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Sumrary

We focus on the seemingly complicated dynamics
of a four-machine power system which is undergoing
a sudden fault. Adopting a Hamiltonian (energy) form-
ulation, we consider the system as an interconnection
of (one degree of freedom) subsystems, Under certain
configuration (a star network)and parameter values
we establish the presence of Arnold diffusion which
entails periodic, almost periodic, and complicated
nonperiodic dyanmics all simultaneously present; and
erratic transfer of energies between the subsystems.
In section 1 we introduce the transient stability
problem in a mathematical setting and explain what our
results mean in the power systems context., Section 2
provides insights into Arnold diffusion and summarizes
its mathematical formulation as in [8], [1]. Section
3 gives conditions for which Arnold diffusion arises
on certain energy levels of the swing equatioms.
These conditions are verified analytically in the case
when all but one subsystem (machine) undergo rela-
tively small oscillations.

1. Introduction

Transient stability of a power system describes
the dynamical phenomena caused by a sudden fault
(such as short circuit) or a large impact (such as
lightning). It is precisely the Lyapunov stability
in a state space formulation of a simplified differ-
ential equation model (called the swing equations)

which possesses multiple equilibria: §=f(x). Let L

be a stable equilibrium point of this model which is
presumebly 'closest" to the prefault equilibrium point
(see [4],[11}). The transient stability problem is to
determine whether or not a given point in the state
space belongs to the region of stability of the

stable boinf L This translates the transient

stability problem to one c¢f investigation of the
region of stability of a given stable equilibrium
point (See [6,7,9] for simulations).

The swing equations: We write the swing equations

model of an interconnected power system., We assume
zero transfer conductances of the reduced network
(or assume a generator connected to each node).

(1.1.1)
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where Si and w, are respectively, the angle and the

velocity of the rotor of the ith machine; wR is a

constant reference velocity, usually (271.60 rad);
sec

Mi (Di) is the inertia (damping) constant; Pi (: =

2
Y 4 : . /: =
P, - Gi.E., is the exogenous power input; Y.j (¢ =

EiEjYij) is the maximum real power transferred be-
tween nodes i and j (For details of derivations and
notation,refer to [3].). The damping constants Di

are known to be very small. As often done in the
analysis of transient stability, we set them to zero,

i.e., Di = 0.

Equations (1.1) (1.2) describe an n-degree of
freedgm Hamiltonian system with a known energy function
n -

) )
Tugdt m iy By 8yt iey Yy

cos (éi - éj).

In the power systems literature the analysis

of the transient stability had focused on utilizing
this energy function. Most of these Analyses [3,6,7,
9] draw inisghts from analeogies to the 1 machine - =
bus case (or equivalently the equal area criteriom).
Moreover, in [6], [9], an estimate of the stability
region is produced in the S-space (i.e. angle space)
only.,

The essence of our contribution, as those of [10],

are to refute in certain cases the analogies to the

1 machine - = bys, and prohibit the use of other than
the tomplete state space (i.e. &-uw space). This is
so since the dynamics of (autonomous) determinjstic
differential equations of dimensions higher than 2,
can exhibit complicated behavior (see [1], for
instance). Indeed, Kopell and Washburn [10] showed
that (horseshoe) chaos, i.e. unpredictable behavior
of trajectories, is present is a 3-machine power
system under certain configuration and parameter
values. The 3-machine case describes a two-degree of
freedom system.

Another form of known complicated behavior is
Arnold diffusion which entails complex nonperiodic
unpredictable trajectories and, moreover, erratic
transfer of energies between interconnectioned
degrees of freedom (subsystems)., Here we show that
Arnold diffusion arises in the interconnected 4~
machine case (For the n-machine case, n>4, and tech-
nical details, see [2].). This case describes a
3-degree of freedom system, The specific configura-
tion of the power system yielding Arnold diffusion is
shown in fig. 1, with the noted relative parameter
ranges. In the case of 3«machines, this configuration
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produces chaos, This is analogous to that of [10]
except that it focuses on energy levels of the
whole system, i,e, a Hamiltonian approach, and it
explicitly considers the dynamics of the reference
machine (machine 4), see section 3.

Fig- 1. A y.machne network. (d smail

In the context of power systems, we summarize
what the presence of Arnold diffusion implies: (1)
analysis cannot be based on analogies to the one
machine-= bus case which is an autonomous two-
dimensional system and hence does not exhibit com-
plicated behavior. (2) It raises questions about
the adequacy of the model. Does a physical power
system of the same configuration as figure 1, exhibit
complicated dynamics in the form of chaos or Arnold
diffusion? (3) If the model is indeed adequate, then
the conclusion of our result leads to new design
constraint on the parameter ranges and the config-
uration of the interconnected power system. (4)
Transient stability analysis cannot be conducted in
the angle space, i.e. é-space, alone as in [6,9].
The complete dynamics can be understood only in the
whole state space, i.e. d-w-space.

2, Arnold diffusion

Arnold diffusion (see [2] e.g) is a self-gener-
ated "stochastic" motion that can occur in near-in-
tegrable (i.e. weakly coupled) n-degree of freedom
Hamiltonian systems where n>3. It also entails an
erratic transfer of energies between these degrees of
freedom. It, therefore, constitutes a new concept of
instability [5] - different from the stability concept
in the Lyapunov sense. Arnold [5] showed this form of
instability in a specific example of a Hamiltonian
system: a weakly coupled (i.e. near integrable) time-
periodic two degree of freedom Hamiltonian system; one
degree of freedom possesses a homoclinic orbit, i.e.a
trajectory connecting a saddle point to itself; the
second degree of freedom is a nonlinear oscillator;
and the weakly coupling term is time periodic. There
is vast experimental work on Arnold diffusion primar-
ily in the plasma physics literature. For an account
of these works, see [2]. Holmes and Marsdén [8] intro-
duced an adaptation of Arnold's result to n-degrees
of freedom, where n > 3, employing a vector-Melinkov
integrals version. We summarize their result (see
also [8],[2]): consider the(perturbed) near-integrable

Hamiltonian system a

BY (92,050 = F(a,p) + 16, (1) + 3 B (q,p8, D
i=1

(2.1)

The parameters (q,p,@,l) are canonical coordinates on
a 2(n+l)-dimensional (symplectic) manifold:q,p are
..,@n), Eé(ll,...,In) are n-vectors. F

is a Hamiltonian inthevariables q and p (one degree of
freedom), Gi is a one degree of freedom Hamiltonian in

real and ®=(®1,-

the action (Ii)—angle (Qi) coordinates, i.e., the
degree of freedom describes an oscillator. Hl is a

Hamiltonian that couples the degrees of freedom (i.e.
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Remarks:

frequencies.

a function of all variables) and u is the small per-

turbation. When u = 0, one obtains the (unperturbed)
integrable Hamiltonian system. Consider the following
conditions:

(C1) F possesses a homoclinic orbit (g(t), p(t))
connecting a saddle point (qo, po) to itself.

Let h be the energy of this orbit.

(C2) The frequencies of the oscillators Qj(Ij) =

de/de (Ij) > 0, for Ij > 0. (Notice that

Qj depends on the action Ij’ therefore the

oscillators are nonlinear.)

(C3) The constants Gj(Ij) = hj, j=1l,...,n, are chosen

such that the (unperturbed) frequencies Ql(Il),

..,Qn(ln) satisfy the non-degeneracy conditions

(i.e. dﬂj/dl. (Ij)# 0, j=1,...,n) and the non-

3
resonance condition, i.e., the equation
n
Y K.0,(I.) = 0 implies k, = 0 ¥ 1 < j<gn
B 3¢y p 5 ]

(kj are integers).

(C4) Define the Melinkov vector M(Q°) = (Ml(§°),...

ne ne o, N
M, (%)) by M (85,...0%; hyhy,..uh )

f {Ik,Hl}dt, k=1,...,0~1

-0

o e °. L= I 1.
Mn(Ol...,@n, h,h »h l).— : {F,H" }dt

.
1 n- J

-

where the integrals are, at least, conditionally
convergent [8],([2] and {} denotes Poisson
brackets. We require that the multiply 27 -
periodic Melinkov vector M(G°) has, at least, one
transversal zero, i.e., a point G° = (éi,...é;)

such that M(é°) = 0 and det [DM(0°)] # O, where
DM is the nxn Jacobian matrix of the vector M
with respect to the initial phases, 0°.

Theorem (Holmes and Marsden [8])

If conditions (C1)-(C4) hold for the perturbed
system (2.1), then, for u sufficiently small, Arnold
diffusion arises in this system.

(1) An extension of this Theorem to include non-
Hamiltonian systems of differential equations is given
in [2]. Specifically, this extension allows the
degree of freedom described by the energy function F
above to be non-Hamiltonian.

(2) Intuitively, the phenomenon of Arnold diffusion can
be thought of as a weak coupling (uH') between 2-dimen-
sional subsystems (degrees of freedom); where one sub-
system (F) has a homoclinic orbit, the other subsystems
(Gi) are nonlinear oscillators. Under the conditions

(€C2) and (C3) the oscillators survive the perturbation
u, and remain nonlinear oscillators with the same
These oscillators then act collectively
as a periodic forcing to the subsystem (F).

§3. The application to the swing equations of a 4-
machine power system.

Here we consider an interconnected power system
with the configuration of a star nmetwork (fig. 1 with-
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out the dotted lines). We require that machine (or
area) 4 to be relatively large, machine (or area) 3
to be relativelv small; and machines 1 and 2 to be
intermediate. We alsc choose appropriate para-
meters Pi and Yij and define © to be a measure

of the ratio between machine k (Mk’ k = 1,2,3) and the

large (reference) machine (Ml) [2]. The latter

machine serves to produce the coupling between the
first three machines. One obtains, after appropriate
scaling of constants, and expansions in u (see [2]),
the following Hamiltonian which describes the
dvnamics of the interconnection of the star network.

R % iz PR o8y ]
Bro= L gey 705 - ,i[cos(ui+~i) cos(_i)}
i=1
1 2 R § .
+ 1[5 Gy T fgg T ;3[cos(:3+L;) - cos(;z)]]
1 .2 F— - - e
+ J,Z[Wl + “y + g g,[un(vl + 9 + JVB)]
2
. Yooz : - « ST g -
+ . i; 5, sm(vi+_i)[ul+,2+ v3]

i
2 . . s
+ 2 u3,sin(c, + 2 P eI SeRst
* 351 ' 3 3)[

22
119, 3 + 0(2"u")

(3.1)

. ;S .8
where 5.(= &, - 27, &7
i i i i

is the velocity;

a constant) is the angle and Sy
- .S .

SRk 2 is a small
constant; and . is the perturbation parameter. The
first three terms, each, describes the dynamics of a
pendulum with constant forcing; the other terms, which
are functions of yu, represent the coupling function.
(The phese portrait of a forced pendulum is shown in
figure Z.) The first twec terms are pertaining to the

W

are constants;

rotation
separctix ,
(homoclinic orbit)<.
libration T 3
saddle
Fig.3, The phase portrait of a pendu lvm with constant
]

OI"CIHQ-

two degrees of freedom associated with the intermediate
machines (1) and (2). The third is associated with
the small machine, machine 3. It is scaled by the
(fixed) small nonzero parameter «, which serves to
guarantee that, for certain energy levels of the un-
perturbed system (u = 0), subsystem 3 possesses a
homoclinic orbit, while subsystems 1 and 2 act only

as nonlinear oscillators.

Our Hamiltonian (3.1) describes a coupling of
subsystems each of which is a Hamiltonian of a forced
pendulum. From figure 2, and by the known properties

¥ y e T Ly s e
Haltyety) = B il et '3 R

+ w3(t) . ”k(5k<t'tk)>

- w‘k(t—tk) . ;3(t) dt (3.2.b)

where the overbar denotes the variables along a homo-
clinic orbit before perturbation. We stress that these
improper integrals must be shown to exist and condition
(C4) must be verified anmalvtically, in order to prove

the existence of Arnold diffusion. When :i and =

are merely t-periodic, such an analytic verification
is not apparent. (We note though that Fourier expan-
sions may be utilized to perform the evaluation
computationally, see [2].)

In the case when machines 1 and 2 undergo small
oscillations; analyvtic proofs of the Melinkov integrals,
S0 as to possess transversal zeros can be established.

—

n this case the variables of machines 1 and 2, i.e.

')

nd ;i become sinusoidal (plus small errcor terms).

The Melinkov integrals are then evaluated to (we
relegate the technical details to [2]).

U
n
o \ = a, oLt £ i=1, 3.
i(tl t2) a;q cos 1t1 + bll sin t i=1,2 (3.3.a)
» 2
M3(tl,t2) kil gy cos(:ktk) + b3k sin (ﬁktk) (3.3.b)
where ail’ bil’ a3k and b3k are nonzero constgnts; and
il and 32 are commensurate frequencies. Let ﬂ(tl,tz) =
AR ~
[Ml’ M3] (note that we dropped MZ since we consider
machine 2 to be acting as the forcing). Thus,
:\j :'Ml G}T?)
det [DM] = :‘_t_ ey (3.4)
71 72
Y
Equation (3.3.a) has transversal zeros t?, i.e. Ml(t*,
o

t,) = 0 and aﬁl;stl (t3) # 0, such that sin (% %) =

-a
11 N
3 55 and cos (“lti) =

laj; +b]; [al, + bS]

Plug

one such zeros, tf,

¥ into (3.3.b) and obtain & t§ such
s HE\ B, LA
that q3(t ,tz)

A
= (0 and cM3/5t2 # 0. Then the pair
ét?,t%) constitute a transversal zero for the vector
Y
M(tl,tz) as seen from (3.4). Carrying out these steps,

we set M3(tf,t§) to zero, i.e.,

x 831 Byy7Pgy 2y
of forced pendulums, conditions (Cl)-(C3) of the Arnold ay, cos T.t% + b sin I t, + —————— =0
diffusicn theorem (section 2) can easily be satisfied. 3 272 32 272 [az +b2 ]/1
It only remains to satisfy condition (C4) on the 11711
Melnikov vector. After simplifications of the express- or
iocns utilizing equation (1.2), one obtains [2], { ook -
g €q ( [2] 'cos nztz allb31 aBlbll A
o . [a b.,1l =t————575— =¢C (3.5)
A F._a = ; = 32 3 [sin Dtk [az + b2 }2
.i(ti) = ix:— 3 ;i(.;i(t—ti)) © og(e) 272 11 11
_ . B . and require that
+ & - v W - % s, (T -
St 5 (8 3 () ru (G (e-r)) 2dx,
i=1,2 (3.2.a)
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3 cos Q. t#]
3. o ¢ _ 272

T 32 [b32 a321 ' ¢4 0 (3.6)
2 sin ta§

Conditions (3.5) and (3.6) have simple geometric in-
terpretation as can be seen in figure 3. Let

a(t) cos Ot
A(t) = ;o= .

b(t) sin ta

Then condition (3.6)

means that A(t) does not coincide with the point z on
the circle in figure 3. Equation (3.5) requires that
the projection of the vector (a32, b32)ton the vector

A(t),i.e., the point p, to have a length equal to the
constant [C|. It is easy to see, geometrically, that there

exist two values of t4 (in each period) that satisfy

equation (3.5) provided |C| ¢ J(a3’2, b3,1)tJ' This

latter condition is readily satisfied, and therefore

Arnold diffusion arises on certain energy lev%}s.

T hese levels are given explicitly in [2] as y'=

;lh>5,hm’nw§'ﬁ,s£ w]gy 2] B = h,for
As a closing remark we note that our result on

the presence of Arnold diffusion extends to the

configuration of figure 1, which adds weak interconnec-

tions between the subsystems, as shown by the dotted

lines.
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