl|z]dx (25)

The Hamiltonjan for the Maxwell-Vliasov system is

while that for the Poisson-Vlasov equation is
Mo = fulviZetcvationds o 5 forledpgtxin (26)

The Poisson bracket for the Maxwell-Vlasov equation fs as follows:

{F,GH(F,E,B) uff{ E,
+I{Fc 66 °chrl %}dx
*I{%%-%“‘ 55 foc o

Jol3

O

F &
-f-}dl dv

o

i
1

(27)

f
3 &F 3 46
vsfxav_f dx dv

The bracket (27) is due to Marsden and Weinstein [1982a) and is based on
reduction and an earlier attempt “by hand" by Morrison (1980).

We are now ready to discuss the meaning of the first term J'f{g—:-. g%}dxdv
in {27).

can identify velocity with momentum, Thus we let lR6 denote the usual

In the absence of a magnetic field and normalizing the mass, we

position - momentum phase space with co-ordinates "‘1"2'“3'91"’2"’3) and
symplectic structure ):dxi A dpi. Let 3 denote the group of canonical
transformations of IR6 which have polynomial growth at infinity in the
momentun directions. The Lie algebra s of $ consists of the Hamiltonian

6 with polynonial growth ia the momentum directions.

vector fileds on IR
He shall identify elements of s with their generating functions so that
consists of C” functions on S and the left Lie algebra structure is
given by [f.g) = {f,3), the usual Poisson bracket on phase space. (See

Abraham and Marsden {1978]).
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»
The dual space s can be identified with the distribution densities on

6

R which are rapidly decreasing in the momentum directions. 1Tne pairing

between h ¢ s and f ¢ s is obtained by integration

<h,f> = fhf dxdp

*
As with any Lie algebra, the dual space s carries a natural Lie-loisson
structure. In (10) we change “-* to “+“ since our system is right invariant,

Then with = £, {10) becomes

(F.6)(F) = <F, (§F, £, ff 5 55 anp

are reguired.

The second term in {27} is the bracket for Maxwell's equations which has
been previously discussed -- see (22). We consequently turn our attention
to the last two terms in (27) which represent coupling or interaction. The
Hamiltonian structure for the Maxwell-Vlasov system becomes siaple 11 we
choose our variables to be densities on {x,p) space rather thon {x,v)
space and elements (A,Y) . of 179(. To avaid confusion with densitics on
{x,v) space, we utilize the notation fmm for densities on (x,p) <pace.
The Poisson structure on s. x T is just the sum of those on s and

T%: for functions F and § of fmm' A and Y, set
FE(F_AY) = ff li’f— . -“E—} dxdp ¢ (28)
‘ mom® ! oomn afm afm

ﬁa{a@-ajﬁ]
9A Y QA 3Y

and the Hamiltonian is just (25) written in terms of these variables. Using

the classical relation between momemtum and velocity, p ® v ¢ A, we have
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HOF g eAaY) = ,}J‘w - Alx)20 o (xup) dxdp
+ %J.“le t fourl A]z)dx

We observe that there is no coupling in the symplectic structure but there

is coupling between f ard A in the first term of (29).
[

s * .
Theorem. The evolution equations F = (F,W) for a function F on s x 7T
with K given by (29) and ( ) by (28) are the equations (23a,b,c) with
4 ]
(23b) replaced by 3 Y.

The proof of this theorem is a straightforward verification. The con-

straints can, as in Morrison (1980], be regarded as subsidiary equations
which are conststent with the evolution equations. Equations (23b and e)
hold since B = curl A. Me will now show that equation (23d) expresses the
fact that we are on the zero level of the momentum map generated by the
gauge transformations. The corresponding reduced space decouples the energy,
while coupling the symplectic structure.

The work of Wefnstein [1978] on the equations of motion for a particle in
a Yang-Mills field uses the following general set-up., Let u:P + M be
a principle G-bundle and Q a lizmiltonian G-space {or a Poisson manifold
which 1s a union of hamiltonian G-spaces}. Then G acts on 1P and on
Q, so itactson Qx e (with the product symplectic structure). This

action has a momentum m3p J and 50 may be reduced at O0:
(0 x 1) = 306 (30)

The reduced manifold (30) carries a symplectic (or Poisson, if Q was a
Poisson sanifold) structure naturally induced from those of Q and I.P.

To obtain the phase space for an elementary particle in a Yang-Mills

field one chooses P to be a G-bundle over 3-space M and Q@ a co-adjoint
24

orbit for G (the internal variables). The Hamiltonian is constructed
using a connection (i.e., a Yang-Mills field) for P. In the spectal case
of electromagnetism, G = st and Q = (e} is a point.

For the Vlasov-Maxwell system we choose cur gauge bundle to be
Ps6t+ M

where M s {B|div B8 = 0}, with G the gauge group described in the pre-
vious section, As in 53, let $ denote the group of canonical transforma-
tions of I'n(= R6). We can let  be either the symplectic manifold I's
or the Poisson manifold s'. It is a little more direct work with s-. 50
we shall do this.

We wish to specify an action of G on s. which, when combined with the
action (20) on T'o(, will leave the Hamiltonian (29) fnvariant. A natural
choice is to let ¢ ¢ G act by the ()inear) map

fm * fmo‘l‘vw (3')
where T_vw: IR6 - IR6 is the “momentum translation map™ defined by
1_W(x.p) = (x,p - vg(x)}). (32)

.

It is easy to verify that 1 is a canonical transformation, so it pre-

‘¢
serves the ordinary Poisson bracket on lll6. It follows that the map (31)

preserves the Poisson structure on s'. A simple calculaticn gives:

Lemma, The action of G on s‘ defined by (31) and (32) has a momentum

map J: st +qf given by

Wggdet> = - f falxepolx) dxdp {33)
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a - 34
Wiogg) = = [Fogatxsp) &0 (34)
The right hand side of (34) is a density on 1R3 which we may denote by

P
mom .
L}
Now we define the action of G on the product s' x To¢ by combining

(31) and (20), f.e. ¢ ¢ G maps
(Fomehe¥) = fpper 0. At 2¢.Y). (3s)
Combining equations (21) and (34) gives:

Lesma. The momentum map 2s” x T& *of for_the action (35) is given by:

If

R -ffm(x,p) dp - div Y. {36)

He my now describe the reduced Poisson manifold in terms of densities

f(x,v) defined on position-velocity space.

Proposition. The reduced manifold (s x T8()y = 971(0)/6 may be identified
with the Maxwell-Vlasov phase space

My = ({f,B,E)|div B = 0 and divE ﬂff(u.v) dv.)

Proof. To each (rm.A.v) in J"(o) we associate the triple (f,B,E) in

WY where
f{x,v) = fm(x.v + A(x)), B = cur) A, and E = -Y.

The condition J(fm.A.Y) = 0 is equivalent, by (36), to the Maxwell
equation div E = ff(x.v) dv 1in the definition of Mv. It is easy to check
that elements of J"(o) are associated to the same (f,8,£) if and only
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if they are related by a gauge transformation (35), so our association gives
a 1-1 correspondence between J°1(0)/G and MV. g

By the general theory of reduction, MV inherits a Poisson structure
from the one on s‘ X I'. Since the Hamiltonfan (29) is invariant under G,
it follows that the Maxwell-Viasov equations are a Hamiltonian system on
MY with respect to this structure. We can compute the explicit form of the
inherited Poisson structure in the variables (f,B,E). la fact, a direct
calculation using the chain rule shows that (28) becomes (27). This is how
one arrives at the follawing result.

Theorem. The bracket (27) makes (MV) into a Poisson manifold. Ine

Haxwell-Vlasov equations are equivalent to the evolution equations f =

(F,B} on (MVY), where H is given by (25}.

£ ]
Lectures presented at the University of Hguston, November, 1981. Thsnks
are due to the editor for help in the preparation of the manuscript. The

results here are based on joint work with Phil Holmes and Alan Weinstein.
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J W NEUBERGER

Use of steepest descent for systems of
conservation equations

Many systems of conservation equations have the form
U ® v+Flu,vu) , {1

. k n
u: {0,T} x 2+ R" , 2 c R", Often, however, a more complicated for is
found:

Uu)y = veFlu,m) (2)
S(u) = 0,

ui (0,13 x 0+ R¥9, g o 8P, q: K9 L gk,
s: RK'9 Y, F: gk+d X R"(’"q) - R"k. Examples are found in nony places
(cf (11, [6).

Some background for the present work s found in [2), 13].

Often problem (2) can be changed into (1) by using the condition %lu) = 0
to eliminate q of the unknowns and by using some change of varfstiles Lo
convert the tern (Q(u))t into the forn ;. However since applications
often seem to lead to problems naturally expressed tn form {2), it seems
vorthwhile to study (2) directly. We consider honogencous boundary condi-
tions on &0 together with initial conditions.

We introduce a strategy for a time-stepping procedure, We at first dis-
cretize in time only, Take w for a time-stice of & solution at & time t,-

We seek an estimate v at time € 36 by seeking to minimize
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