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Bifurcation problems with - :
hidden symmetries

§1.  INTRODUCTICN '

Basic theory for bifurcation problems with symetry was developed by
Sattinger [1979] and Golubitsky and Schaeffer [1979b). A symnetry group
usually forces the bifurcation to be rather degenerate but simultaneously,
one can take advantage of the symmetry to render some interesting problems
computable.

Recent papers of Hunt [19811, [1982] make use of symmetries in what, at
first sight, appears to be a nonstandard fashion. This enables him to
arrive at a parabolic umbilic description for the buckling of a right circu-
lar cylinder under end loading (see also Hui and Hansen {1981)). The pur-
pose of this paper is to establish the following points:

1. The scheme of Hunt is consistent with the general theory of Golubitsky
and Schaeffer [1979),

2. There is a simple abstract procedure involving “hidden symmetries®
which enables one to simplify calculations and to arrive at Hunt's procedure
as a special case in a natural way.

3. The scheme proposed by Hunt for the buckling of shells can be derived
by starting with, for example, the partial differential equations of Kirch-
hoff shell theory, and . '

4. The stability assignments can be computed for the bifurcation problem
considered by llunt,

A crucial 12 symmetry on a subspace is used by Hunt to obtain a descrip-

tion of the bifurcation in terms of the parabolic umbilic, This symetry is
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derived by him in a heuristic way. MWe show that it arises by a natural
abstract construction that is vertfiable for a Kirchhoff shell model.

The name "hidden" symmetry arises from two facts. First, it is a symne-
try defined only on a subspace of state space. Second, this symmetry is
revealed by working in a larger space that does not fix the phases of the
relevant modes. This larger space is where the framework of Golubitsky and
Schaeffer [1979b] holds. HWe shall explain these statements in more detail
shortly in §2.

As lunt notes, there are other bifurcation problems that can be dealt
with by the 'hidden symmetry method', such as the buckling of stiffened
structures. Another example fs Schaeffer's [1980] analysis of the Taylor
problem. In particular, the use of hidden symmetries enables one to see
directly that certain terms in the bifurcation equation vanish. This was
done by direct calculation in Schaeffer [1980]. As will be noted later,
hidden symetries also appear to play an important role in the analysis of
other bifurcation problems as well, such as the Bénard problem. This is
briefly discussed in Golubitsky, Swift and Knobloch [19841 and [hrig and
Golubitsky £1984). ‘

In some physical problems, solutions of a partia) differential equation
on a bounded domain satisfying appropriate boundary conditions are in one-
to-one correspondence with periodic solutions on an infinite domain which
have additional reflection symmetries. The periodic problem is a mathema-
tical device which helps in the understanding of the given problem in the
finite domain. In particular, this device enables one to understand how
hidden symmetries in the problem can be understoad in the abstract formula-
tion as symmetries on a subspace. This procedure shows why our abstract

formulation includes more cases than one might at first expect.
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In Section 2 we explain in more detail how the periedic extensioni give
rise to hidden synmetries by means of a simple example. Section 3 gives the
abstract infinite dimensiona) formulation of bifurcation problems with hidden
symmetries and Section 4 applies the methods developed to Hunt's probiem of
buckling cylinders. Finally in Section 5 we discuss the stability and bifur-
cation diagrams for the cylinder problem,

In this paper we have had to make a choice between the variational
approach (based on an energy function) and the direct approach (based on the
equations). 1In the variational approach, one is given an energy functional
which is invariant under the action of the symmetry group. One then applies
the splitting lemna of Gromo}l and Meyer to obtain a reduced function
f: R® + IR whose critical points are (locally) in one to ane correspondence
with the critical points of the energy functional. (See Golubitsky and
Marsden (1983) and Buchner, Marsden, and Schecter [1983) for a general view
of this approach.) Moreover, the reduced function ¢ inherits the Symue-
tries of the original energy function and is, itself, invariant under the
group action.

The second way to obtain symmetries §s to start with a differential equa-
tion whose associated differential operator has a linearization which is
fredholm of index 0. Then one may use the Liapunov-Schmidt procedure to
obtain a (reduced) mapping g: R" + R" whose zeros are {locally) in one
to one correspondence with the solutions to the origina) differential equa-
tions. Moreover, if the original differential operator is equivariant with
respect to a group of symmetries, then (under suitable hypotheses), so is g.

The difference between the two approaches is significant when the
unfolding {or imperfection seasitivity) problem is studied. This latter .

topic is discussed here only briefly. To be consistent with the spirit of
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llunts paper and with elastic buckling in general, we shall adopt the varia-

tional (or catastrophe theory) point of view.

Acknowledgements. We thank Giles Hunt for stimulating conversations which
fnspired this work. We also thank Stuart Antgran, David Chillingworth, &d

Ihrig, end Steve Wan for several useful comments.

§2. IDDEN SYMMETRIES AND PERIODIC BOUNDARY COHDITIONS

In this investigation of the buckling of cylindrical shells, Hunt noted that -

the parabolic umbilic, PPN xyz. appeared in a context where some less

degenerate singularity {such as the elliptic or hyperbolic umbilic) seeming-
ly should have been expected. Taking the paint of view that one should
attempt to explain unexpected degeneracies, Hunt looked for a context in
which the parabolic umbilic would occur naturally. He found one, which he

calls symmetries on a_subspace. In this paper we give a context, namely

that of hidden symmetries, which reveals Hunt's symmetries on a subspace in
2 natural way.

Let us first give a prototype example (due to Hunt) which shows how the
parabolic umbilic arises from the imposition of a synmetry on a subspace.
In the second half of this section we show how this situation can arise by
means of 3 simple example.

tet g(x,v) be a real-valued function satisfying

a) g(-x,v) = g(x,v} and g(0,-v} = g(0,v) , and

? (2.1)
{b} g{0) =0, (dg}{0) = 0, (d°g)(0) = 0

Conditions (2.)a) state that f has a reflectional symmetry in the x-

variable and a reflectional symmetry on the subspace consisting of the v-

axis. Conditions (2.1b) state that g has a degenerate singularity
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at the origin.

Hote. The function g could arise via the splitting lemma from an infinite

dimensional variational problem. Conditions (2.Ib) state that the kerne)
of the Hessian of the original varfational problem is two-dimensional, while
conditions (2.1a) reflect certain symetry properties of this variational
problem.

Writing the first few terms of the Taylor expansion of f consistent

with (2.1) one fiads

2 4 2.2 4

glx,v) = AxSv + Bv” + Cx“v ¢ DX ¢

cenanne

The important point to note here is that xzv is the only cubic term which
can be non-zero. The symmetry on the subspace forces the coefficient of 9
to be 0. HNow ff A-B /£ O then f is right equivalent to the parabelic
umbilic (cf. Zeeman and Trotman {1975)). More precisely, there exists a

2 2

diffeomorphism ¢: IR + RS such that

g{¢l{x,v)} = ev? 4 1Py

where ¢ = sgn B. 1f the coefficient of v3 were nonzere one would obtain
either the elliptic or hyperbolic umbilic.

To motivate the abstract set up in the following section, consider the
following simple example. Suppose that one has a bifurcation problem in
variational form which is posed on the interval [-n,n] with perlodic' and
possibly other boundary conditions assumed. Often such problems have ((2)
as a symmetry group; the rotations S0(2) act by translation ¢ g ¢ 8
where © 1is an element of S0(2) = s! and the orientation reversing ele-
ment of 0(2) acts by flipping the interval ¢ -g. Typically, the kernel

of the linearization of the bifurcation problem at an eigenvalue of this
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1inearization wil) be the 2-dimensional space Vk generated by (cos kg,
sin kg}. Soluiions to the original bifurcation problem which correspond to

Vp bya splitting lenma argument are said to have wave number k. iMowever

there is often an extra parameter in the original bifurcation problem, such
as an aspect ratio, which alters the elgenvalhe structure. For special
values of this parameter it is possible to have an eigenvalue of multipli-
city 4. Typically, in such instances, the wave numbers are consecutive.
For definiteness, suppose the corresgonding eigenspace is 'lk ] ka 1 in
the example below we study the case R4 = ’ll [} Vz with explicit coordi-

nates given by
{x,y,¥,W) + x cos ¢ + y sing + vcos 2¢ + w sin 2. {2.2)

We now discuss why one studies bifurcaticn probleas on an interval
[-a,a] with periodic boundary conditions. Often cne has a physical problem
posed on the finite interval which cne tries to solve by sclving a corres-
ponding problem on the infinite interval and looking for periodic solutions
of period 2u. This reformulation introduces 0(2) as a group of symme-
tries. llowever, in the original praoblem on the finite interval there may be
additional boundary conditions besides perfodicity which limit the periedic
solutions allowable. For example, the only solutions to the transformed
problem on the infinite interval which may be relevant are the ones which
start and end symmetrically; i.e., those solutions which are invariant under
the flip Yo(() » -, See Figure 2-1 which illustrates this for waves with
k=2,
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Figure 2.1

A similar situation occurs in the analysis by Schaeffer [1981] of the Taylor
problem and, as we shall see, can be used as the basis for the analysis by
Hunt [1982) of the buckling of a cylindrical shell tboug'h the situation in
the latter case is yet more complicated.

The context hypothesized above allows hidden symmetries. Let lR[l =

V; ] VZ. The translation ¢ - g t 8 of S0(2) acts on V,_ by rotation

k
through the angle ko. The flip Yg acts on IR" with the coordinates

{2.2) by
Yo(K-Y-V-H) = (xn'ynvt'”)-

Let. 4 be the 2-element group generated by Yo' Let FA' the fixed
point set for A, be defined by

FA s {(xnolv'0,, .
Note that FA corresponds to the periodic solutions x cos ¢ + v cos 2¢

which are exactly the periodic solutions which begin and end symmetrically,
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We are thus fnterested in the elements of Fy. Consider the “naive symmetry
group® N{a) consisting of those elements of 0(2), which teave F& set-
wise invartant; that is, H(a) is generated by the flip Yo and the trans-
lation by half a period, h{g) = & + n. The acticn of & on Fy 1s glven
in the coordinates (x,v) by

hix,v) = {-x,v).

We now ask, “Is there a hidden symmetry in this problem?”, that is, is there
a symmetry on a subspace other than the elements of H(A)? The answer is
yes. tet q(r) = ¢ +~;— be translation by a guarter pericd. Then q acts
on IR4 by qlx,y,v.w) = (y,-x,-v,-w). In particular, on the fixed point
subspace of H(a), namely FM(A) = ({0,v)} ¢ FA. g acts by q{0,v) =
(0,-v).

How one sees that 1f one were to solve the hypothetical problem above by
a spHtting lemma argument one would be looking for the critical point struc-
ture of a function f: R®. IR which {s invariant under the action of
0{2). B8y looking for “physically reasonable® solutions one tries to find
the critical point structure of g: IRZ» R where g = ¢ | FA and g
satisfies the symmetry conditions (2.1a); in particular, g satisfies the
hypotheses of symmetry on a subspace studied by Hunt.

As noted above, the analysis of the buckling of the cyliader proposed by
Hunt [1982) is somewhat more complicated though the end result is similar.
The reason for this complication is that in the buckling problem two copies
of 0(2) act as symmetries. More precisely, one copy of 0(2) occurs
because the finfte cylinder is replaced by the infinite cylinder with peri-
odic boundary conditions imposed. The second copy of 0{2) acts on the

problem since the cylinder itself is invariant under rotation about its axis.
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§3. ABSTRACT FORMULATION
He begin with the following situation. Let [ be a subgroup of O(n} and

assume g: IR" » R is invariant under T: glyx) = g{x) for x ¢ R® and
¥ ¢ . Suppose we are interested in the critical points of g that possess
a given symmetry. That is, let A ¢ T be a given subgroup and let FA be
its fixed point set:

FA-(yg m"|6y=y for all & ¢ A);

we are Interested in critical peints of g that lie in FA.' Let h= g[l-’A

Lenma 1. Let y ¢ FA. Then - 9 has a critical point at y if and only if

h does.

Remark, This lemma is a special case of the “principle of symmetric criti-

cality" due to Palails [1979}. He give a direct proof for the case at hand.

Proof. [If g has a critical point at y ¢ F,, then obviously y is also
a critical point for h. Conversely, let y ¢ FA be a critical point for
h. To show y {s a critical point of g, we use the following remark.
tet G: R"+ " be equivariant with respect to I': f.e. g{yx) = G{x)
for all y ¢ . How G(FA) c FA since for x ¢ FA and § ¢ A, G(x) =
G(sx) = 6G(x) and so G{x) ¢ F,. Mowlet H = G|F,: F, - Fye Then for

x ¢ F,, it is clear that

6(x) = 0 {f and only if MN(x) = O {3.1)

To complete the proof of the tenma, let G{x) = yg(x). Then since [ < 0(n),
we have G(yx) = G(x) and H{x) = vh{x) for x ¢ F,- The result there-
fore follows by (3.1). ®
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We shall call a subgroup A cr fixed point complete if

Asf{yel[fyy2y forall yc FA’ (3.2)

If our symmetry subgroup a is not fixed point complete, we can always
enlarge 4 to symmetry subgroup 2 that is fixed point complete and for
vhich l’A = FK‘ This {s reasonable since we are looking for critical points
in FA and augmenting s by group elements that pointwise fix FA does not
change the fixed point set.

To study the critical points of h on FA. it is useful to find the

symmetries of h. To lacate these, we first consider the subgroup N(A) <
defined by

N(8) = {y e rivif,) < Fy) (3.3)

It is clear that h {s invariant under WN{a), so N{a) is a symmetry group

for h, The notation W{a) 1is used because of the next lemma,

Lemna 2. N(A) is the normalizer of % in p.

Proof. Recal) that if ) is a subgroup of a group G, its normalizer is
defined by N, = (g ¢ Gjg”liig  H).

First, suppose that y ¢ N(a). To show that y . oo det §¢ 8 we
aust prove that ) a.

" 5 Yy 8y c &. But :f Yye FA then vy ¢ FA. SO &yy = yy
ady Syy =y yy=y. Thus y "6y ¢ & since 3 Is fixed-point complete.
Cof\‘/erse]y. suppose y ¢ Mo 1f y ¢ Fy and §¢ A, then y-'cy € B,

0y 8yy=y or dyy=yy forall §cAa. Thus y {s fixed by all
Sc¢a, sobyd _
. o—y efinition of FA s FA' 1Y e FA. Thus y ¢ N{a) by {3.3). g
Since A& acts trivially on FA. we can “discard” it from our symmetry

group of h, In view of lemma 2 one can do this by letting the group 0(a)
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be defined by

0(a) = H(aAMB

and calling it (or H(4}) the naive group of symmetries of h. Hotice that
there s a well defined action of D{A) on F, and that h is invariant

under this action.

There is a second way h can isherit symmetries from r, Let I bea
proper fixed point complete subgroup of  and assume & < I, Thus,
Ft e FA. As above, H(E) leaves F}: fnvariant and hllfz is invariaat
under D(E). The new symuetries obtained this way are the hidden symetries.

Here is the formal definition.

pefinition. A hidden symmetry of h 1is a nontrivial element of R(E) for

some proper subgroup I of [ containing 4, which 1s not 1a H(a).

Remarks 1, One could take the view that one is searching for FT. as auch
as for E; given F):' L can be defined as the isotropy group of typical
points in Fz' In the example we shall see that E and Ft are found
simul taneously.

2. If ve are looking for zeros of a map H:F, ~ F, commuting with H{a)
{rather than critical points of an invariant function h), then the mere
existence of Fy i FA can put vestrictions on H. Indeed, H must map 'I
to itself, a fact that does not in general follow just from the equivariance
of W under N{a).

3. In Hunt's example we shall see that one can choose [ = N(a}. The
group theoretic reason for this is given in remark 4 below. In other
examples, one probably will need to understand the lattice of fixed point

complete subgroups of 1 and the lattice of isotropy subgroups. For
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examples {nvolving convection, efther the planar Bénard problem or spherical
convection, these lattices can be computed and in certain cases hidden
sycmetries are important in understanding solutions with a given symuetry
group A. For example, in Buzano and Golubitsky [lde] this occurs with the
rectangular solutions (see Golubitsky, Swift and Knobloch [1984), sIV for a
discussion). For the spherical 8énard problen, the lattice of isotropy sub-
groups for representations of 0(3) is worked out in lhrig and Golubitsky
[1984]. They find that bifurcating solutions corresponding to fixed point
sets of dimension one (with maximal tsotropy subgroups--these are found
using a theorem of Cicogns) are often unstable. In this case one needs to go
to the next level in the lattice and there hidden symmetries may be import-
ant. See Golubitsky (1983) for a general fatreduction to jdeas and examples
favolving the lattice of Isotropy subgroups.

4. He now ask whether there can be symmetries more subtle than hidden
sysmetries. [n general, the answer Seems to be yes. However, in Hunt's
example and fn the case where 4 fis a maximal isotropy subgroup these
subtle symnetries do not exist. This last fact was pointed out to us by
Ed Ihrig, cf. Remark 5 below.

Before discussing subtle synmetries we review our description of hidden
symietries. In our discussion we have assumed the existence of a function
9: B+ 1 invariant under r and a fixed point complete subgroup 4 of
I'. Our interest lies in understanding the restrictions placed on h = g|F
So far we have observed two types of restrictions on h. The first obser-
vation states that h 1{s {nvariant under the group N{a) which acts-
naturally on FA. He have called elements in N{a) ™“naive symetries”. |p
the second observation we have shown, by iteration, that if [ > a8 isa

7
proper, fixed point complete subyroup of T then tht is invariant under
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the subgroup MH(L). He have called elements in M(L) “"hidden symmetries®.
Moreover, Hunt's symmetry on a subspace is just a specific instance of a
hidden symmetry.

We now question whether there are any additional group theoretic restric-
tions placed on h by the existence of the large group [. Such additiona)
symuetries we call subtle symmetries. The only way that subtle symmetries
may arise §s as follows. Suppose there is an element y in [ ~ H(a) for

which

y-l(FA) nF 7 Fp (3.4)

{Aside: Fr is contained in each fixed point space and all symmetries fix
vectors in Fr. Thus (3.4) states that the intersection in the LHS of (3.4)
contains a nontrivial vector. Moreover, since y { N(a) the intersection
on the LHS of (3.4) is a proper subspace of FA.) Observe that :ahen (3.4)
is valid, we obtain a further restrictionon h. For if we y (fA) o FA
then both w and yw are in FA; thus h{yw} = h{w). We cal) such elements
Y which are not hidden symuetries, subtle symmetries.
He may clarify the 1ssue of subtle symetries as follows. We claim that
FA n y'l(FAJ is itself a fixed point subspace. Observe that
-1
a) F-1, =y {F.), and
() F-1, a)s 55)

(b} FG 0 FH s F«G.Il>

where G, H are subgroups of [ and <G> {is the subgroup they generate.

To prove the claim, lét T <n.y'ldy>. It follows frem (3.5) that
£ooF, ay i(F)
T A I}

Horeover,
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since {3.4) is assumed valid and v { H{a).
Thus, when searching for subtle symmetries we look for fixed point sub-
spaces Fy satisfying

(a) F,.;FT;F .

(b) y(FT) € Fy, and (3.6)
{c) wWFy) .

Hote that (3.6¢c) follows from the fact that y is not a hidden symmetry;
hence y § N(T).

Thus we see that naive symmetries correspond to elements of I which
leave fA invariant, hidden symmetries correspond to elements of [ which
Teave some subspace Fx of FA invariant, and subtle symmetries corres-
pond to elements y of T which map a subspace FT of FA onto a differ-
ent subspace y(fl.] of Fy

5. There are no hidden symmetries and there are no subtle symmetries
when 4 s a maximal isotropy subgroup, {Proof due to Ed Ihrig.) Ia order
to find a hidden symmetry or a subtle symnetry we would need to find a fixed
point subspace FT satisfying (3.6a). HNow suppose that FI is any fixed
point subspace, then we claim that FT is the union of fixed point subspaces
of isotropy subgroups. First observe that if v ¢ Fr then F c Fr where
I, 1Is the isotropy subgroup of v. (This follows from the fact that T
fixes v and thus is contained, by definition, in l:v.) Since v ¢ Z, it
follows that FT = ng sz. Second, use (3.6a) to observe that sz c FI c

FA and hence that 4 c L. By (3.6a) we can choose a vector v ¢ FT ~ FP

and for such a v, rv # 1. 1t now follows that if A s a maximal isotropy

194

‘7 ." ~e
\

subgroup we must have 4 = E,- Hence I’A s sz = FI which contradicts the

second equality in (3.6a).

He now discuss how one reduces an fnfinite dimensiona) problem to the
situation of looking for critical points of a function g: IR® + R invari-
ant under a group T < O{n).

Let X be a Banach space and < , > a (not necessarily complete) inner
product on X. (In many examples X is a W*P Sobolev function space,
and <, > is an Lz, W or W inner product).” Let f:X+ R bea
function defined on a neighborhood of 0 ¢ X with f{0) = 0 and Df(0) = 0.
Eventually f will depend on parameters but this is suppressed for the
moment. .

Let K be the kernel of sz(o)-. 1.e.

K= (v e X{D2(0)-(vw) = 0 for all we X}

Assume that f admits a smooth < , > gradient vf:X - X so of(0) =0
and let T = Dyf(0):X + X. It {s easy to check that <D{9f{0)})-v,w> =
sz(O)o(v,w), so K=Ker1T and T is <, > - symmetric.

Assume T is Fredholm of index zero; in particular, X admits the

following < , > -orthogonal decomposition into closed subspaces.
X2 K®©Range T .

Under these hypotheses, the critical points of f are in one to one

correspondence for those of a reduced function

g:K + IR

* The generalization to the case in which X {s a manifold and <, » {52
weak Riemannian metric on X is routine. .
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defined in a neighborhood O ¢ K. This correspondence is by means of the
graph of an fmplicitly defined functfon ¢:K » Range T defined by solving
the equation Peyf = 0 where P is the projection to Range T. One can
also show that the problem of finding normal forms for f can be reduced
to that for g, which satisfies g{0) = 0, Dg{0) = 0 and 029(0) -0,
This is the splitting lemma, which is the variational analogue of the
Liapunov-Schoidt procedure (see Golubitsky and Marsden [ 19831 for detalls
and references).

Suppose that T {s a group of isometries which act continuously on X

by linear transformations and leave f {nvarfant; that is
flyx) = f(x) forall xc X, yer.

By differentiating this relation, 1t readily follows that  leaves K
invariaint and g 1s lovarfant as well; that is, yx ¢ K if yel and

X ¢ K and
glyx) = g{x) for yer, xcK.

Aside. In the buckling problem of unt [1982), X corresponds to a Sobolev
space of 2L-perfodic displacements of a right circular cylinder, where
periodic means with respect to movement along the z-axis, the axis of the
cylinder, and = 0(2) x 8(2) is the natural symmetry group of the prabten,
We take {-L,L] as the fundamental {aterval along the cylinder's axis.

Hunt is interested in solutions which are symmetric with respect to reflec-
tion about the midpoint of this interval. These solutions comprise the
fixed point set for a subgroup A of r. This and the discussion In 52
are motivations for the construction of FA given above. Another motivation

is provided by Schaeffer (19801, in which functions satisfying a desired set
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of boundary conditions for the Havier-Stokes equation on a fixed domain

2 x (-L,L}, where Q< le. can be characterized as perfodic functions on
ft & IR which are invariant under reflection with respect to the planes

z = 1L, Again the states satisfying these boundary conditions can be char-
acterized as the fixed point set for a subgroup A.

In many examples, including Hunt's, there is a further reduction in dimen-
sion that can be done by finding a cross section for the action. The method
is similar to that of Golubitsky and Schaeffer [1981) 1n which reduction
from a five dimensional kernel to a two dimensional subspace was important
(interestingly, in this example, the subspace was a fixed point set for the
group Dz).

Suppose V ¢ FA ts a subspace satisfying:

{a) V saturates Fa; that is, U W-FA. and
yel(a) (3.7)

(b) for each x ¢ V¥, Iot + U YW= FA
YcN(A)x

where o 1is the N(a) orbit of x 1n F, and H(a), is the isotropy
subgroup of x dn H(A). By Lemna 1, we seek the critical points of h=
g]l’A on FA. We now show that the critical points of h are det'ermined by
k = hjv.

Lemma 3. Let V satisfy (3.7) and let k = h|V. Then the critica) points

of h are the N(A) orbits of the critical points of k.

Proof. By invariance of h under H(a), it is enough to show that for
x ¢V, x s a critical point.of h if and only if it 1s one for k. From

h{yx) = b(x) we get, in terms of differentials,

dh(yx)ey = dh(x}.
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