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SEMIDIRECT PRODUCTS AND REDUCTION IN MECHANICS
BY
JERROLD E. MARSDEN', TUDOR RATIU? AND ALAN WEINSTEIN'

ABSTRACT. This paper shows how to reduce a Hamiltonian system on the cotangent
bundle of a Lie group to a Hamiltonian system in the dual of the Lie algebra of a
semidirect product. The procedure simplifies, unifies, and extends work of Greene,
Guillemin, Holm, Holmes, Kupershmidt, Marsden, Morrison, Ratiu, Sternberg and
others. The heavy top, compressible fluids, magnetohydrodynamics, elasticity, the
Maxwell-Vlasov equations and multifluid plasmas are presented as examples. Start-
ing with Lagrangian variables, our method explains in a direct way why semidirect
products occur so frequently in examples. It also provides a framework for the
systematic introduction of Clebsch, or canonical, variables.

1. Introduction. This paper is a continuation of Marsden and Weinstein
[1982a,1982b], in which the methods of reduction were applied to the study of
plasmas and incompressible fluids. Here we treat systems which are associated to
semidirect products, including the heavy top, compressible fluids, magnetohydrody-
namics and elasticity.

To discuss the results we need some notation.

G is a Lie group.

g is the Lie algebra of G.

p is a left representation of G on a vector space V.

p, is the associated Jeft representation of G on V* given by

p.(g) =[p(g™)]*

where [ ]* denotes the dual linear transformation. The right representation of G on
V* is given by

p*(g) =[r(g)]*.

p’: ¢ = End(V) is the induced Lie algebra representation.

§ = G X, Vis the semidirect product and 3 is its Lie algebra.

G, is the stabilizer of a € V* under p*.

Semidirect products were shown to be relevant for the heavy top in Vinogradov
and Kupershmidt [1977], Guillemin and Sternberg [1980] and Ratiu [1980]. In Ratiu
(1980, 1981, 1982] it was shown that reducing 7*G by the left action of G,, in the
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sense of Marsden and Weinstein [1974], leads to a coadjoint orbit for S. The proof
was simplified in Holmes and Marsden [1983], using some ideas from Guillemin and
Sternberg [1980]. Using results from Kazhdan, Kostant and Sternberg [1978],
Guillemin and Sternberg [1982] made further improvements.

Here we extend and simplify these results. In the process, we unify the Ratiu-
Guillemin-Sternberg results with a map introduced by Kupershmidt [1982]. We show
that the right and left actions of S on T*S yield a dual pair, and that their
momentum maps induce symplectic diffeomorphisms of the reduced spaces with
coadjoint orbits. This approach also leads to canonical (or Clebsch) variables in a
simple way; see Marsden and Weinstein [1982b] for related results.

The relation between coadjoint orbits and isotropy groups may be seen as a
classical analogue of the Mackey-Wigner “little group” induction procedure. (A
little group is just an isotropy group.) This fact is also mentioned by Guillemin and
Sternberg [1980], referring to Rawnsley [1975] for an explicit link via geometric
quantization.

We recall some additional notation from Marsden and Weinstein [1982a, 1982b].
For a Lie group G, the Lie algebra g may be identified with the left invariant vector
fields on G with the commutator bracket [ X, Y] = XY — YX. We let g* denote the
manifold g* with the Poisson bracket structure C*(g*) given by

(1.1) (F,G} (n) = —(n,[8F/8u,8G/8u]).

The “functional derivative” 8F/8u € g is the derivative DF(p) regarded as an
element of g rather than g**; i.e.

DF(p) - v = (v,8F/3)

where ( , ) denotes the pairing between g* and g. We call { F, G}_ the Lie-Poisson
bracket. The Lie-Poisson manifold g* is identifiable with the reduced Poisson
manifold T*G /G for the left action of G. We shall make this identification explicit in
§2. Likewise, the reduced manifold for the right action® of G on T*G is g% with the
bracket

(1.2) (F,G}, () = (p,[8F/8u,8G/8u]).

If H is the left invariant Hamiltonian on T*G, it naturally induces a reduced
Hamiltonian H of g* and a reduced Hamiltonian vector field X, on g* given by

(1.3) Xy (p) = ad(8H /8p)*p

where ad(¢)n = [£, 7] and ad(§)* is the adjoint of ad(£): g — g. The evolution
equation g = X,(p) for X, is equivalent to that determined by the Lie-Poisson
equations

(1.4) F={(F,H}_.

30ne could make things more symmetric by using the left and right Lie algebras, but we are pretty
much stuck with the left Lie algebra by convention.
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To see this, we note that for any smooth F: g* — R the left-hand side of (1.4) equals
F(p) = DF(p) - fp = (fi, 8F/8u) whereas the right-hand side is {F, H} (p)=
—{ 1, [0F/dp, 6H /bu]y= (ad(8H /8u)*u, 8F /8 ); in other words, since fi = X, (p),
(1.3) is equivalent to (1.4). In practice, to get the equations of motion one uses (1.4)
on appropriately chosen functions F, since this usually entails less computation than
the determination of the adjoint in (1.3); this remark is especially handy in infinite
dimensions.

Each trajectory of X, stays in the coadjoint orbit of its initial condition. This is
often viewed as a “constraint”. For example, for compressible fluids discussed in §5,
this is the “Lin constraint”, cf. Bretherton [1970].

Now suppose that H is a Hamiltonian on T*G, depending parametrically on
a € V*, which is left G -invariant for each a. We shall prove that H induces a
Lie-Poisson system on $*. If H is right invariant, then the induced system lives on
8% instead. We wish to emphasize the fact that the constructions used to obtain this
result are all natural.

It is clear from Vinogradov and Kupershmidt [1977], Guillemin and Sternberg
[1980] and Ratiu [1980] that the equations for a heavy top are Lie-Poisson equations
for the Euclidean group E(3) = SO(3) X R®’. Guillemin and Sternberg [1980] ap-
proached the problem from the point of view of collective motion; here we approach
it, as in Ratiu [1980], by reduction. (See Holmes and Marsden [1983] for a “bare
hands” verification in this case and an application to chaotic motion.)

By 1980 it was known that the equations for compressible flow on R® were
formally Lie-Poisson equations for the semidirect product @ X %, where ) is the
diffeomorphism group of R%, and ¥ is the space of functions on R3. This fact is
hinted at in Guillemin and Sternberg [1980] and is easily verified. Almost simulta-
neously, the bracket for this system and the MHD system was published by
Morrison and Greene [1980] and Dzyaloshinskii and Volovick [1980]. For MHD and
elasticity, the explicit connection with semidirect product Lie-Poisson structures was
made by Holm and Kupershmidt [1982]. Their approach is quite different from
ours; they begin with a variational principle using the constraints and Clebsch
variables, as in Seliger and Whitham [1968], and derive a reduced bracket from a
canonical bracket in the Clebsch variables. Finally, they simply observe that the
bracket is a Lie-Poisson bracket for an appropriate semidirect product. Our ap-
proach is the reverse: the semidirect product structure is derived directly in terms of
the physical variables and reduction; constraints appear in terms of coadjoint orbits,
and Clebsch variables occur as momentum maps.
the semidirect product structure is derived directly in terms of the physical variables
and reduction; constraints appear in terms of coadjoint orbits, and Clebsch variables
occur as momentum maps.

In the last section we show that there is a semidirect product structure in the
momentum representation of the Poisson brackets for the Maxwell-Vlasov and
multifluid plasma equations. This structure arises by a rather different construction
than that sketched above; the momentum representation is closely related to a
construction of Sternberg [1977], whereas the usual velocity representation is closer
to the construction of Weinstein [1978].
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The main body of the paper will use some further facts and notation. Proofs may
be found in Abraham and Marsden [1978], Guillemin and Sternberg [1980, 1982]
and Marsden and Weinstein [1982b].

If ¢: M - N is a diffeomorphism, ¢,: T*M — T*N denotes its canonical lift,
defined on the fiber T;*M over x € M by

((P*)x = [(Tcp(x)(p)_l] *.

A lower star is used since ¢, pushes covectors forward. If G acts from the left (resp.
right) on M, then by lifting we get a left (resp. right) symplectic action of G on T*M.
This action has a momentum map J: 7*M — g*, given by

(J(a,), §) = (@, £y (X))
where £,, is the infinitesimal generator for £ € g and the action of G on M. The map
J:. T*M - g*%
is a Poisson map (i.e. preserves Poisson brackets), where “ +” is used for a left
action and “ —” for a right action.

If (P, w) is a symplectic manifold and G acts by canonical transformations on the
left (resp. right), an Ad*-equivariant momentum map is a Poisson map J: P — g*
such that X, = &p for § € g where .f(g)(p) = (J(p), £) and £, is the infinitesimal
generator defined by £ for the action of G on P. The reduced space P, is J )/ G,,
where p1 € g* is a regular value of J, and G, is assumed to act freely and properly.
(Without these assumptions, P, can have singularities.) If (‘)# is the coadjoint orbit of
Ky

P,~J7(0,)/G
and these are the symplectic leaves in the reduced Poisson manifold P/G.
General reductions can be replaced by reductions at zero by changing P. Indeed

P, is symplectically diffeomorphic to (P © (‘JDO and to (P & 0, ),. For right actions,
WP = GNT (W) ~ (PO ) ~ (P OE)).

2. Left and right reductions of cotangent bundles of Lie groups. This section
summarizes the reduction of 7*G by the right and left actions of G.

If L, and R, denote left and right translation by g in G, these actions can be lifted
to left and right actions on T*G as follows. Define

L:GXT*G~T*G, L(g a,)=/(T,L-)*,
and
R:T*GX G- T*G, R(ay,,g) = (T),,R,1)*a,.
These two commuting actions have the (Ad*-equivariant) momentum maps
J:T*G - g*,  J(a) =(T,R,)*(a,)
and
Jp: T*G = g%, Ja(ay) = (T,L,)*(a,).
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Thus
J: T*G - g* and Jg: T*G - g*
are Poisson maps. Moreover, J; is R-invariant and J is L-invariant so that these
maps induce Poisson manifold diffeomorphisms on the corresponding quotient
spaces
J,: R\T*G - g* and Jz: T*G/L — g*

with inverses J_L"(u) = [ulg, J_R“(p) = [u].. ((n]g and [p], denote equivalence
classes in R\ T*G, T*G/L.) Denote the canonical projections by =,: T*G — T*G/L
and mz: T*G - R\T*G.

The symplectic leaves of g* are the coadjoint orbits. In g% the orbit (‘)Mi through
p € g* has the Lie-Berezin-Kirillov-Arnold-Kostant-Souriau symplectic form

((ad £)*v, (ad m)*») = =» - [£,n]
where v E G and &, n € g. Hence the symplectic leaves of T7*G/L are of the form
IO, and those of R\ T*G are of the form J;” '(9,"). But it is easily seen that

T (QL)— LL(®,L+)’ R(®:)“‘WRJR (Q;)
and, hence, the symplectic leaves in 7*G/L and R\ T*G are the reduced manifolds

7 J7N(O, ) and mpJz'(6)), where O, has the “+” or “ —” Lie-Poisson symplectic
form. We summarize these results in the following theorem.

2.1. THEOREM. The Ad*-equivariant momentum maps J; and Jy for the actions L
and R of G on T*G induce Poisson manifold diffeomorphisms

J,: R\T*G - g* and Jz: T*G/L — g*
where g* is endowed with the “ = Lie-Poisson bracket. The symplectic leaves in the
quotient spaces T*G/L and R\T*G are the reduced manifolds J '((9,:r )/L and
R\ Jg '(Q: ) where u € g* and (‘)i is the coadjoint orbit of G in g* through p with the
“ x> Lie-Poisson symplectic form.

In particular, note that the actions L and R form a dual pair i.e. the reduced
spaces for one action are coadjoint orbits for the other and we get the diagram:

R\T*G "6 — S T*G/L

\/\/

Now, assume that H: T*G — R is a Hamiltonian invariant under the lifted action
L on T*G of the left translation on G. Then H induces a smooth mapping H,:
T*G/L — R, and hence the function H .= H, o J;': g* — R defines Lie-Poisson
equations on g*. Since Lie-Poisson equations have trajectories which remain in the
coadjoint orbits of their initial conditions, H; when restricted to the reduced
manifolds J;'(0," )/L, where p € g*, defines Hamiltonian systems on these mani-
folds. Moreover, if F, denotes the flow of X}, and G; is the flow of the Lie-Poisson
equation defined by H_, we have G; o Jy o m, = Jg o m, o F,. We summarize these
results in the following theorem.
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2.2. THEOREM. A left invariant Hamiltonian H: T*G — R canonically induces
Lie-Poisson equations on g* defined by the Hamiltonian function H_= H, o J_R‘ ! where
H, o7, = H. If F, denotes the flow of Xy and G, is the flow of the Lie-Poisson
equations for H_ on g*, then G o Jyom =Jzom oF. The Hamiltonian
H, |(J. 1(6: )/L), where p € g*, induces a Hamiltonian system on the reduced
manifold J(6," ) /L. The same result holds if “left” and “right”, and “ —” and “ +”
are interchanged.

3. Semidirect products. We now apply the results of the previous section to the
case of semidirect products. Recall from §1 that p: G — Aut(V') denotes a (left) Lie
group representation of G in the vector space V, and p’: g = End(V) is the induced
Lie algebra representation. Denote by S the semidirect product group of G with V'
by p with multiplication

(81> ) (825 uy) = (81825 ur + p(81)4).
Let s = g X, V be the Lie algebra of S. The Lie bracket on 8 is given by

[(gl’ v,), (&, Uz)] = ([51’ &1, 0(&) v, — P'(gz)vl)-
The adjoint and coadjoint actions of S on $ and 8* are given by
Ad, (£, 0) = (Ad, £, 0(g)v — p'(Ad, £)u)

and

[Ad(g.u)"],*(v’ a) = Ad’(kg.u)"(y’ a) = (Ad:;" v+ (p;)*(p*(g))a, p*(g)a)’

where g € G, u,v € V, v € g*, and a € V*; p/: g —» V is given by p/(§) = p'(§)u
and (g, u)™' = (g7',-p(g ")u). The “ =" Lie-Poisson bracket of F, G: 8* - Riis

(3.1)

=o€ ] o(2) ) o 5) )

where, as in §1, 6F /8y € g and 6F/8a € V. Also from formula (1.3), we compute
the Hamiltonian vector field of H: §* — R to be

(2 Kypa) == (ad(i—f)*u — (huyne e p(i—’:))

where 0, 5,0 @ = V is given by pjy 5,(§) = p'(§) - 8H/8a, and (55, )* 1s its
adjoint.

We shall explicitly compute the actions L and R of the previous section for the
group S. Since

L(g,u) (h’ U) = (gh’ u + p(g)U),
we have
T(h.u)L(g,u)(Uha v, W) = (Tth(Uh)a u+p(g)o, p(g)W)
for (v,, v,w) € Tp, ,,(G X V). Thus
T(g.u)(h.v)L(g,w"(Ugh’ u+p(g)o, W) = (Tgth"(Ugh)’ v, P(g_l)w)
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for (vg,, u + p(8)0, W) € Tig yn,o(G X V) and, hence,
L((g, u), (e, v, a)) = (T(g,u)(h.o)L(g,u)")*(ah» v,a)
= ((Tgth'l)*ah’ u+p(g)o, p*(g)a)
for (ay, v, @) € T}, ,,(G X V). Since R, ,,(h, v) = (hg, v + p(h)u), we have
T(,,'O,R(g‘u)(Vh, v,w) = (ThRg(vh), o+ p(h)u,w+ T,p(v,) - u)
for (v,, v,w) € T4,00(G X V). Thus,
Tonoxs.oRigant(0ngs 0 + p(R)u, w)
= (Tthg’l(Uhg)’ o,w— Tth(Uhg) : p(g“])u)
for (v, v + p(gu, w) € T oyg.0(G X V) and, hence,
R((g.u), (ay, v, a)) = (Tih oxg.yRigut)* (@4, v, @)
= ((ThgR ) *os = dffignu(hg), 0 + p(h)u, a)
where £%(g) is the “matrix element” {a, p(g)u). The last equality is obtained by
applying the left-hand side to (v, v + p(g)u,w) € Tih.oygu(G X V) and using
the easily verifiable formula
<a, TkP(Uk)Z> = df.*(k)v,

forace V¥, ke G,zeV, v €TG.
The corresponding momentum mappings are

Jp: T*S > 8* |
(33) Ju(eg 0, a) = (TR (g0 (a0, @) = ((T.R,)*a, + (p))*a, a)
and
Jg: T*S - 8*,
(34)  JTa(az 0,a) = (T, 0y Ligo)*(ag, 0, @) = ((T.L,)*ay, p*(g)a).

The results of the previous section apply directly to this situation. Thus we get, for
example,

3.1. PROPOSITION. Let J; and Jy be given by (3.3) and (3.4). Then:

(1) J; and Jy are Poisson maps.

(2) J; (resp. Jg) induces a Poisson diffeomorphism of R\T*S (resp. T*S/L) with
8% (resp. 8*).

(3) The reduced spaces for the R (resp. L) action are coadjoint orbits in 3% (resp.
8*).

Now we shall relate our results to those in the literature. The following lemma will
be useful.
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3.2. LeMMA. Let a: G, —» G, be a Lie group homomorphism and ¢: (P, w,) —
(P,, w,) a symplectic mapping. Assume that G, acts on P, G, acts on P,, and (¢, a)
intertwines these actions, i.e.

o(g-p) =alg) ¢(p)

where “-” denotes the appropriate action. If J,: P, — g% is a momentum map for the
G, action, then J, = (&')* o J, o ¢ is a momentum map for the G, action.

ProOF. First of all, note that
Ji(§) = J(a - £) o9
and so, for v, €T, P,
di(8) - v, = dia’ - £) - To(v,,) = wy((a - £).(6(p))). T(3,)).
Now ¢(g - py) = a(g) - $(p,) gives To(£,(p1)) = (&' - £),($(p,)) and 50
dil(g) T0, T wZ(T‘i)(gp‘(pl))’ T¢(”p,)) = wl(‘EP,(pl)’ Up,)

since ¢ is symplectic. Thus X7 ) = &5 .

Finally, J, is a Poisson map because each of (a')*, J, and ¢ are. W

REMARKS. (1) Consider the isomorphism a: S — S given by a(g, u) = (g, -u) and
the left action L, ,, of S on T*S. Its momentum map is (see Lemma 3.2)

(B, u.a) > (a)*J (B, u.a) = ((T,R,)*B, + (p,)*a,-a).

The induced Poisson map of V' X V* — 8* | given by (u, a) — ((p,)*a,-a), has
been used by Kupershmidt [1982] in connection with Clebsch variables (see §4
below).

(2) Guillemin and Sternberg [1980] consider the following left action of S on T*G
for fixed a € V*:

I'((g.u) a,) = (Tgth")*ah — dei(gh)

where ¢%(g) = (a, p(g~")u). In the present context this action is understood in the
following way.

Given G,V and the representation p, one forms the semidirect product S and its
Lie algebra 8. However, there is another group S with the same Lie algebra 3;
S = G X V as a manifold, but the composition law is

(g1, u)) o (gy,uy) = (gng’ u, + P(gfl)“l)’

with identity element (e, 0), and inverse (g, u)™' = (g~', -p(g)u). In fact, B: S - S
given by B(g,u) = (g, p(g ")u) is a Lie group isomorphism whose induced Lie
algebra isomorphism 8’: 3 — 3 is easily seen to be the identity (3 is the Lie algebra
of §). Thus one would expect to get different lifts to 7*S, but with the same
momentum map. This is indeed the case as we shall see below.

If E( gu0) (R( 2. w)) denotes left (right) translation by (g, u) in S, an easy computa-
tion shows that

T(h.u)[‘(g.u)(vh, v, W) = (Tth(Uh), v+ p(h'l)u, w+ Th(P ° ‘)(Uh) : u)
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where ©: G —> G is the inversion map g+ g~'. Thus,
r -1 —
(Y}h,U)L(g’u))*(ag,,, o+ p(h)u, a) = ((Tth)*agh +dei(h), v, a)

for (agy, v + p(h™)u, a) E T )., S- Thus, the lift to T*$ of left translation on
S is given by

L((g, u),(ay, v, a)) = (T(g.u) ° (h,o)l:(g,u)")*(ah’ v, a)
= ((Tgth-u)*a,, — del . (gh), v+ p(h")u, a)

and has momentum map fL: T*S — 8% given by

fL(ag, v,a) = (Ee’o)ﬁ(g’u))*(ag, v,a) = ((TeRg)*ag, p*(g)a).

Now define the left action I" of S on T*S by T () = ljﬁ( g.uy> 1€

T((g, u), (@, 0, a)) = (T Ly ), — dei(gh), v + p((gh)")u, a).

The restriction of I' to T*G X {0} X {a} coincides with T. Thus, the action of
Guillemin and Sternberg [1980] is a restriction of the cotangent lift of left translation for
the (nonstandard) semidirect product group S, followed by an isomorphism of S with §
whose induced Lie algebra isomorphism is the identity.

By Lemma 3.2, the momentum maps of the actions L of § and I" of § on T*S
coincide. In a symmetric way one can construct an action of S on T*S with the
momentum map J; .

(3) Holmes and Marsden [1983] work with the restriction of the right action
(TL(, ,))* to T*G for fixeda € g*, V =g, p = Ad.

In many physical examples a Hamiltonian system on T*G, whose Hamiltonian
function H, depends smoothly on a parameter a € V*, is given. In addition, H, is
left invariant under the stablizer G, = {g € G|p,(g)a = a} whose Lie algebra is
g, = {£ € glp’(§)*a = 0}. Denote by T*G/G, the orbit space of the lift to T*G of
left translation of G, on G. We wish to study the motion on the Poisson manifolds
T*G/G, for all a € V*. We shall prove below that this is equivalent to the study of
the motion on $* where 8 = g X, V.

For fixed a € V*, the lift to T*G of the left translation of G, on G has the
Ad*-equivariant momentum map J7': T*G - g7, Ji(a,) = (T.R,)*a,|g,. The map-
ping ij: T*G - T*S, ij(a,) = (a,,0,a) is an embedding of Poisson manifolds
inducing a Poisson embedding of the quotients i{: T*G/G, —» T*S/L. Thus, the
symplectic leaves in 7*S /L pull back to symplectic leaves in 7*G/G,. The natural
candidates for these leaves are the reduced symplectic manifolds (J{)™'(9,")/G,,
where u € g*, u, = n|g,, and (‘Jut C g% denotes the coadjoint orbit of G, in g* with
the “ 4 Lie-Poisson symplectic structure.

For Hamiltonians that are right invariant under G, one proceeds exactly as above,
interchanging “left” and “right”, and “ —” and “ +”, and replacing the mapping i¢
by ix(a,) = (a,,0, p,(g)a). The mappings ij and i% are necessarily different; if one
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would use i¢ for the right actions, i_i would fail to be injective. Summarizing: we
have the following sequences of Poisson embeddings, the last arrow in each being a
diffeomorphism:

if

J,
(I9)7(6))/6, > T*G/G, > T*S/L 5%,

O I A
GN(J)'(9,) = GAT*G = R\T*S —8%
Moreover,
(Jo #)((7)(85)/6.) = (e = i) () 7'(6)))
= {(v, b) € &*| there exists g € G such that p,(g)a = b, Ad}» € L‘)M}

= U S - (X’ a)—
X8a=Ha
as a simple verification shows; here S - (x, a)_C &* denotes the coadjoint orbit of S
through (x, a) with the “ —” Lie-Poisson structure. But

{(p))*alue V}={pEg*|plg, =0}

implies that S - (x, a) = S - (u, a) for all x € g* such that x|g, = u, and so we
have proved the following theorem.

3.3. THEOREM. (1) Jg © i% maps the reduced space (J} )"(L‘),:: )/G, in a symplecti-
cally diffeomorphic way to the coadjoint orbit S - (p, a)_ in the dual of the semidirect
product 8*. Similarly,

2) J—L o i_‘,; maps the reduced space G,\( J,’;)"((‘)’;) in a symplectically diffeomorphic
way to the coadjoint orbit S - (p, a), in the dual of the semidirect product 8% .

This result strengthens that of Ratiu [1980, 1982] where the symplectic diffeomor-
phism J—R o 4 was found and examined on an ad hoc basis. This map was shown in
Holmes and Marsden [1983] to be essentially the same (except for signs, inverses and
interchanges of left and right translations) as the momentum map for the action of
Guillemin and Sternberg [1980]. (See also Guillemin and Sternberg [1982].) The
present approach shows how the results are all obtained in a simple and natural way
and unifies them with Kupershmidt’s map [1982].

Next we shall explain how to use Theorem 3.3 in examples. This will allow one to
begin with the standard phase space T*G and then to reduce a Hamiltonian system
on T*G to a Lie-Poisson system on 8*.

Let H,: T*G — R be a Hamiltonian depending smoothly on the parameter a € V*
and assume H, is invariant under the lift to T*G of the left translation of G, on G.
Thus, H, induces a Hamiltonian on T*G/G,. Via the symplectic diffeomorphism
Jg © 1% we may regard it as being defined on S - (s, a)_, p € g*, and now varying
a € V* we obtain a smooth Hamiltonian H on 8*; thus Ho Jzoij = H,, ie.
H(T,Ly)*a,, p*(g)a) = H,(a,). Thus, the family of Hamiltonians H, on T*G
induces a single Hamiltonian on §*, and the original problem has been completely
embedded in a larger one which yields Lie-Poisson equations on $*. For right
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invariant Hamiltonians, interchange “left” and “right”, and “ —” and “ +”. How-
ever, since the maps i§ and i§ are different, we have H((T,R,)*a,, p,(g)a) = H,(a,).

It is of interest to investigate the evolution of a € V*. Let ¢, (¢) € T*G denote an
integral curve of H, and let g () be its projection on G. Then the curve ¢+
(Jroif)c,(t) is an integral curve of X, on 8* and thus ¢ p*(g, (7)) is the
evolution of the initial condition a in 8* We summarize these results in the
following theorem.

3.4. THEOREM. Let H,: T*G € R be a Hamiltonian depending smoothly on a € V*
and left invariant under the action on T*G of the stabilizer G,. The family of
Hamiltonians {H,|a € V*} induces a Hamiltonian function H on 8*, defined by
H((T,Ly)*a,, p*(g)a) = H,(a,) thus yielding Lie-Poisson equations on 3*. The curve
tc,(t) € T*G is a solution for Hamilton’s equations defined by H, on T*G iff
t (Jgoif)c,(t) is a solution of the Hamiltonian system X, on 8*. In particular, the
evolution of a € V* is given by t > p*(g,(t))a, where g,(t) is the projection of c(t)

on G. For right invariant systems, interchange everywhere “left” and “right”,
and “ +", and replace the formula for H by H((T,Rp)*a,, p,(g)a) = H,(a,).

This theorem is sometimes not applied directly, since p and ¥ may not be given
but need to be discovered in the course of analyzing a system. In the process of
finding V, one also discovers whether left or right actions of G are involved. The
determination of p and ¥ usually is done by means of the evolution of a € V*. We
shall elaborate on this remark in the context of the examples.

Finally, we remark that by shifting the reduction point to zero (see the final
remarks in §1) we get the following symplectic diffeomorphisms: for a left action,

Opa™ (Ji‘)_l(Q:: )/Ga (by Theorem 3.3)
~(T*G e ),
~(MGeo; ),
while for a right action,

-1 -
Oh oy~ GN(JE)(6,)  (by Theorem 3.3)

~,(T*G©0,)
~,(MG®0) ).

The reduced spaces like (T*G © (9;: )o are examples of spaces of the type consid-
ered in Weinstein [1978].

4. Clebsch variables. A general framework for symplectic (or “Clebsch”) variables
was described in Marsden and Weinstein [1982b]. We recall that if (P, { , Dis a
Poisson manifold, then by symplectic variables for P we mean a Poisson map J:
M — P, where M is a symplectic manifold. If canonical coordinates are chosen on
M, we call them canonical variables for P. A Hamiltonian H: P — R determines one
on M by Hy,, = H o J, and the integral curves for the standard (or “canonical”)
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Hamiltonian system H,, on M cover those for the Poisson (or “noncanonical”)
Hamiltonian system H on P. If P = g% then J is necessarily the left momentum map
for an action of G on M; similarly for right actions and g*.

In our case, we choose P = 8% , the “ =" Lie-Poisson space for the semidirect
product § = G X, V. One choice of Clebsch variables is simply 7*S = T*G X V X
V*, with J; and J given in the previous section. In some circumstances, though, it is
useful to use a “flat” space. We shall give an abstract construction which includes
the classical Clebsch representation for the momentum density of a compressible
fluid (see §5 for a description of this example).

The construction is very simple. The semidirect product S = G X V acts on
VX V*X VX V*by

(g, u) - ((v,a),(w, b)) = (p(g)v, p,(8)a, u+ p(g)w, p,(g)b)

which is the cotangent lift of the left action of S on VX V by the affine
transformations

(g,u) - (v,w) = (p(g)v, u+ p(g)w).
The corresponding momentum map is

(J(v,a,w,b),(&u)y=(a,p' (&) -v)+ (b,p (&) - w)+ (b, u).
Therefore,
(4.1) J(v,a,w,b) = (p/*a + p/*b, b)

and J is a Poisson map of V' X V* X V' X V* to 8* .

The procedure above will be related to the Clebsch expression M = pve + Avpu
for compressible fluids in Example 5.B. For incompressible fluids, there is a closely
related construction described in Marsden and Weinstein [1982b], leading to the
Clebsch representation w = dA A dp for the vorticity. We refer the reader to this
reference for further discussion, examples and limitations.

The construction above can be simplified to find a Poisson map J: V' X V* — g% ;
this will be related to the Clebsch representation for magnetohydrodynamics in
Example 5.C (see Morrison [1982], Holm and Kupershmidt [1982]). Let S act on V
by

(g,u) -w=u+p(g)w.
The lift of this action to V' X V* is

(g,u)- (v,a) = (u+p(g)v, pu(g)a)
which has its momentum mapping J: V' X V* — 8% given by
(4.2) J(v,a) = (p*a, a).
In some applications, the semidirect product is of the form G X ¥V X W, where p:

G — Aut(V), o: G —» Aut(W) are left representations. Then we can get a Poisson
map

T VX VEX VX VEX WX W* =8t
J(u,a,v,b,w,c) = (pl*a+ p/*b + o*c, b, c).

v

(4.3)
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This is the momentum map of the lift to the cotangent bundle of the left action of S
on V X V X W given by

(g:0,w) - (uy, uy, 2) = (p(8)uy, v + p(g)uy, w + 0(g)2).
This construction gives the Clebsch representation of isentropic fluid flow and

magnetohydrodynamics when entropy is present, as we shall see in Examples 5.B
and 5.C.

5. Examples. We shall treat four physical examples: the heavy top, compressible
fluids, ideal magnetohydrodynamics and elasticity. We shall not spare details in
presenting the first two examples, to help the reader put the basic principles into our
setting.

A. The heavy top. We recall a few facts about the rotation group SO(3) and its Lie
algebra so(3), the set of 3 X 3 skew symmetric matrices. We identify so(3) with R® by
identifying )

0 —-r ¢
x=(p,q,r) with 2= r 0 —pl;
-4 p 0

thus, £y equals the cross product x X y for x and y in R®. The Lie algebra bracket is
then [£, ] = (x X y) . The adjoint action of SO(3) on so(3) corresponds to the
usual action of SO(3) in R?, i.e. Ad, & = (Ax), A € SO(3). We also identify the
dual so(3)* with R® by the inner product in R®, i.e. iz € so(3)* corresponds to
m € R® by m(%) =m - x for & € s0(3). Then the coadjoint action of SO(3) on
so(3)* corresponds to the usual action of so(3) on R3, ie. Ad%-i = Am since
(A7) = A.

A top is, by definition, a rigid body moving about a fixed point, which we take to
be the origin of the standard coordinate system on R®. Rigidity means that the
distances between points of the body are fixed when the body moves; this implies
that if f(¢, x) is the position at time ¢ of the particle that was at x at time t = 0, we
have f(¢, x) = A(t)x, where A(z) is an orthogonal matrix. Since the motion is
assumed to be continuous and 4(0) = Id = the identity matrix, det A(¢) > 0 and so
A(t) € SO(3). Thus the configuration space of the rigid body may be identified with
SO(3).

The initial mass distribution of the body is described by a positive measure p on
R® which is supported on a compact set with nonempty interior. The kinetic energy
at time 7 is

K() = 3 [ )il dutx) = 3 [ I du(e).

This can be written as

3(a(1), (1)) = He(1) - w(1)
where &(1) = A(t)"'4(¢) € so(3) is the angular velocity in the body, (& m) is the
inner product on so(3) defined by [g:éx - nx dp(x), and I: R* - R® is the symmetric
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operator determined by (£, y)= Ix - y. I is called the moment of inertia tensor. The
basis in which it is diagonal is the principal axis body frame. '

The standard phase space for the rigid problem is 7*SO(3) (Euler angles and their
conjugate momenta). The inner product ¢, ) on so(3) induces a norm on so(3)* and
by left translation a length function || || on T*SO(3). If I = diag(l,, I,, I3), m =
(TygL)*ay, and a, € TFSO(3), the kinetic energy has two alternate expressions:

K =4]la,|” as a function on T*SO(3)
or

_ 1 g, 1 mi  m3
K—zm 1 m—2( +

2

+75 ) a5 a function on R® = so(3)*
I, "L T '

The potential energy V for a heavy top is determined by the height of the center of
mass over a horizontal plane in the spatial coordinate system. Let /x denote the
vector determining the center of mass in the body frame at # = 0, where x is a unit
vector along the straight line segment of length / connecting the fixed point with the
center of mass. Thus, if M = [gdu(x) is the total mass of the body, g is the
gravitational acceleration, and k denotes the unit vector along the spatial Oz-axis,
the potential energy at time ¢ is

V(t) = Mgk - A(t)Ix = MglA™'k - x = Mglv - x
where v = A~'k. The potential energy is

MgIA™'k - x  as a function on SO(3),
Mglv - x as a function on R®.

First we apply Theorem 3.4 directly. The Hamiltonian
H(a,) = Hlagll” + Mgia 'k - x

for a = Mglk € R* = (R®)* is left invariant under rotations about the spatial
Oz-axis with corresponding conserved quantity m - v, the momentum about O:.
Changing the parameter a = Mglk corresponds to changing the magnitude of the
momentum Mgl of the body about the fixed point and the direction k of the
observer. We take the representation p: SO(3) — Aut(R%) to be the standard one:
p(A)x = Ax. By Theorem 3.4 we get a Hamiltonian

H(m,v) = H(T;yL,)*e4, p*(4)k) = H,(ay) = zm - I"'m + Mglo - x

defining the Lie-Poisson equations on the dual of the Euclidean Lie algebra e(3).

We can also apply Theorem 3.4 backwards, starting from the variables m, v in the
Hamiltonian. The configuration space is SO(3), and the Hamiltonian H(m, v) =
lm - I'm+ Mglv - x is defined in R? X R® = so(3)*(R*)*. We also take as given
the fact that v = A~'k. Since A — A~ 'k is a right representation describing the time
evolution of the parameter a, by Theorem 3.4 we must look for a representation p
such that p*(4)u = A 'u for any u € (R*)*. This uniquely determines p(4)x = Ax
and defines the Hamiltonian H, (a,) = H(T L )*ay, p*(A)k) = e ll* +
MgiA~'k - x. Now by Theorem 3.4 we conclude again that H(m, v) determines the
Lie-Poisson equations in e(3)*.
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To write the bracket and the Lie-Poisson equations explicitly, we note first that p’:
s0(3) — End(R’) is given by p'(£€)x = £x, where £ € so(3) and x € R®. For F, G:
e(3)* - R, 8F/8m = (v, F) , 8F/8v= v, F (V,, V, denote the usual gradients
with respect to m, v € R®) and, hence,

,(O0F\ 8G _ - .
(Sm) Sv - (VmF) VUG - VmF>< VUG’

OF \*
”'(%) 0= -V, FX0,  (phrsp,) ©= V,F X0,
and

*
ad(—si) m=-vV,FXm.
om
The Lie-Poisson equations (3.2) become, for this case,
m=-v,HXm— v ,HXwv,
v=-v,HXo,
or, explicitly taking into account that v, H = (m/L,, my/1,, my/1;) and vV, H =
Mglx,
my = am,ms + Mgl(stz - sza)a a, = (1/13) —(1/L),
1y = aymym; + Mgl(lez — X30,), a, = (1/I)) — (1/13),
mhy = azmim, + Mgl(x,0, — x10,), a3 = (1/1,) — (1/1),
(01 =myvy /I3 — myvs /1,
10, = moy /1) — myo, /15,
03 = myo, /I, — m,/I,.

Finally, the Lie-Poisson bracket on e(3)* of two functions F and G is, by (3.1),
{F.G} (m,v)=-m-(v,FXVv,G)—v (v, FX VvG+ V,FX v,G).
Writing F = {F, H}_, for F=m, m,, ms, v, v,, v;, directly produces the prior

Lie-Poisson equations.

For the explicit formulas relating the Lie-Poisson variables (m, v) to the Euler
angles and their conjugate momenta, and a direct verification of the equivalence of
the two descriptions, see Holmes and Marsden [1983].

We shall now find Clebsch variables for the heavy top. The simplest Poisson map
is given by (4.2), namely J: R* X R’ - R* X R® (= e(3)* ), J(x, v) = (p/*v, v) = (x
X v,v). The trouble with this map is that it maps onto a codimension one
submanifold of R* X R, since x X vis always orthogonal to v. Formula (4.1) gives a
Poisson map J: (R’)* - R* X R®, J(x, u, y,v) = (pl*u + pyo, v) = (x X u +p X
v, v) which is onto. If we let H(x, y, y, v) = H(x X u+ y X v, v), then the heavy
top equations have the canonical form

X, = -0H/du;, ;= 0H/dx, y,=-3H/dv,, © =03H/dy,.

The signs in Hamilton’s equations are opposite to the usual ones, since J maps onto
e(3)% , whereas the heavy top equations live on e(3)*.



162 J. E. MARSDEN, TUDOR RATIU AND ALAN WEINSTEIN

One might argue that R'? is too large. This is indeed true, and a theorem of Lie
[1890] assures that the minimal-dimensional symplectic manifold on which E(3) acts
freely is 8-dimensional. Using a global version of this theorem in Weinstein [1982],
one can show that one such manifold is E(3) X R? with E(3) acting only on the first
factor. The symplectic structure is quite twisted, so we will not elaborate on it any
further.

B. Ideal compressible isentropic fluids.* Let Q be a compact submanifold of R® with
smooth boundary, filled with a moving fluid free of exterior forces. Denote by
x(t) =n(X)=mn(X,t), where X € Q, the trajectory of a fluid particle which at
time t = 0 is at X. As is customary in continuum mechanics, capital letters will
denote entities in the reference configuration, i.e., in “body” coordinates; lower case
letters denote spatial entities (see Marsden and Hughes [1983]). Given 7,: £ — £, a
time dependent diffeomorphism of {2, denote by v,(x) = v(x, ) the spatial velocity
field of the fluid, i.e.

y—(g—’—tl =v(n(X,1),1);
v, is thus a time dependent vector field with flow 7,. Let p,(x) = p(x, t) denote the
mass density of the fluid at time 7, and p, the mass density in the reference
configuration. Thus the physical problem of fluid motion has as configuration space
the group D of diffeomorphisms of &, and p, is determined by the configuration
when pj is known.

The equations of motion are derived from three fundamental principles: conserva-
tion of mass, momentum and energy. It will be useful to recall these well-known
derivations, as they are relevant to understanding how Theorem 3.4 is applied.

(a) The principle of conservation of mass stipulates that mass can be neither
created or destroyed, i.e.

f(w)p,(x)dx :prO(X)dX

for all compact W with nonempty interior having smooth boundary. Changing
variables, this becomes

(5.1) (0, (x) dx) = po( X) dX
(5.2) (n¥0,)J(m,) = py

where J(n,) = dx/dX is the Jacobian of n,. Using the relation between Lie deriva-
tives and flows, this is equivalent to the continuity equation

(5.3) dp/dt + div(p,v) = 0.

The present derivation of conservation of mass shows that the physical entity to be
dealt with is the density pdx rather than the function p and that (5.1) or (5.2) is more

“For expository reasons, technical details on function spaces are omitted. See Ebin and Marsden [1970)
for what is needed. The velocity fields are at least C'.
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convenient than the standard fluid mechanics formulation (5.3). This observation
will be crucial later on. '
(b) The balance of momentum is described by Newton’s second law: the rate of
change of momentum of a portion of the fluid equals the total force applied to it.
Since we assume that no external forces are present, the only forces acting on the
fluid are forces of stress. The assumption of an ideal fluid means that the force of
stress per unit area exerted across a surface element at x, with outward unit normal n
at time ¢, is —p(x, ¢)n for some function p(x,¢) called the pressure. With this
hypothesis, the balance of momentum becomes Euler’s equations of motion

do
o

with the boundary condition v||d€2 (no friction exists between fluid and boundary)
and the initial eondition v(x,0) = vy(x) on §.

(c) The kinetic energy of the fluid is % fyp||v]|* dx. The assumption of an isentropic
fluid means that the internal energy of the fluid is [gow(p)dx and p = p*w'(p)
where p’(p) > 0. These hypotheses imply that the total energy, which should be the
Hamiltonian of the system, is conserved.

The configuration space of this problem is ), and so the corresponding phase
space is T*. For n € ) we have T,0D = (V,: & - TQ|V(X) € T, x,2} and T}D
= {a,; - T*Q® N(Q)|a(X) € T} 5,2 ® A%(2)}; the pairing between the
velocity ¥ in 7,9 and the momentum density a in the dual space T*C) is

<a,V>=an(X)-V(X).

For later use, we shall express the energy on T*9) by passing to material coordinates.
Let V,(X) = dn(X, t)/dt be the material velocity. Then ¥V, = v, © 7,, showing that ¥,
is not a vector field but an element of TT'GD The metric on £ and the density
po( X)dx establish an isomorphism of T7,6D with T*% given by V,(X) > a,(X) =
po( X )V"(X )dX where h: TQ — T*Q is the bundle isomorphism induced by the
metric on . Finally, D has a smooth metric defined by

(Vo W, )) 0 = [F(X) - W (Xpo( X) dX

which determines a length function on T*%), denoted by || ||.
To apply Theorem 3.4 directly, use a simple change of variables to express the
energy on T*9) as

(5.4) +(v-v)o= —le

(53) Hy o) = gl + [ po(X0w (ool X)55(x)) .

H, clearly depends smoothly on p,, and again the change of variables formula
shows that it is right invariant under the action of the subgroup

Dy, = (¢ € Dlog = (pg 0 ¢7') )

where J, denotes the Jacobian of ¢. This shows that we should work with the density
po( X)dX and not with the function p,, and consider the representation of % on
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() to be the push-forward, i.e. (n, f) — 1, f. Then the induced left representation
on %(Q)* = densities on £, is again push-forward and

D, = {6 € Do, (0o X)dX) = po( X)dX}.

Let S = 9 X () be the semidirect product of %) with %({) by the push-forward
representation and 8 = ¥ X ¥ () its Lie algebra. By Theorem 3.4 for right invariant
systems the family of Hamiltonians H, determines a unique Hamiltonian system on
3% IfM = (T,R,)*a, € T*%) = x* = one-form densities, for every W € X,

(MW)= [a,(X) - W(n(X)dx = LX)V (X) - W(n(X)) dx

= /Qp(x)v(x) - W(x) dx,
i.e. M = p(x)d"(x)dx. Thus the Hamiltonian H on 8* has the expression

H(M7 p(x)dx) = H((TeRn)*an’n*(pO(X)dX))

= Hy(a,) =5 [P o( e + [o(xw(o)(x) d

which is the physical energy function. Thus, identifying M with the momentum
density M(x) = p(x)v(x) and p(x)dx with p(x), the physical energy function

H(M.p) = 5 [ TS IMCI e+ [p(x)wp)(x) d

defines Lie-Poisson equations on (X X F(Q))* ; we shall determine them later on.

We now apply Theorem 3.4 backwards. Start with the configuration space ), the
physical energy function H(M, p), conservation of mass (5.3), balance of momentum
(5.4) and p = p*w’(p). Notice that (5.3) is equivalent to L(p(x)dx)=0, ie.
n*(p(x)dx) = py( X)dX, for p, the initial mass density. Hence, the dual of the
representation space is the space of densities, i.e. the representation space is F(£).
Moreover, 1,.(po( X)dX) = p(x)dX shows that the induced left representation % (£2)*
is push-forward, so that, by the general formula on the evolution of the parameter
a € V* in Theorem 3.4, the representation of %) on % (&) is also push-forward. We
now identify M with M and p(x) with p(x)dx, so that the physical energy function
H(M, p(x)dx)_is defined on %* X %(Q)*. Since H(M, p(x)dx) = H,(a,) for
(T,R,)*a, = M, 1,(po(X)dX) = p(x)dx, and H, is right invariant under 9, ,
Theorem 3.4 for right invariant systems can be applied yielding Lie-Poisson equa-
tions on 8* .

Having seen how Theorem 3.4 was applied backwards in the heavy top problem
and in ideal compressible hydrodynamics, let us make some general remarks. In
many examples one is given the phase space T*G, but it is not obvious a priori what
the space V and the representation p should be. The phase space T*G is often
interpreted as ‘material’ or ‘Lagrangian’ coordinates, while the equations of motion
may be partially or wholly derived in ‘spatial’ or ‘Eulerian’ coordinates. This means
that the Hamiltonian might be given directly on a space of the form g* X V*, where
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the evolution of the V* variable is by ‘dragging along’ or ‘Lie transport’ i.e. it is of
the form ¢+ p*(g(¢))a for left invariant systems (or ¢+ p,(g(¢))a for right in-
variant ones), where a € V* and g(¢) is the solution curve in the configuration space
G. This then determines the representation p and shows whether one should work
with left or right actions. The relation between H and H, in the theorem uniquely
determines H,, which is automatically G, -invariant, and (3.1) and (3.2) give the
corresponding Lie-Poisson bracket and equations of motion. The parameter a € V*
often appears in the form of an initial condition on some physical variable of the
given problem.

Let us now return to ideal compressible isentropic fluids. To write the bracket and
the Lie-Poisson equations explicitly, note first that the induced Lie algebra represen-
tation p”: X — End(%F(Q)) is given by p’'(v)f = —-L_f, where L, is the Lie derivative.
To see this, denote by 7, the flow of v and obtain

) d
p(v)f=;tr WP

(1= G| =% sen.=-arte)= L

The bracket is thus given by (3.1):
0F 6G 0G O0F
{F.G} (M, P)_fM [8M 8M]dx LP(LSF/SMTS; "Lsc/mwg)d)ﬁ

But the left Lie bracket on X, which shows up in the first term, is minus the standard
Lie bracket of vector fields (Abraham and Marsden [1978, example 4.1G}), so this
becomes explicitly

s e nn = [ (( o) (o) 25

0G O0F OF 0G
els (o) a - (75)) o
This bracket agrees with that of Morrison and Greene [1980]. From the Lie-Poisson
equations F = {F, H } . we can obtain the equations of motion directly by choosing
F= [M,dx, [M, dx, [M;dx, [pdx; the last one represents the equation of continu-
ity and the first three the balance of momentum. We can also get the same result by
using (3.2) directly, but with more computations. For example, the term p’(8H /8p)*a
corresponds to div M, as an easy integration by parts argument shows, so that the
second component of X, on $* yields p = —div M, which is the continuity equation.
REMARKS. (1) In the same manner, one can treat the case of an incompressible
mhomogcneous fluid. The semidirect product in question is now %, X (), where
. denotes the volume preserving diffeomorphisms of §2. For thc technical details
regarding the correct choices of function spaces, see Marsden [1976].
(2) We can also allow o, the entropy per unit volume, to be variable. The
thermodynamic equation of entropy advection

(5.7) %o div(gM) =0
ot p
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has to be added to the compressible fluid equations. In addition, the internal energy
is w = w(p, 6) and the pressure is p = p*(dw/dp + (o/p)dw/d0). Thus our system
of partial differential equations is (5.3), (5.4), (5.7) with Hamiltonian (5.5) for
w = w(p, o).

In our framework, this system is Hamiltonian on the dual of the Lie algebra of
) X F(Q) X F(R), where D acts on F(2) X F(2) by push-forward in each factor.
Hence, the bracket is given by (5.6), to which the term

8G OF oF 8G
58) Jol(5 - 7)56 ~ (anr - ¥)5e) &=
has been added. In this way F = {F, H}, for F = [M,dx, (M, dx, (M, dx, [p dx,
fo dx becomes the system (5.3), (5.4), (5.7). One can also see the form of the
Lie-Poisson equations directly from (3.2) by remarking that the term p’(6H /8u)*a
corresponds to (div M, div(ocM /p)).

We now determine the Clebsch variables for the isentropic flow. It is tempting to
use the simplest formula (4.2), but as we shall see below this corresponds to
M = pv, i.e. the flow is required to be potential. Thus we choose the next simplest
one given by (4.1). This is a map J: F(2) X F(Q)* X F(2) X F(Q)* +> 8* given by
J(fs a, g B) = (pf*a + p;*B, B). As before, we identify the density adx with the
function a, and use p'(v)f = -L,f = -Vf - v, so we get {p/*a,v)= —[aV[ - vdx;
i.e. regarded as a vector field, p/*a = —av/f. Thus

J(f,d, 8 B) = (—an_ ng, :B)

Now denoting f = —p, g = —¢, a = A, B = ¢, this Poisson map becomes

(5, A, ¢, 0) > (Avp + pve, p) = (M, p) .
Hence, we recover the classical Clebsch representation
M = Avu + pVo.
The Poisson bracket of two functions F, G is minus the canonical one because
f=-ng= -9 ie
0F 6G  O0F &G 8F 6G  OF 6G
(o) =[S 5 non) (5 50— 5 50 )|
In the variables (u, A, ¢, p), the compressible fluid equations (5.3) and (5.4) take the
canonical form

\_OH . eH oA . oi
8“3 ’J‘ (SA’ p= 8¢, ¢_—8p
where H(X, p, ¢, p) = H(AVR + pVé, p) with H given by (5.5).
If variable entropy is included in the equations, the Clebsch variables are
determined by formula (4.3), i.e. we get the classical representation
M = AVp + pVé + 0V

C. Magnetohydrodynamics of an ideal compressible perfectly conducting fluid. We
keep the same hypotheses and notation as in Example B but, in addition, we assume
that the fluid consists of charged particles in a quasi-neutral state. The configuration
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space remains %), and conservation of mass is unchanged. In the balance of
momentum law, one must add the net Lorentz force of the magnetic field created by
the fluid in motion. In addition, the hypothesis of infinite conductivity leads one to
the conclusion that magnetic lines are frozen in the fluid, i.e. that they are
transported along the particle paths. If p is the mass density, v the spatial velocity,
M = pv the momentum density, and B € A?(Q) the magnetic field regarded as a
two-form, then the equations of motion are

_ 3 [ MM,
=S (T -

p
p+divM =0ie. pdx + L(p(x)dx) =0 and B+ L,B=0

L) - 30,8,
k

where p = p?w’(p) is the pressure and L, the Lie derivative. The last equation just
says that B is “frozen” in the fluid. As before, the initial mass density p, is given. In
addition, the initial magnetic field B, must now be specified. The energy of this fluid
is given by

(59 HM.p.8) = 5 [V gt [o(opmlo)() dx + 5 [ B s

where ||B||?> = B}, + B}, + B%. Since the last two equations of motion are Lie
transport equations, the pattern of the previous example shows that the relevant
semidirect product is S = ¢ X F(Q) X A(R), where D acts on F(2) X A(Q) by
pushing forward on. each factor. The Lie algebra is 3 = X X F(Q) X A(), and its
dual is 8* = &* X F(Q)* X A%(Q), the pairing between a« € A/(R) and B € AX(Q)
being (@, B)= fga A\ B.

To H(M, p, B) there corresponds the Hamiltonian

HPmBo(aTI) = %<<a‘n’ an>>+ _/QPO(X)W(pO(X)Jn_l(X)) ax

1 2
+3 [ (nBo e m)(x)| 7y x) ax
on T*d) which is right invariant under the action of
GDp(, By {‘75 € D|p, = (PO ° ¢ ) 51> PuBy = Bo}

Thus, Theorem 3.4 for right actions applies, and we conclude that H(M, p, B)
defines Lie-Poisson equations in 8* = (X* X F(2)* X A*(Q2)), . Recall again that
X has the left Lie bracket which is minus the usual one. The semidirect product Lie
group is § = D X F(2) X A(Q) where D acts on F(2) X A'(R) by push-forward.
As in the previous example, X acts on F(2) X A'(2) by minus the Lie derivative on
each factor. The variables (M, p(x)dx, B) € 8* are of the following geometric type:
M(x) = p(x)vP(x)dx € ¥* is a one-form density, p(x)dx € F(2)* is a density,
and B € A\()* = AX(Q) is a two-form.

To write out the Lie-Poisson bracket (3.1) of two functions F, G: % — R, we
again identify M(x) with M(x) = p(x)v(x), p(x)dx with p(x), and proceed as in
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the previous example. We get
0F 6G 0G OF
{F.G}, (M, P,B)—fM [SM SM]d _f (LSF/8M6 LSG/&Msp)dx

0G OF
—LBA (LSF/SMSB LSG/BMSB)

The first two terms coincide with (5.6). To bring the third term into a more familiar
form, identify B € A*(Q) with the vector field B = (B,, B,, B;) by B, = B,
B, = B;,, B, = B,,, and identify a one-form @ = a;dx' + a,dx? + a;dx> with the
corresponding vector field (a;, a5, ). A straightforward computation shows that

8G _ SF\ & [8G 8G\ 9 (8F
B/ Lorsswsp B”[(SM) 5%, (55), (ﬁ),ax3(6M”dx'Adx2Adx3
0F\ 0 (6G G\ 9 (OF
”ﬂ[(w),a—x,(a—a)ﬁ(a—B),a;(W),]dxlAdwdxs

+Blz[(8—F) d (S_G)l +(8_G) i(s—F)] dx, A dx, A dx,s

oM /,dx,\ 6B 0B ), 0x, \éM /;
B 8F _\8G 8F\ G
-5 [(SM V)8B+( SM) 83]‘1"1/\””‘2/\‘1"3

by identifying the one-form 8G /8B with the corresponding vector field with compo-
nents (8G/8B),, (8G/8B),, (8G/8B),. The Lie-Poisson bracket thus becomes
_ oG OF OF 8G
(5.10) (F.G}.(M.p.B) = [M- [(SM 3~ (3 ) oo
6F oF oG
oo (5] vt (5 )]
0F OF oG
+LB'[(W ' )83 (W 'V) aB] &
8G oF 8F oG
+fB [( SM) 3B (VW) ' ﬁ] dx.
This bracket coincides with the one derived by Morrison and Greene [1980], Holm
and Kupershmidt [1982] and Morrison [1982]. With respect to this bracket, the
equations are in Lie-Poisson form F = {F, H}, . The equations of motion are
obtained by putting F = (M, dx, [pdx, (B;dx,i =1,2,3.

If entropy is variable, equation (5.7) must be added to the magnetohydrodynamic
equations, where w = w(p, ) and p = p?(dw/dp + (0/p)dw/dc). The Lie-Poisson
bracket for this case lives on the dual of the Lie algebra of 9 X F(2) X A(Q) X
%(R), the action of % being push-forward. The bracket has the expression (5.9) to
which (5.8) is added.

To obtain the Lie-Poisson description of the magnetohydrodynamic equations

when divB = 0 and B = curl 4, we proceed in the following way. There are two
obvious group homorphisms:

|
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projection
on last
facto

F(Q) X AY(Q) N, PO F(Q2) X (A‘(Q)/exact one-forms)

exterior
derivative
on last
factor

F(Q) X AX(Q)
Dualizing the induced Lie algebra mappings, we obtain Poisson maps
X* X F(2)* X A(2) - £* X F(2)* X {a € A*(Q)|da =0}
- X* X F(Q)* X A(2).
In this way we obtain the Lie-Poisson formulation for magnetohydrodynamics in
physical variables (M, p, B), with divB = 0 (variables: M, p, B), or with a mag-
netic potential (variables: M, p, 4, for B = curl 4). For the case divB-= 0 the

bracket is still (5.10), whereas for the case B = curl A4 the same bracket takes the
form

5G 8F (8F _\ G
{F.G}, (M, P,A)—fM [(SM V)a—M —(8—1‘? 'V)sM]dx
8F SF 8G
+f [ 8p W'(VSP)}dx
8F _ G 6G _ OF
( M 84~ S_M)d

OF O0F\ 6G
(v 50 am (v 52 ovg)
where we identified the one-form A with the vector field 4 = (4,, 4,, 45). If
variable entropy is present, the term (5.8) is added to the bracket.

To find the Clebsch variables for this problem we use formula (4.2), i.e. J:
F(Q) X F(2)* X AY(2) X A*(Q) - 8* is given by

J(f,a,C,B) = (pf'f*c(a, B),a, B) =(M,a, B).

+/(v><A)

To compute the term pf-(a, B) we relate B with B, and C with C. Then integration
by parts yields, for v = (v, v,, v3),

pic(a, B) - 0= ((a, B), p'(0)(f,C)) = ~((e, B),(L,f, LC))

~[avf-vdx— [BALC

Q Q

Z—favf-vdx—fB-[(v-V)C+(Vv)-C] dx
Q Q

Z—/Qavf-vdx-i-/Q[C(V “B)+ (B-v)C— (VC) - B] - vdx
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so that pf-(a, B), regarded as a vector field, equals
pf’j"c(a, B)=-vf+C(v-B)+ (B-v)C— (vC)-B=M.
If we change to the variables a = p, f = —¢, C = —T we obtain the representation
M=pv¢+(vl)-B—T(v-B)— (B-v)T
found by Morrison [1982]. The bracket is these variables is minus the canonical one,
ie.

_ (= (8E3G _9F3G  OF 8G _ OF 3G
{{F,G}}(qb,p,T,B)—fQ—(spaqs 56 % | OB oT o SB)dx

With respect to the Hamiltonian
H(¢,p,T, B)=H(pvo + (VT)-B—T(v -B)— (B-V)T,p, B),

the equations of motion for magnetohydrodynamics become the canonical Hamilton
equations

p=0H/8¢p, ¢=-0H/8p, B=06H/ST, T=-8H/OB.

If variable entropy is present, one uses formulas (4.3), which amounts to adding
the term 0V to the representation of M above.

D. Elasticity. The mathematical framework for the deformation of a body in space
is the following (Marsden and Hughes [1983]): (%%, G) and (S, g) are smooth,
oriented, Riemannian manifolds representing the body and space; the configuration
space C consists of the embeddings (not necessarily isometric) of % in 5. We shall
assume here that % = & = R®, deferring to a future paper the more realistic case of a
compact body with smooth boundary. In the present situation, € may be identified
with the group of diffeomorphisms of R®.

For a given mass density function p,, the volume element of D is py( X)dX, where
dX is the Riemannian volume defined by the metric G. The kinetic energy is

H(a,) = 3 [ DK ax

where a,(X) = po( X )Vg( X)dX, and p: TD — T*D is the bundle isomorphism
induced by G. We shall postulate a potential energy of the form

V(9) = [ 6 W(2, 6,6)(X)po(X) dx

where W is the stored energy function and ¢,G = b is called the Finger deformation
tensor. (Usually, W is regarded as a function of G and C = ¢*g the Cauchy-Green
tensor, but the present description, which is equivalent for isotropic materials, is
more convenient for our purposes. A similar formulation in which W depends on C
and G can also be given.) With respect to this Hamiltonian, the equations of
elastodynamics are Hamiltonian on 7*C. From now on we shall deliberately identify
B =95 =R C=DPR®); for the choice of the correct function spaces, see Hughes,
Kato and Marsden [1977].
Let us prove that the potential energy is right invariant under the stabilizer

D, = {1 €DR)|py= (poon"') ], 7.6 = G}.
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The change of variables Y = n( X) gives dX = J,-1(Y)dY so that
V(gpon) = f%n*¢*W(g, $,1,G ) (X )po( X) dX

= [0 W(5.0.8)¥)(po > 17 )(¥)(po > 1) (V)ja(Y) aY
= V(¢).

In a similar way, it is shown that the kinetic energy is right invariant under this
stabilizer.

To apply Theorem 3.4 for right invariant systems, we need to find a left
representation of ®)(R*) on a vector space whose dual should include the densities
and the Riemannian metrics on R®. The space of Riemannian metrics is an open
cone in the vector space S,(R?) of all covariant (indices down) symmetric two-tensors
on the body R*. Thus ¥ must be F(R®) X S%(R?), where S%(R?) is the vector space of
contravariant (indices up) symmetric two-tensors on R%; its dual space is F(R*)* X
S, 4(R*), where S, ,(R®) is the space of covariant, symmetric two-tensor densities.
The pairing between S*(R’) and S, ,(R®) is given by contraction on both indices,
followed by integration over the body R® with respect to the standard Euclidean
measure. The action of D(R?*) on F(R®) X S2(R?) is push-forward; thus, the induced
action on the dual will also be push-forward. Theorem 3.4 can now be applied since
the Hamiltonian K («,) + V(¢) depends smoothly on p, and G. Thus, we get the
equations of elastodynamics in R as a Lie-Poisson system on 8* , where 8 is the Lie
algebra of the semidirect product group & = D(R*) X F(R®) X S%(R?). The density
p and deformation strain b are obtained from the initial density p, and metric G by
push-forward, i.e. p(x)dx = ¢,(py(X)dX), and b = ¢,G. The corresponding ele-
ment of S, , that is used is B = b ® pdx.

The bracket on 8% for F, G: 8* — R is given by (3.1), i.e.

0 1= [ (56 o) (o).
“[o]ae (vi—fi’) g (V5]

OF
fP ( Lar/sM SB LSG/SM 5B ) dx;

note that here §F /8B and 8G /6B belong to S*(R®), the dual space of S, ,(R).

As in the previous examples, one can consider, as well, the case of variable
entropy. Clebsch representation can be found for this problem by formula (4.1); the
momentum density M will have a quite long expression involving indices, since b
has six components. A related construction for elasticity, starting with Clebsch
variables and using different physical variables, was given by Holm and Kuper-
shmidt [1982]. As they pointed out, the mapping (M, p, B = b ® pdx) — (M, p, C
® pdx) where C is the Cauchy-Green tensor (their e) defines a canonical map
between our bracket and theirs (formula (88)).
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6. Semidirect products in electromagnetic coupling. In Marsden and Weinstein
[1982a], two realizations of the reduced space for the Maxwell-Vlasov equation were
given. The Poisson brackets for these two realizations are reproduced here:

6.1)
(F,G)}(f,E,B) = ff{SF 6G}az do+/(— ard8 — 36, 15F)d

5 8f 8B oE " oB
E.EZS_G__S_G.QLSE)
f(sE 90 3f _ SE avof)

d0 OF d 6G
+ffB('a—l—)‘(vXa Sf)dxdv

) )
(6 2) {F G}(fmom’E B)_ ffmom{6fnimy Sf"im}dxdp

T LA

[fmem( ap afmom )(iA ! dlv%—E—) dx dp

ffmom( P 8fmom ) (A‘ dlvg_E) dx dp]

The bracket (6..1) arises from a direct and natural identification of the reduced space
with the space of plasma distribution function f(x, v, ) in position-velocity space,
and electric and magnetic fields. In the second case a gauge condition divAd = 0 is
chosen and the distribution function is regarded as a function of position and
momentum f_ . (x, p, t).

One can see directly that the first, third and fourth terms of (6.2) correspond to
the Lie-Poisson structure for the semidirect product % X 8 where U is the abelian
Lie algebra of vector potentials 4 and 38 is the Lie algebra of functions under the
Poisson bracket. The action of % on § is by (4, f) > {¢, f}, where ¢ = A™! div4.
One reason this second representation (6.2) is useful is because, unlike f, £ .
evolves in 8* along a coadjoint orbit; i.e. by composition with canonical transforma-
tions.

In this section we give an abstract construction which includes the above observa-
tions about the bracket (6.2) as a special case.

The bracket (6.2) can be constructed using ideas from Sternberg [1977]. He
constructs a certain symplectic quotient space using a connection on a principal
bundle. In Weinstein [1978] a reduced space independent of any choice of connec-
tion is constructed, which is symplectically diffeomorphic to Sternberg’s space. (See
Marsden [1981, pp. 35-37] for an account.) In fact, (6.2) is essentially Sternberg’s
version of the bracket with the connection given by the choice of gauge. The main
result of this section says that for reductions by abelian groups, Sternberg’s bracket
is a semidirect product bracket plus a canonical bracket. We shall give a new
application to multifluid electrodynamics below. We emphasize that, apparently, this
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semidirect product structure arises for quite different reasons from those considered
earlier in this paper.

We use the following notation for the abstract result. Let A and G be vector spaces
and

D:§->U and P:A-G

be given linear maps with P o D = id. (For U the space of vector potentials, § is the
space of gauge transformations ¢ and D(¢) = d¢, while P(A4) = A™'84 is the map
associated to Hodge projection.) Let 8 be a Lie algebra and R: § — Aut(3) a
representation of § as an abelian group on 8.

Now § acts on A by ¢ - 4 = A + D¢ and the induced action on T*Y = A X A*
is¢-(A,Y)=(A + D¢, Y) with momentum map (4, Y) — D*Y. For p € §*, the
reduced manifold is

(6.3) (T*%), = A/D(8) X (D*)"'(p),

the identification being induced by the map (4,Y) ((4],-Y) = (B, E) where
[4] = B is the equivalence class of A. As in the case of Maxwell’s equations treated
in Marsden and Weinstein [1982a], the bracket on the reduced space (6.3) is readily
computed to be

(6.4) (F,G}(B,E) = <[%§‘}g>_ <[%%]2_§>

Consider the manifold T*9 X 3* with its bracket

' _ [ 8F oG 8G OF 0F &G
We are interested in reducing 7*9 X 3* by the induced § action; the action on T*%(

is as above and the action on 8% is ¢ - p = R, (¢) - p = p o R(- ¢). The induced
momentum map is

(6.6) J: T*Y X 8% - G*, J(A,Y,p) = D*Y + J,(p),
where J, is an equivariant momentum map for the action of § on 8* .

6.1. THEOREM. Let p € 8*. The reduced manifold (T*% X 8% ), is Poisson diffeo-
morphic to

(6.7) P={(B,E,p) EA/GXA* X 8% |D*E = J,(p) — p}

where P has the following Poisson structure:

(6.8) (F,G)(B,E,p)= <[g—§ ,%%>— <[§—§]§§>

(i )+ {5 55)
{mcwen(38) 5).

The first two terms of (6.8) coincide with (6.4), the reduced bracket on (T*),, while
the last three terms coincide with the Lie-Poisson bracket on the dual of the semidirect
product Lie algebra A X 8 with A acting on 8 by R’ o P.
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6.2. REMARKS. This result can be generalized to the following setting, appropriate
for Yang-Mills fields: § is a Lie group with Lie algebra g, A is an affine space based
on the underlying vector space %, and § acts on U. This action is assumed to be by
affine transformations, so embeds g - A by amap D: g > U. Let P: A - g be a
projection map and p € g*. Then

P={(B,E,p) EA/GXA* X 8% | D*E =J(p) — p}

and the formula (6.8) still holds. Here R: § — Aut(3) is a (nonabelian) group
representation and R’: ¢ — Der(3) is the induced Lie algebra representation.
PROOF OF 6.1. Define the map ®: J~'(p) C T*U X 8% — P by

®(A,Y,p) = (B, E, R(P(A4))*)
where B = [A], E = -Y. Note that the image lies in % since
D*E — J(R(P(A))*k) = -D*Y — J(n) = J(4,Y, ) = -p
by equivariance of J,. (The map @ is closely related to the map between the
Weinstein and Sternberg spaces discussed earlier.) Now @ is § invariant:

©(A + D¢, Y, R(¢),u) = ({4 + Dg], E, R(P(4 + D$))*R(¢),p)

= ([A], E, R(P(A) + $)*R($),n)
= ([4], E, R(P(A4))*n) = (4,7, p).

It is readily checked that the induced map from J'(p)/8 to @ is a diffeomor-
phism. To compute the Poisson structure on %, let F,G: ¥ — R and let F,G:
J'(p) » R begiven by F= Fo ®, G = G o ®, extended off J'(p) in an arbitrary
way. By a straightforward computation using the chain rule, one finds that at
(4. Y, p) €EJ7(p),

8F _ &F 8F _ 8F
W _—'EE’ 8,“. _R(P(A)) 81’,

(6.9)

where B = [A], E = -Y and v = R(P(A))*u. Substitution of (6.9) into the bracket
(6.5) for {F, G} yields (6.8). W

6.3. ExaMPLES. A. The Maxwell-Vlasov bracket (6.2) is a special case of (6.8) by
choosing [ to be the one-forms (vector potentials) 4 on R?, § the functions ¢ on R®
and 8 the functions f on R® with bracket {f, g}. The map D is ¢ - d¢, P(A) =
-A"'(divA) and (R(¢) - f)(x, p) = f(x, p + do). Clearly R'(¢) - f = {¢, f}. Thus
(6.8) reduces to (6.2).

In this case, observe that each of the last two terms of (6.2) have the form of a
tangent vector to a coadjoint orbit on $* unlike (6.1). Thus in (6.2), f., €volves in
such a way that it remains on coadjoint orbits in 8% .

B. Next we consider the case of the Euler-Maxwell equations (multispecies fluid
electrodynamics). We reproduce the bracket here from Spencer [1982] and Marsden,
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Weinstein, Ratiu, Schmid and Spencer [1983], with the entropy and species label
suppressed only for notational simplicity:

(6.10)
(F,G}(M, p, E, B)—/M [(g‘i )%—(fﬁ )TGI]

G SF SF
oo (v5) — o (75

OF 6G 6G SF
+f(-— cu IEE——SE rlﬁ)dx
0F OG 86G OF oF G
= [ 3 - 3+ B (e X g ) e e

where a is the charge to mass ratio of the particles. This bracket arises by reducing
the canonical bracket on (X X %)* X T*U (compressible flow plus electromagnetic
potentials) relative to the gauge group of electromagnetism. The unreduced variables
are (N, p, A,Y) where N is the fluid momentum density, related to the velocity
density M by M = N — apA. In the derivation of (6.10), NV gets mapped to M by the
reduction procedure. However, if we use the bracket (6.8), the identification of the
reduced space is different and N remains. Here, A, 9, P and D are as above, while
8 = X X %, carrying the bracket (5.6) with M replaced by N. The representation R is
given by

R(¢) - (N,p) = (N + apd¢, p).
Observing that R'(¢) - (N, p) = (apd¢,0), we find that (6.8) becomes

OF 8G 0G OF
(6.11) {F,G}(B,E,N,P):f(ﬁ IS—B—EE‘C la—B)d

P ECA 4

N 6N ON ON
8G OF OF 8G
+f”[8_N’(V%) 3N (VSP)]""
3G 486 g g OF
+fN [a—dA dV8E a8 dA ' div 8E]dx'

In this momentum representation, the last two terms of (6.11) represent the
fluid-electromagnetic coupling. They are different from (6.10) in that now the (X, p)
equations are modified merely by adding a Lie derivative to the p equation. Thus,
(N, p) evolve in such a way that they remain on coadjoint orbits in (X X ¥ )* . This
is consistent with the corresponding result for plasmas in view of the fact that
(fooms E» B) and (N, p, E, B) are related by a map induced from a naturally
constructed momentum map (Marsden, Weinstein, Ratiu, Schmid and Spencer
[1983, Theorem 10.3]).
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