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§1. Introduction
In Melnikov [1963] a method was introduced for
proving the existence of chaotic orbits in dynamical
systems. This was used by Arnold [ 1964], the paper in
which "Arnold diffusion" was discovered. The method
lay relatively dormant until it was revived by
Chirikov [1979], Holmes [1980), and Chow, et al. [1980],
In this lecture I will survey a number of recent
applications of Melnikov's method to a variety of
interesting physical situations.

There are many modifications of the basic
technique possible depending on the dimension of the
system, whether or not dissipation or forcing are
included or whether or not the system is autonomous,
However to get the basic idea, it is useful to begin
with a conservative but externally forced one degree
of freedom Hamiltonian system. After presenting
the basic theorem for this case in §2, we shall dis-
cuss the generalizations of the theory in §3 and the
various applications in §4. For additional back-~
ground and applications, see Lichtenberg and
Lieberman [1983] and Guckenheimer and Holmes [ 1983].

§2. Forced One Degree of Freedom Hamiltonian Systems

We consider an evolution equation in the plane
IR of the form

2
x = fo(x) + sfl(x,t) + 0(e) (2.1)

where f0 is a smooth Hamiltonian vector field with
energy Ho (that is, if x = {q,p), then
fo = (auo/ap, -aﬂo/aq)), fl is a smooth, time depen-
dent Hamiltonian vector field with energy Hl and
fl and H1 are T-periodic. We assume that when
€ = 0, the unperturbed system x = fo(x) possesses

a homoclinic orbit ;It)

point xo;

reference point on the orbit, then

to a hyperbolic saddle
i.e., if X(0) # %, is a convenient

0 lim x(t-t

lim x(t-t )
o tr—c

).
[ e °
There are two convenient ways of visualizing

the dynamics of (2.1). One can introduce the

*
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Poincare map Pi:IR - IR, which is the time T map
for (2.1) starting at time s. For ¢ = 0, the point

xo and the homoclinic orbit are invariant under Pg,

which is independent of s. The hyperbolic saddle X

persists as a nearby family of saddles %, for e > 0,
small, and we are interested in whether or not the

stable and unstable manifolds of the point x8 for the
map Pz intersect transversally (if this holds for one

s, it holds for all
hoxseshoes for € > 0

s). 1f so, we say (2.1) admits
(see Smale [1967], Moser [1973),

Holmes and Marsden [ 1981), Abdel-Salam, Marsden and

Varayia [1983a] and Guckenheimer and Holmes ( 1983} for
discussions of why transversc homoclinic orbits lead to
Smale horseshoes).

The second way to study (2.1) is to look directly
at the suspended system on IR? x Sl, where sl
stands for the circle, elements of which are regarded
as the T-periodic variable 0. Then (2.1) becomes the
autonomous suspended system

%

£,(x) + r—:fl(x,e) }

1 (2.2)

D

From this point of view, the curve

yo(t) (xo.t)
is a periodic orbit for (2.2), whose stable and un-
stable manifolds wg(yo) and wgtyo) are coincident.

For € > 0 the hyperbolic closed orbit Yo perturbs

to a nearby hyperbolic closed orbit Ye which has
stable and unstable manifolds w:(ye) and w:(yc). If

Wz(Ys) and Wu(YE) intersect transversally, we again
say that (2.1) admits horseshoes. fThese two defini-
tions of admitting horseshoes are readily seen to be
equivalent.

Melnikov's [ 1963] criterion for the splitting of
separatrices is as follows.

Melnikov Criterion. Define the Melnikov function by

Miey) = [; {no.Hl} dt (2.3)

where the Poisson bracket is evaluated at position
i(t-to) and time t, so the integral is taken

around the unperturbed homoclinic orbit.
M(to)

Assume
has simple zeros as a T-periodic function of

to. Then (2.1) has horseshoes.
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Proof. (Melnikov [1963], Arnold [1964]). In the
suspended picture, we use the energy function Ho to
measure the first order movement of Wz(yc) at ¥(0)
at time ¢, as € is varied.

0
x{t} are regular points for Ho
constant on x({t)

Thus,

Note that points of

since "O is
is not a fixed point.

give an accurate measure
If

s .
(xe(t,to),t) is the curve on WE(YE) that is an

and ;(0)
the values of Ho

of the distance from the homoclinic orbit.

integral curve of the suspended system {2.2) and

has an initial condition xs(to.to) which is the

perturbation of Wgcyo) N {the plane t = to} in

the normal direction to the homoclinic orbit, then
s

Ho(x

(..t ))

eltorty measures this normal distance. But

-

s
3t o(xs(t.to)) de

s s .
Ho (xs('r, t:o) )-Ho(xe(to,to)) = f:
0
{2.4)

From (2.4}, we get
s s
H T,t - H
o (X (T E1) - H {x (€, )

_ S
= E {uo,no * z-:nl_}(x (t,to,t) dt (2.5)
(]

. s -
Since xs(T.to) is g-close to x(t-to) {uni formly
as T 4w, and A + ety (xe(t,to),t) +0

exponentially as t + 4o, and {HO,HD} =0, {2.5)

becomes

S
Ho(xs (:0. to) }

s
Ho(xe(T,to))

- 2
£ j: {uo.ﬂl}(x(L-to.t)at + 0(e%) (2.6)
0

Similarly,
u u
Ho(xe(to,to)) -HO(xE(—s,tOJ)
£
0 - 2
=g J-s {uo.Hl}(xtt-to),t) at + o(e")

(2.7)

. .
Now xe(T,to) T Yo, @ perjodic orbit for the per-
turbed system as T - +o, Thus, we can choose T
s u

d S h that H - -
an suc a o(xE(T,to)) Ho(xe( s,to)) -+ 0
as 7,8 +~®, Thus, adding (2.6) and (2.7), and
letting T,S + @, we get

u s
Ho(xs(tO,COJ) - Ho(xs{to.to))

= ef {ao,ul}&(t-to) S£) at + o(ez)

(2.8)
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has.a simple zero in time

s
o' has xetto.to)
transversally near the point ¥%(0)

It follows that if M(to)

u s
nust intersect
t then xE(to,to) S

at time to. | |

Remark. Since dHo -+ 0 exponentially at the saddle

points, the integrals involved in this criterion are
automatically convergent.

Example. (Forced Pendulum). Consider the equation
é + sin¢ =€ cos t (2.9)
we claim that it has horseshoes for € small, € # O.
For £ = 0, the system is Hamiltonian with
2
H{p,v} = !5 - cos ¢. The homoclinic orbits are given
by
-1, .
${t) = %2 tan ~{sinht)
vit) = *¥2 sech t

The perturbation is described by
Hl(¢,v) = (sin t)¢

and so from (2.3) we compute
M{t ) = % 2 sech{t-t ) cos(t) dt
0 - 0

changing variables and using the fact that sech is
even and sin is odd,

M(to) = 2 rm

sech t cos t dt] cos to

Evluation by residues gives

T
M(t& = &7 sech[s) cos to

which has simple 2zeros. Hence tne system has horse-
shoes by Melnikov's criterion.

§3. Extensions of the Melnikov Theory

a) The Melnikov technigue has been applied to
auntonomous Hamiltonian systems with two degrees of
freedom by Holmes and Marsden | 1982al

with a Hamiltonian of the form

i = Flg,p) + G(I) + eH (q,p,8,1) + ote?) (3.1)

where (I,6) are action angle coordinates for the
oscillator G. One assumes that the F system has
a homoclinic orbit, X(t) = (g(t}, p(t)) as in §2
and that

M{t)) = rm{F'Hl} de

(2.10)

(3.2}

A



where {F,H} is evaluated at (§(t-c0), Qt,1), has

zeros. Then the system has horseshoes on the
surface corresponding to the unperturbed
energy of the homoclinic orbit, oscillator frequency
f2 and action I. This applies, for example to a
coupled pendulum and harmonic oscillator.

simple
energy

b) If the variables don't split as in (3.11, one
needs a more geometric setting: that of S reduc-
tion of Hamiltonian systems. This was developed

by Holmes and Marsden | 1983] and was applied to the
heavy top with two nearly equal moments of inertia
(some related results were also obtained by Ziglin
[1980al ).

¢} When there are more than two degrees of free-
dom present, the new phenomena Arnold diffusion
enters, as introduced by Arnold [1964]. This was
developed for autoncmous Hamiltonian systems by
Holmes and Marsden [ 1982b) .

Here a torus replaces the simple oscillator and
the results apply, for example, to a pendulum
coupled to n (> 2) oscillators, with action

variables 1., ..., I .
1 n

The bgsic criterion now involves the Melnikov

vector M defined by
Jm {F,ullac
-0

_ 1
Moltge coen t ) me{rj.u }at

Mo(to, vee, t ) =

n-1
(3.2)

Iif :\; has transverse zeros, then the perturbed
stable and unstable manifolds of the torus intersect
transversally, which ultimately leads to chaotic
energy drifts between the oscillators.

d) The method also applies to certain infinite
dimensional systems although the techniques require
some damping to be present to avoid resonance dif-
ficulties and to retain a "pure" horseshoe. This
technique was developed by Holmes and Marsden [ 1981]
and was applied to the equations for a forced oscil-
lating beam in which chaos had been seen experi-
mentally by F. Moon.

e) 1If the forcing function has high frequency, such
as in the equation

¢ +sin ¢ =€ cos[g) (3.3)
then the Melnikov theory as it stands is not appli-
cable. 1Indeed, the Melnikov function is

[ (3.4)

t
M(to) = insech{a%J cos(—g)
which is exponentially small. Under the right
circumstances, however, the Melnikov criterion is
believed to be valid (cf, Chirikov [1979], sanders
[1982)). This situation is currently under inves-
tigation (Holmes, Marsden, Scheurle).

It is very important to establish the criterion
in these circumstances since this difficulty comes
up in a variety of key circumstances, such as KAM
theory.
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§4. Applications
We list just a few of the other applications of
the theory:

a) (Power Systems). The swing equations of a power
system have been shown to have horseshoes and Arnold
diffusion (appropriate to the number of degrees of
freedom) by Melnikov techniques by Kopell and Wash-
burn [ 1982] and by Abdel-Salam, Marsden and Varaiya
{1983b] .

b) (Chaotic Motion of Vortices). Chaos in the motion
of four vortices was reported by Ziglin {1980b) ai-
though hisproof seems to suffer from the exponential
smallness disease noted in (3.3) above. Using some
configurations suggested by work of Synge, Aref and
Pomphrey (see Aref [1983] for a review), Koiller and
de Carvalho [1983) have shown the existence of_ horse-
shoes by a "normal" Melnikov method with an §
symmetry {{(b) of §3).

¢) {(Rigid body with attachments). In Holmes and
Marsden [1983] a simplified problem modelling a rigid
body with rotary attachments, important for the
attitude control of spacecraft, was shown to have
horseshoes (and Arnold diffusion if there are at
least 2 attachments). A more realistic model was
shown to have the same features by Koiller [1983].
See also Krishnaprasad [1983].

d) A one dimensional van der Waals fluid with
periodic thermal fluctuations (either spatial or
temporal) was shown to have horseshoes in a
Hamiltonian truncation by Slemrod and Marsden [1983].
This chaos is of interest because it occurs near the

Maxwell line and is believed to be related to phase
transitions.
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