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§ 1. Introduction

Consider a hyperelastic material, with a region & in R3 as its reference con-
figuration. Suppose that the reference configuration is in equilibrium under some
initial system of forces (not necessarily zero).

The general problem: Describe the equilibrium solutions of this elastic material
subject to a system of forces close to the initial one. Specifically, we want

(a) to count the number of solutions,

(b) to determine their stabilities.

(For general references on elasticity theory, see GRIOLI [1962], GURTIN [1972],
MARSDEN & HUGHES [1983], TRUESDELL & NOLL [1965] and WANG & TRUESDELL
[1973])

In Parts I and IT of this series we examined a special case, namely the traction
problem near a natural state. In this case the system of forces was a dead load,
consisting of a body force and a traction field applied to the material, and the
reference configuration was stress-free (so that the initial system of forces was zero).
A variational approach proved to be successful in dealing with this traction prob-
lem (see CHILLINGWORTH, MARSDEN & WAN [1982] and [1983], hereinafter referred
to as [I] and [II]).

In this paper we shall extend this method to the general problem stated above.
To be more precise, we shall investigate:

(1) The traction problem with a general reference configuration, so that the initial
load need not be zero (as in BHARATHA & LEvVINSON [1978] and CAPRIZ &
Popio GuipuaGL [1979]).

(2) The pressure problem. Here we replace the traction boundary condition by
a pressure boundary condition (¢f. TRUESDELL & NoLL [1965]).

One often analyzes such problems in a setting in which there is symmetry
for both the material and the reference configuration. (E.g., the material may
be isotropic and the reference configuration may be a ball.) Here we shall also
examine:
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(3) The effect of such symmetry assumptions on the solutions of the prob-
lems.

These topics are each obtained by dropping various hypotheses on the traction
problem studied in [I] and [II].

Now we recall the main ideas in [I] and [II]. What we have dealt with is g
bifurcation problem for a potential function in the presence of a symmetry group,
which acts on both the space of deformations (state space) and the load space
(parameter space). The “trivial” solutions SO(3) for zero load, consist in a group
orbit through I, the identity map on %. One seeks solutions nearby for small
applied forces. Tubular neighborhoods provide a convenient way to parametrize
the neighborhood of the trivial solutions. By the stability condition and Korn’s
inequality, one concludes that the potential function with zero load has a non-
degenerate minimum transversal to the trivial solutions. Accordingly, by a Lia-
punov-Schmidt procedure, a reduced potential function on SO(3) is obtained.
A further Liapunov-Schmidt reduction can be made provided the type of the applied
load is known. (The notion of “type” is defined in [I].) Consequently, one has
a bifurcation problem on the group orbit.

For the pressure problem (2), we shall show that these ideas are appropriate
and that similar results are valid. The same ideas apply equally well for the trac-
tion problem with a general reference configuration, provided a certain condition
(S), which generalizes the stability condition, is fulfilled. In particular, the use of
this condition leads to a classification of initial loads by the associated isotropy
group, and it agrees with the classification given by BHARATHA & LEVINSON
[1978] and Capriz & Pobio GuIDUGLI [1979]. The condition (S) is satisfied in
some cases, but fails to be in certain other interesting cases corresponding to
buckling in related rod and shell models. These cases often result from assumptions
of symmetry in items (1) and which fall under item (3). It is necessary to extend
somewhat the ideas involved in order to handle the cases in which bifurcations
also occur within the slice for the group action. As we shall see, there is a rather
general theory based on this idea. For results about bifurcations of zeros of G-
equivariant map near a fixed point rather than an orbit, consult SATTINGER
[1979] and GoLuUBITSKY & SCHAEFFER [1979].

This paper is arranged as follows: in Section 2, we analyze the traction prob-
lem with a general reference configuration under condition (S). To make the
presentation self-contained, many details are given. After Sections 1 and 2, it
becomes apparent how to make an abstract bifurcation theory concerning potential
functions invariant under bisymmetry actions. This is the content of Section 3.
An abstract version of the Signorini perturbation scheme is given in Section 4.
As further applications, we present the pressure problem in Section 5 and also
the traction problem under symmetry hypotheses in the final section.

The traction problem for the incompressible material using methods motivated
by this paper are treated by WAN [1983] (¢f. BALL & SCHAEFFER [1982], MARSDEN
& HucHES [1983], TRUESDELL & NOLL [1965] and WANG & TRUESDELL [1973]).
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§ 2. The traction problem with a general reference configuration

A. Statement of the Problem

Let # CR?® be a reference configuration for an elastic body with 0¢ 4,
where % is an open bounded set with smooth boundary 4 in R3. Denote by
% the space of deformations, which consists of all orientation-preserving embeddings
¢:B—>R3 $0) =0, of Sobolev class W*2 s> 3.

Assume that the elastic body possesses a smooth stored energy function

W = W(X, C), where X€ %, C= FTF, and F is a nonsingular orientation-
preserving linear transformation from R? (&~ Ty%) into R3. For any deformation
¢ in ¥, F(X)= D¢(X) denotes the corresponding deformation gradient, and
C(X) = F'(X) F(X) is the Cauchy-Green tensor. Thus the first Piola-Kirchhoff

ow
stress tensor is given by P(X) = F (X, F(X)) € L(TxAB,R>), ie., PyX)=

|14
F (X, F(X)). We drop the variable X, when there is no danger of confusion,
'y

and identify Ty% with R3.
For a given body force B: % —R3 of class W* 22, and a surface traction

_3
T: 0% —R3 of class W(S 2)’2, the equations for equilibrium solutions ¢ in
are:

® {DIV P(X,F(X))+ B(X)=0, for X¢ 4,

P(X, F(X)) N(X) = ©(X), for X¢c 0%.
where N(X) stands for the outward unit normal to 0% at X¢€ 04 and DIV P
3
is the divergence of P(X, F(X)) with respect to X (i.e., (DIV P), = 3, P;;=
i=1

317)
=1 0X)”

Using the divergence theorem, we easily verify that if the equation (E) can
be solved for a given load (B, 7), then the total force on # must be zero:

[BdV+ [rd4=0.
B 0B

Hence, dV and dA are the respective volume and area elements on % and 04.
Denote by £ the space of all such pairs /= (B, 7) of forces, and call &
the space of (dead) loads.
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Let @:%4-—+% be the map defined by P(¢p) = (—DIV P(¢), P($) N).
Hence the equation (E) may be written @(¢) = /. Clearly, the proper orthogo-
nal group SO(3) acts on ¥ and . by composition, and @ is SO(3)-equivalent,
Set D(Iy) = 1y, where I, € stands for the identity map on %, and let
G C SO(3) be the isotropy group of Iy (l.e., Q€ G if and only if Qlg = Iy).
I is the initial load of our problem. By the SO(3)-equivariance of @, the con-
figurations Gl are solutions of the equation D(¢p) = lz. Under suitable hypo-
theses, the only solutions of @(¢) = /; near Glz C ¥ are those in Glg.

Our basic problem can now be described as follows:

(T) Describe the set E(Al) of all equilibrium solutions of D(d) = lz + Al near
Gly (C %) for various loads A€ ¥, with A small and positive and with | near
some fixed load [, € &¥. Specifically, we want

(a) to count the number of solutions in EQAl), and
(b) to determine their stabilities.

In [I] the reference configuration % was taken to be stress-free; i.e., P(lz) = 0.
Thus Iz =0, G =SO(3) and we considered solutions near Giz = SO(3).
Here we drop this hypothesis and study our traction problem-with a stressed

reference configuration.
Given /€ &, the astaticload k(l)is [B® XdV + [7 ® X dA. The load
Z o0&

1 is said to be equilibrated if k(I) is symmetric. Set % = {u: B — R3| u is of class
W2 and u(0) = 0}. A pairing between % and % is given by (the virtual work)

douy = [(BX), wX)ydV + [ @(X),u(X))dA, where [ = (B, 7).
B - oA

2.1 Proposition. The initial load lz = ©(z) must be equilibrated.

Proof. For K¢ skew (the space of 3 x 3 skew symmetric matrices) the divergence
theorem implies that

trace (K"k(l5)) = (P(Iy), KXy = [ trace (PTK)dV.
K4

Si P oy _owec 2 ow Iz 1 i P'K)dV =0
ince P=—m= SCIF —27C at Iz is symmetric, f trace ( YdV =
for all Ke€skew. Thus trace (K'k(lz) =0 for all K € skew, so that k(lg)

is symmetric.

The section is concluded by introducing an extension of the stability condition
on the elasticity tensor for the stress-free case (see [1]).

Denote by M the inner product space of all linear transformations from R3
into R3, with

3
(4, B) = trace (A"B) = D, A4;B;.

ij=1
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opP
Let A(X, F(X))= —E)F(X, F(X)): My — M5 be the elasticity tensor. Since

7*W
A= TFT A is symmetric on M. Set A(X) = A(X, /) and let g = {K€ skew |
e’ € G, for all t} be the Lie algebra of G. Write M5 = g @ g' as the sum of g
and its orthogonal complement gt in M. Thus each m¢e M; has the decomposition
m=my+ my1 €g @ gl. Now the desired stability condition can be stated as
follows:

(S) there exists a constant ¢ > 0, such that {A(X)m, m) = c|m,1||*> for all
Xe€ 4B, and for all me M,.

As was mentioned in the Introduction, this condition will be studied in Sec-
tion 2. Cases where it is not satisfied are studied in Sections 3 and 4.

B. Classification of the initial loads, l4

The initial loads /; will be classified by symmetry via the associated 1sotropy
group G or its Lie algebra g.
Recall that /€ % is called a parallel system of loads if I(X)= g(X)a for

some function g:% —R, and vector a€R3.

2.2 Proposition. (a) Iz = 0 if and only if G = SO(3).
(b) Iy is a non-zero parallel system if and only if G = S, a circle group, and
(©) Iy is a non-zero, non-parallel system if and only if G = {0}.

The proof is elementary and is left to the reader.

The next proposition partially justifies our claim that our load classification
is the appropriate one. It relates the symmetry of the loads to the kernel of the
linearized problem. In particular, it can be interpreted as: symmetry implies
bifurcation.

The space % of deformations is an open set of the Hilbert space %. The deriva-
tive D®P(I,) of @ at I will be considered as a linear map L from % into Z.
Thus L(u) = DD(I5) (u) = (—DIV A(Vu), A(Vu) N) represents the linearized
elastostatic equations at 7.

2.3 Proposition. An element K¢ skew satisfies L(KX) = 0, if and only if K€ g,
the Lie algebra of G.

Proof. By SO(3)-equivariance, P(eX’ X) = X[, for each K¢ skew. Hence
L(KX) = Klz for all K¢ skew. One completes the proof by observing that
Kilgzg = 0 if and only if X[y = I, i.e., if and only if eX'€ G, for all t. B

Set A" = {KX | K € skew, L(KX) = 0}. Geometrically, the above proposition
says that 2 is the tangent space to Glz at Iy.
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Combining the previous two propositions, we get:

2.4 Corollary (BHARATHA & LEVINSON: [1978]).
(a) dim A" = 3, 1 or 0.
(b) dim " =3 if and only if Iz = 0.
(c) dim " = 1 if and only if lg is a non-zero, parallel system.
(d) dim " = 0 if and only if Iz is a non-zero non-parallel system.

We shall examine the traction problem by using the following condition for
the linearized problem with kernel ¢ :

(F) ker L=, and Im L = AL, where #' ={lc & |, KX) =0, for all
KXe A},

which is the conclusion of the theorem of the Fredholm alternative (see Proposi-
tion 2.5 below).

Condition (F) agrees with that in BHARATHA & LEVINSON [1978], for hyper-
elastic materials. Condition (F) suffices to count the number of equilibrium
solutions; for stability results, however, one needs to assume more, such as
condition (S) introduced above.

For L(u) = (—DIV A(Vu), A(Vu) N), condition (F) is a condition on the
elasticity tensor A(X). Indeed, we have

2.5 Proposition. If the elasticity tensor A(X) satisfies condition (S), then it also
satisfies condition (F).

Proof. (a) As in FICHERA [1972], one shows the Fredholm alternative holds by
establishing a Garding inequality for the bilinear form B(u, u) = (A(Vu), Vu), =
[ <AX) (Vu(X)), Vu(X)y AV over W'?, i.e., <A(Vu), Vyy = vo [[u]i — Ao [lul,
B

for some constants 7y, >0, 1o=0. By condition (S) <A(Vu),Vu),=
c|l% (Vu 4 Vu")|3. The desired inequality, then follows from Korn’s second in-
equality (FICHERA [1972]):

(Vu + Vu")[§ + |ud = c, |u|i, for some constant ¢, > 0.

(b) Since " C ker L by proposition 2.3, it remains to show that 4" D ker L.
Let L(u) =0 and u€ %. Using the divergence theorem and condition (S),
we get 0 = (L), up = {A(Vu), Vudp = ¢ |4 (Vu + VuT)|3. Thus [[(Vu + Vu")[3
=0, and so Vu + Vu? = 0 on #. Therefore, u = KX for some K¢ skew. [

Another method for establishing the Fredholm alternative is to use directly
strong ellipticity and the elliptic estimates. For this approach, see MARSDEN &
Hucues [1983, Ch. 6]. It is this latter method which will be useful when condition
(S) is dropped.

From now on, we shall examine our traction problem with a general reference
configuration under the stability condition (S). The initial loads are classified into
three categories according to the cases (a), (b) and (c) in Proposition 2.2. In
case (a), we have a load-free reference configuration and so the analysis is basically
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the same as that for a stress-free reference configuration studied in [I] and [II].
Hence we omit it. In case (c), L = D®P(I) is an isomorphism (cf. Proposition 2.5)
and so by the inverse mapping theorem, no bifurcation will occur.

Therefore we need only investigate case (b) in detail, where the initial load /4
is a parallel system. Note that condition (S) implies that {(A(X) K, K> > 0 for
all Kcskew\ {0} in g, which, in turn, implies that the parallel system must
be nontrivial with the eigenvalues of k(/4) given by 0, 0, ¢, where ¢ > 0. Indeed,
one can readily establish that

1
AX) K, Ky = {(KX), KX) = {Klg, KX) = {(—K? k(l5)) = —2-HKH2 ¢
by using the divergence theorem and the relation L(KX) = Klg, from which

our remark follows. It turns out that the same ideas used in [II] can be used here,
as will be shown in the next subsection.

C. A non-zero parallel initial load system

Let Iz = @(I5) be an initial load parallel to some non-zero vector a =
(ay, az, as) €ER3.  Thus the isotropy group G ={Q€ SOQ3)|Qlz= Iz =
{e*} = S', and A = {(ar) X}, where

0 a; —a,
& - —a3 0 al
a, —a 0

To systematize the presentation, we divide this subsection into parts (I)-(IV).

(1) The subspace % ,. Write
f=ImLOZ, ¢y

the L? orthogonal decomposition.
2.6 Definition. Let %, = {uc U |<{Z, u) = 0}.

2.7 Lemma. () % = A O Uz @)

(ii) there is a neighborhood U of 0 in U ; such that the map ¢ : S*X(I + U)— ¥
defined by o(Q, I+ u) = Q~'(I + u) is a tubular neighborhood of S'I4
in 8.

Proof. (i) Given u€ %, consider the linear map z— <z, > on Z. By condition
(F) on L, {z, KX) is a non-degenerate pairing between Z and . Thus there is
a unique KXc X such that {z,u) = {(z, KX). Hence u = KX + (u — KX)
is the required decomposition (2).

(ii) Part (ii) follows from (i) and the fact that A" = T;,Glg, by Proposition
23. B
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2.8 Lemma. Z = %L = {I |11 %}

Proof. Clearly, Z C %%. On the other hand, let / | % . By the non-degeneracy
of the pairing between Z and ¢, there is an element z¢€ Z such that </, u) =
{z,u) for all ue . Therefore <I—z,up =0 for all ueA + U, =Y
and so I=z€Z [@

(II) A potential function on S*. Recall that ¢ is an equilibrium solution with load

Iz + Al if and only if ¢ is a critical point of the function V(¢) = ¥"(¢) —

g+ A, ¢> on €, where ¥ (¢) = [ W(¢) dV. The solution ¢ is called stable
3

if and only if ¢ is a local minimum of V. Lemma 2.7 implies that to consider equi-
librium solutions near S'I; one needs to examine the critical point (Q, ¢),
¢cI+ U, of the function VL (Q,$) = Veo0(Q,d) = V(Q'd)=S(¢)—
Qg+ A, $).

2.9 Proposition. Let (Q, )€ S'X(I + U). Then (Q, ¢) is a critical point of V,
if and only if

@ D(¢) — Iy = 1Qly (mod Z) 3)
and
(i) AWQL, ¢> =0 for all Weg. ' @

JOW N\
Proof. D,V ,(u) = —,Du ;dV — {Q(lz + Al), uy
il = [ G o) = <ot

= D), wy — Qg + ), w
={D(@) — Iz — A0l up.

Thus DyV,(u) = 0 for all de Uz, if and only if (i) holds by Lemma 2.8. Since
DoV (WQ) = —<WQ(lg + Al), $>, it follows that DyV,(WQ) =0 for all
We g if and only if (ii) holds. §#

Now we perform a Liapunov-Schmidt procedure on the function ¥,. By con-
dition (F), D®(I5) is an isomorphism from %, onto . mod Z. Thus by the
inverse mapping theorem, there exists a unique solution ¢ = ¢o(Al)e I+ U of
equation (3) for A = 0 small and / near /,. For simplicity in notation, we drop A/
if there is no danger of confusion.

2.10 Definition. Define f: S' =R, by f(Q) = V,(Q, $p).

Thus

2.11 Lemma. (Q, $p) is a critical point of V,(Q, ¢) if and only if Q is a critical
point of f on S*.

2.12 Lemma. Suppose that condition (S) on A(X) holds. Then {A(Vu), Vu),=
c||Du|* on U, for some constant ¢ > 0.
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Preof (cf. FICHERA [1972, p. 384]). If the lemma were not true, there would exist
a sequence ™€ U, -+R, such that <(A(Vo®W), Vo5, -0, [Dv™|> =1
with f v™ dV = 0. Therefore, by Rellich’s compactness theorem, we may assume

that »™ converges to v in the space L2 Notice that ||Vo® |, = ||+ [Vo™ +
(Vo)) = 0 as n—oco. By Korn’s second inequality

6P — oI < 5 ([ [ Vo2 = TP 4 o0 — o).

Thus v® converges to v in W2 and (A(Vv), Vo), =0, |Dv|* = 1. By con-
dition (8), it follows from (A(Vwv), Vo), = 0 that (Vo) + (Vo) =0 and v =
a+ KX, with KXe . Since v€ ¥, + R, it follows that KX¢€ %, and so
K must be zero by Lemma 2.7. This contradicts the fact that |[Dv||> = 1. BB

2.13 Lemma. V, has a local minimum at (Q, $p) if and only if f has a local minimum

at Q.

Proof. It suffices to show that to each (Q, ¢,) there corresponds a neighborhood
N1 XN, of (O, dp) such that V,|p«4, has a strict minimum at ¢g for any

QcA,. Let F= Dds. Then

. s oW -
WG+ ) = W) -+ (B )+ S () G2 + O ).

Thus

ow -
Vol @3+ 1) = Voleur(62) = [ [ <;F : Du> av — <Qlly + ), u>]

1 6*W
+f [ 7z (D )HO(lDuIZ)] av

1 2w
- f [_2_ =77 (Du)* + O(|Du |)3} av
= c||Du|* — k|| Dul* >0

for small %y, 7,, 4, ||l — Iy|, by the definition of critical points, continuity argu-
ments and Lemma 2.12. [

Summarizing, we have proved the following result:

2.14 Theorem. Suppose that lgz is a non-zero parallel load and I, is an arbitrary
load. For A small and positive and for [ near 1, the set of solutions of the elastostatic
equations D(¢p) = lgz + Al in a neighborhood of S'I5in € is in 1-1 correspondence
with the critical points of f. Furthermore, the stable solutions correspond to the
local minima of f on S*.

2.15 Corollary. For A small and positive and for [ near l,, there exist at least two
solutions, one of which must be stable.
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If 1 =1, is parallel to g, then the function f can be made S'-invariant, and
thus must be constant on S'. Hence we obtain:

2.16 Corallary. Suppose that | =1, is parallel to lgz, and that A =0 is small.
Then there exists exactly a circle of solutions S'¢* near S'l,.

The condition ““/ = [, is parallel to /" is very degenerate. Next we examine
our problem in the non-degenerate case.

(1) The second-order potential on S*. Expand the solution of equation (3) as
b0 = Iy + hug(l) + O(2). ®)

2.17 Lemma. L(up(l)) = (QDmz, where up(l)€ U5, and Ql = (QDimr @ (Q)),
according to the decomposition (1).

Proof. B(I; + Juy(l) + 0(3?) — Iy = AQI (mod Z). Thus L(ugp(D)) = (Ql)ims. B

2.18 Proposition. For any Q¢ S*,
Q) = V(Ig) — g, 0'lz> — XK1, Q"I

ZZ
- —2—<A(V“3), Vudy + 02 ||l — L) + 0(2%), 6
where L(ud) = (Qlo)imz-
Proof. Write ¢, = Iz + Aup(l) + O(A*). Thus

1@ = [ Widg) — <Ol + 301, 4>
ow
—Us) + [ Z5Us) (o — 1) AV

+ % f 6;72/ (L) (b0 — I5)* dV + O(?) — <Qly + 201, $o>
= V(g + g $o — Iz

+ ’172 (A(Vug, (D), Vug(l)y + 0(%) — <Qlg + 201, $o)
= V() — 150" — K1, Q") — QQl, o — 1)

2 A1), 1) + 0G)
=V (Ig) — <lg Q") — XK1, QT

/12
— 5 A(Vup), Vugy + 0G2 |1 — L)) + O).
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At this point we need to use the following facts which are readily verified with
the divergence theorem:

ow \
€)) ,f<—ﬁ(1@),Vv> dv = (g, vy,

() <A(Vw), Vo) = {L(Vu), v),
so that
QL up(l)y = <A(Vug(l)), ug(l)>

and
<A(VuQ(IO))5 qu(lO)> = <A(Vu?2)5 Vug> . .

Since ¥'(Iz) and {lg, Q> = tr (k(l)) are constant, first order considerations
concerning the critical points of f lead to the following classification of /.

2.19 Definition. The load I, is said to be of
type (&) if <{lo, Q"I +# constant on S*,

type (B) if <{lo, Q"1z> = constant on S*.

If I, is a load of type (x), then clearly {/,, Q7> is a Morse function, with exactly
two critical points on S*.

Remarks. (a) This classification is directly related to the classification of loads /,
into 5 types in the load-free or stress-free case (see [I]).

(b) Suppose that <l,, Q"I;> has a critical point on S* at Q = I. Then
{ly, OTIz> has a non-degenerate critical point on S* at Q = I if and only if
(A—TrAd)a-a=%0 for A= k(l,) (where l, is parallel to a). Thus the condi-
tion () on the load /, renders global the condition on /, in Theorem 4 of BHARATHA
& LEVINSON [1978].

(IV) Bifurcation analysis: the non-degenerate cases. From equation (6) one sees
that the bifurcation analysis of loads of types (x) and (p) is similar to that for
loads of type 0 and type 1 for a stress-free reference configuration. Only those
parts of the proofs of the results that are different need be given.

2.20 Theorem. Let condition (S) hold. Suppose I, is of type («). Then for 1 >0
and [ near l,, there exist exactly two solutions, one stable and one unstable.

f— SUg) + <z Q"1z
A

the facts that f* = —I, Q"I + O(1) and </, Q"I;> is a Morse function

on S'. H

Proof. For 4 >0, set f* = . The theorem follows from
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Next we consider a load /, of type (). Without loss of generality, we can assume
that I is parallel to (0, 0, 1). Thus

x —y 0 l
St={{y x 0]|x*+»y2=1¢.
0 01 J

Define constants b; and a; by
A
<ls QTI.@> + 3" <A(Vug): Vug>

A
= (bo + byx + byy) + _2‘(a1x2 + ayxy + asy® + asx + asy + ae), @)

where
x —y 0
o=\y x 0 and x2+y?=1
0 01

By rotation of /, by some Q€ S' if necessary, we can take a, = 0. Fix o, 4
with «; = «;, and set

A(oxgy 0v5) = [2(061— 0‘3)2 - 0‘2 - 0‘%]3 - 1080‘%062(0‘1 - 463)2~ (8)

Since 4—0 if and only if [2(06; — ag)} — o + a8, A =0 defines an
astroid in the (x4, x5)-plane (just as in [I]).

We are now ready to state our main results on the number of solutions near
loads of type (). Let /= I(c) depend smoothly on a parameter ¢ in R", with
10) = I,.

2.21 Theorem. Suppose the load I, is of type (B) with a, =0, a, * as. Then

there exists a (smooth) function j(ﬂ, c) with Li(l, 0) = A(ay, as) + O(A) defined

Jor (4, ¢) sufficiently small and for A >0, such that our traction problem has
(i) two solutions for the load Al(c), one of which is stable, if j(l, c) < 0.
(ii) four solutions for the load Al(c), two of which are stable, if j(l, ¢) >0.

The proof of this theorem is basically the same as that for Theorem 8.4 in [I].
The following theorem describes the “generic” structure of the bifurcation
set X={A,¢)|2>0, A= 0}. Denote by k :R™ — (x4, ovs)-space, the affine
- b, A(C) b,A(¢)
map defined by c—>( 2 45—

of I(?).

+ as) , where A(c) is the linear part

2.22 Theorem. Suppose that the affine map k is of maximal rank and is transversal
to the astroid A = 0. Then the bifurcation set X is

©) empty for m =0,

(1) as in Figures1 or 2 for m =1,
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(2) as in Figure 3 for m = 2,
(3) a cylinder-like set with height R™~* and base as in Figure 3 for m > 2.

Fig. 1 Fig. 2 Fig. 3

2.23 An example. Expand the first and second Piola-Kirchhoff stress tensors
around I, as follows:

P =T, + A(H) + O(HP),
S = To 4 C(H) + O(|H[).
From the standard relation S = F-'P, or from

I—H+ .. )(To+AH)+..)=T, + CH) + ...,

one gets
T, = To,
A(H) = C(H) + HT,.

Conversely, given any To(X)€ sym, and a symmetric linear map C(X):sym
— sym, define

W(C) = (T, D) + —;_— (D, C(D)», where D = —;-(C — 1.

Straightforward computations show that

ow
P === FT, + FC(D),

oP
A(H) = 57 (H) = C(H) + HT.

Thus there exists a hyperelastic material with prescribed T, and C, provided
Ty € sym, and C is symmetric on sym.
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2.24 Example. Consider a homogeneous material, occupying a unit volume
000 : .
in R3, with 7,={000 ], and C(e) =¢ ——2—-diag (e), ecsym. Let us

001
study the traction problem with loads Al,, where I, = (0,7,), and 7, =
1 00

0 —10]N.
0 00
—Div T, 0
Since Iz = g<0> for some g: % —R, the initial load Iz is
1
[ x —y0 l
parallel to (0,0, 1), and S! = ] x? 4 y? = 1¢. We claim that

(i) condition (S) is satisfied,
(i) /o is of type (f),
and
(iii) f CA(Vug), Vugy dV = 4x2 + 2y2.

Therefore Theorem 2.21 can be applied, and our traction problem has four solu-
tions for A/,, with A small and positive, exactly two of which are stable.

0 730
Proof. (i) Since A{ —/43; 0 0 | =0 where h3;€R, it suffices to show that
0 00
(Ale+ H),e4+ H)>0 for (e, H)7# 0,
where
0 0 —h,
H={0 0 A}, and Ay, hcR.
hy, —h; O '

Direct computations give

1
{A(e + H),e + H> =<e ——?‘—diage—i— Ht, e + H>
1 .
= |e]? “7(9%1 + €& + €5) + (HY, e + <H, H)

= el + CHY 6+ 2 [ B >0,
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where
00 —h,
Ht=100 h
00 O
(i) <y, Q"I = deVz 0, for all Q¢ S,
1 00
(iii) Since uy(X)=C*|Q|0 —10 ]| X, where C-!(e) = e + diage,
0 00
we have
2x y O x yO
CA(Vug), Vud)y :< y —2x 0}, {y—x0 >
0 0 0 0 00
=4x*+ 2. B

§ 3. Bifurcation of potential functions under bisymmetry

The use of two Liapunov-Schmidt reductions and the explicit expressions for
the associated reduced function seem to be the reasons for our success in treating
the problems in § 2. To pave the way for further applications, we shall present
these methods in a general and abstract form.

A. The abstract setting, and a first reduction

Let G be a compact Lie group acting linearly on two Banach spaces % and
o/ (called the state space and parameter space respectively, and let ¥ be an G-
invariant submanifold in %. Consider a function ¥ : % X & — R invariant under
G, so that V(x, a) = V(gx, ga) forall g€ G, x€ € and ac «/. We are interested
in the bifurcation of critical points of V(:, @) (i.e., points where the x-derivative
of ¥ vanishes), for x near the orbit Ge and for a near the point a,. We assume that
V(:, ao) restricted to ¥ has a critical point at a given point e€ € and that ga, = a,
for all g€ G. Notice that the group G acts on both the state space % and the para-
meter space .

To fix the idea, we take % to be an open set in %, and, as before, we examine
the bifurcation problem for V(-, a) with a = a, + Aa,, for A small and positive
and for a; near some fixed af in <. Let G also act on a Banach space £ with a
G-equivariant non-degenerate pairing <, > between % and %. We postulate
that ¥, = V(-, @) has a gradient VV, =¥, with values in % with respect to
this pairing, i.e., DV (x) (u) = (¥, (x), ) for all u€ %. One can readily see
that ¥:4x o - L, P(x,a) = P,(x), is G-equivariant. Denote by [ =
{g€ G | ge = ¢} the isotropy group of e. Clearly, ¥, : % — & is I-equivariant.
Unless stated otherwise, partial derivatives will be evaluated at (e, ao).



218 Y. H. WaAN & J. E. MARSDEN

Indeed, for the traction problem studied in [I] and [II], we take % =
{¢: 2R3 $0) =0} the space of infinitesimal deformations, ¥ = {p€ % |
det D¢ > 0} the space of deformations, and & =% ={(b,7)b: % —R3,
7:08 >R3> [bdV+ [vdA =0}, the space of loads. </, ¢) = [<b,¢)>dV

% o #

+ [, d) d4, for (b,7) =1€ £ and ¢€ %. Thus the parameters take their
i3

values in the “dual” space % of %, G = SO(3) acts on %, &£, and ¥ by compo-
sition, ¥ is given by V(¢) = [ W(D¢) dV — <I, ¢> where W is a stored energy
function, (e, ap) = (I, 0), and I" = {identity}. We also have ¥)(¢) = D(¢) — |
with a =1, where @(¢) = (—DIV P(¢), P(¢) N) is as in the previous section,

Now we assume that the Fredholm alternative holds for the I-equivariant
symmetric operator L = D¥, : % — %. Thus {Lu, vy = (Lv,u). We assume
the condition

(F) dimker L < oo, and Im L = (ker L)L, with
(ker L)t ={Ie £ |, k) =0, for all k¢ kerL}.

Under this condition, we obtain a [-invariant decomposition,

L =ImL@Z, with dim Z = dim (ker L).
Let Uz={uc|<{l,up=0 for all /€ Z}. We also get a [-invariant de-
composition

U=%kerL ® U.

By G-invariance of ¥, , ker L D T,Ge, the tangent space of Ge at e. Take any
T-invariant complement ¥V of T,Ge in ker L, and set W=V & U, a I-in-
variant subspace transversal to 7,Ge. Thus, for some /-invariant open neighbor-
hood W,= V., xU, of a in W, the map ¢:Gx{e+ W,}— % defined by
o(g, $) = g¢ induces a G-equivariant diffeomorphism of GX r{e + W,} onto
G(e 4+ W,), a tubular neighborhood of Ge in #. Here GX r{e + W} denotes
the quotient manifold of Gx{e 4 W, under the free action of the compact

group I':9(g, ¢) = (gv—1, y$). Observe that G(e + V,) is a submanifold, and
Ge CG(e+ V) C G(e + W,). Clearly,

Vecolg, v+ ¢) =V + ¢),a) =V + ¢, g'a).
By varying ¢, v, and gin e+ U,, V and G separately, we obtain
3.1 Proposition. Let (g,v, )€ GXV,x(e+ U,). Then (g,v,¢) is a critical
point of V,op if and only if
@ Y v + D€ Z,
(b6) Ypiy(v + ), w) = 0, for all weV,
and

(©) V(v+ ¢, g7%a) has a critical point on G at g.
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Since L= DY, :%,—ImL is an isomorphism, we can apply the implicit
function theorem to ¥ modulo Im L. Thus for some I -invariant neighborhood
W, = V.xU, of 0in W, and a d-neighborhood of a,, there exists a unique
$u(g, v) € e + U, definedon GXV,, |a — a,| < 6, suchthat o1, (v + $4(g, v))
€ Z. Indeed, ¢, (gy~",yv) = ¢,g,v) for ye I.

3.2 Lemma. ¢,(g, v) = e + u,(g) + O(|A]* + |A| |v]| + |v|?), where u,(g)€ U,
satisfies the equation

oV oV
L(u) + %2 (gla)eZ (here Erhe (a eo)) ©)]

Proof. Write ¢,(g,v) = e + Au + O() + O(|A|> + |4] |v| + |v[?). Therefore,
Y trg-afe +u 4 O@) + ... )eZ.

Gathering terms of first order in 4, v gives

oV
l-a—‘;(g_lal) + L(}.u —l_ 0(U)> E Z.
oV
Consequently, L(u) -+ a—a(g‘lal) cZ &

Applying the Liapunov-Schmidt procedure to V,-p, we have
.fa(gn U) = I/aO @(g9 (% 7|~ (!)a(g’ U))
= V(U + ¢a(g5 1)), Qo + lg_lal)

14
= V0t e ) + A (5 (1) + 00 + 00D, (10)

3V ov
Here, — 3 (e a,) and each term is invariant under the action of I':y-g
=gy Ly v= yv. Thus (f, | I') (g(e + v)) = f(g,v) is well-defined on G(e + V7).
Therefore we can make a reduction of ¥, to a function f, | I” on the submanifold

Ge -+ V).
To obtain stability results, one needs the following condition.

(2) There exists a real number ¢ >0, anorm | ||, on ¥ satisfying ||| = |-,
2

o2V
and such that e (x,a) W?) = c|u|} forall uc U, and (x,a)c(e+ W) x A

sufficiently close to (e, ay).

Stable solutions are defined to be strict local minima of V,. Fix a small neigh-
borhood W, = V,x U, of ain W., and small § with 0< 6 < 6, such that
condition (X) holds for xce -+ W,, and ||a — o] < 0. Let (3,7, $)eGX V,x W,
be a critical point of ¥, o with |a — ao| < J. By the splitting lemma (TROMBA
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[1976] and GoLuUBITSKY & MARSDEN [1983]), there exists a local diffeomorphism
¢q: (g v, $) — (g, v, u) near (g, v, ¢) sending (g, v, $a(gv)) to (g, v, 0) such that

Vaicolg, v, 4) = V(v + ¢, g7"a)

1 o*v 2
=5 (v + g, v), a) @) + fi(g, v)

for (g, v, ¢) near (g, v, a). Hence, by condition (X)), ¥, has a (strict) local mini-
mum at g(v + ¢) if and only if £, | I" has a (strict) local minimum at g(e - 7)
in the submanifold G(e + V). It is natural to define index V, = indexf, | I'.

For a non-degenerate f, | I', the fact that index ¥, =indexf, | I'= 0 simply
means stability.

B. A second reduction

To obtain additional results, we make more hypotheses and consider three
cases. As we shall see, we have a bifurcation problem on the slice in the first case
(A) considered below, a bifurcation problem on the group orbit in case (B),
and a combination of both in case (C).

Case (A). Ga; = a; and a = ay + Aa;.

Thus ¢,(g, v) = de,v) and f (g, v) = fe,v) for all g€ G. Hence (g, v)
is a critical point of £, if and only if v is a critical point of the I -invariant function
fuA(e,*) on V. It may be easier to understand this fact by the following reasoning.
Since V(gx, a) = V(x,a), for all g€ G, it follows that if x is a critical point
of V,, then so is the whole orbit Gx. Thus, one need only look for solutions in
the cross-section e + W,. Since V(gx, a) is a constant along the orbit Gx, these
solutions are critical points of the function V, restricted to e + W,. Our problem
is thereby reduced to a more familiar one: study the family of /™-invariant func-
tions V, (w) = V(e + w), on W,, with @ varying in a neighborhood of a,. By
the Liapunov-Schmidt reduction, we find that the reduced potential is precisely
the function f(e, v). To study such a bifurcation problem for f; (e, v), we may
consider its /-codimension, and examine its universal /-unfolding. We may also
consider an imperfect bifurcation for such /-invariant functions. For more de-
tails, consult POENARU [1976], WASSERMAN [1974] and GOLUBITSKY & SCHAEFFER
[1979], etc.

Case (B). ker L = T,Ge (i.e., V = {0}).

Here critical points of ¥, are in 1-1 correspondence with those of f, | I’ on
Ge ~ G, I" (the isomorphism being g¢,(g) <> ge).

The following is an immediate consequence of the Liapunov-Schmidt reduction
discussed above and of critical point theory.
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3.3 Theorem. Suppose condition (F) on L is fulfilled with ker L = T,Ge. Then,
for |la — ao| small, there exists at least cat (G/I") solutions near Ge.

Here, cat (G/F) denotes the category of the space G/I in the sense of Liusternik
and Snirel'man.

To get more information on the solution set, we must obtain an expression
for f,(¢) up to second order in A%, which is invariant under the actionof I':y-g
= gyt for y¢ I'. Equation (9) yields

2 2

BV
-a_xz-(ua um(g)) + ox da (ua 14 al) - \ (ual(g)) + ?a—(g al)» u/ -

for all ue «,.
In particular,

2 2

o*v
- ox oa (ual(g)a g_1a1> = —W <ual(g)9 ual(g)) % <L(ual(g))= ual(g)> . (1 1)

Therfore, expanding V at (e, a,) into [-invariant terms, we obtain

Jd8) = V($d2), a0 + 7g7"g1) = V(e + (d(8) — e), a0 + Ig~"ay)

av
= Vie,a0) + 5o (88) — ) + o (igla)

-1 (0*V o2V oV
rl

7 T2 8x3a+ }—1_0(13)'

Using equation (11), we obtain the /-invariant expression,

ov A2
Jd8) = Ve, ao) + A—— (g7 ar) — 5 <L(u(2)), u(2)

AZ 82V —1 %2 k 3
+ 5 @a) + 02 e — @) + 0(2P).  (12)

Here we abbreviate uaf(g) as u(g). First order considerations lead one to consider

_1*

ov
(g 'a;): G—R, a linear functional on the orbit of a group representation.
oa P

For the special cases of G = SO(n), U(n), etc., consult FRAENKEL [1965] and
Ramanuiam [1969].

Now we further assume the following condition on the [-invariant function

—a;(g—la;“), which will allow a second Liapunov-Schmidt reduction:

ov
(B) The functionb—a-(g—laf): G —R is non-degenerate in the sense of Bott with

a critical manifold S,.
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Set fX¥(g) = (fg) — Ve, ap))/A, for A>0. Fix any [-invariant normal

bundle of S; in G, and let k(g)€ G be the critical point of £ restricted to the
fibre through g€ S;. Since

A% oV
g k'®@a) = 5g & 'a) + 0@ llay — af ) + o(a}?,
we get

- ov A
fo®) = fi(k(g)) = ‘5;(8‘101) — - <L(u(g)), u(g)

+

Y
2 (g >+ O@lla; — af) + 03 (13)

32

on S;. Again, each term in the above equation is invariant under I', where
y-g=gyt for ye I Clearly,

av -
Index V, at k(g) ¢,(k(g)) = Index—a—;(g—la;“) at g + Index f,(g) at g. (14)

Let us examine the situation in which a; = a,(4) depends on A. Thus,
a=ay + Aa;(A) = ao + Aa¥ + A%a, + O0(23). Denote by 0(g) the F—mvanant

24
function on S, 2-— o (g71ay) — <L{u(g)), u(g)> + (g af?). Any I“inva-
riant function & on S, induces a function &/I" on Sle via (§/1") (ge) = &(g).

3.4 Theorem. Let conditions (F), and (B) hold for V,, and let a = a, -+ af +
22a, + O(R3). Suppose 6/ I' is a Morse function on Sye with critical points g e, ..., g,e.
Then, for A >0 small, the solution set {x|¥,(x) =0} near Ge is given by
{x1), ..., x, (D}, where x;(})—ge as A—0 for i=1,...,n

av
Proof. Sincea—a-(g‘lai") is locally constant on S, one obtains the [-invariant

v oV
expression, o (g71ay) = const. (local) + 4 —Ua—a— (g~'a,) + O(A?). Hence f,/I'=

const. (local) + + 6/I" - O(%). Since Morse functions are stable under small
perturbations, the results follows. B

Often the variations a = ao -~ 4a, preserve certain symmetry of a,, i.e.,
Ha = a for some subgroup H of G. When this happens ¥, and 6/I" are H-in-
variant functions, so their critical sets consists of critical H-orbits. An H-invariant
function is said to be an H-Morse function if to each critical H-orbit, the Hessian
is non-degenerate on the transversal cross-section.

A simple generalization of Theorem 3.4 is as follows.

3.5 Theorem. Let conditions (F) and (B) hold for V, and let a = a, + a* +
A2a, + O(A?). Suppose Ha = a for a subgroup H C G. Suppose 0/I" is an
H-Morse function on S,e with critical orbits H(g.e), ..., H(g,e). Then for 4 >0
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small, the solution set {x|¥,(x) =0} near Ge is given by orbits of the form
{Hx1(2), ..., Hx,(3)}, where x;A)—>ge for i=1,...,n

Proof. It suffices to observe that one can write f;/F = const. (local) + 4 6/T
+ O(2), an H-invariant expression, by choosing a (H X I")-invariant normal bundle

of Sy in G in reducing f¥ to £,. @

Case (C). The I-invariant function f, (e, v) = V(v + é,(e, w, ay)) has a strict
local minimum in V at v =0 with finite codimension k.

3.6 Lemma (a). If there are solutions arbitrarily close to ge € Ge for A and a; — af

_ v
small, then g is a critical point for a—a(g“la;") on G.
2 2

ov 0 |4
O 2 (- ta) = o e, a0) (@) and = (g ar)? = (ge, a0) @), for any
a; € d.

Proof. (a) By hypotheses, there exist 4,0, ay —a,,g,—>g, and v,€ V—0,
as n—> oo, such that j:,;.e(g, v) has a critical point at (g,, v,). From equation (10),

oV
it follows that the function a (g7'a¥) + O@v,) + O(Z,,)} has a critical point at

: —1 % ) " . -
g = g, Since &n ar—(g) al,——(g a*) must have a critical point at g.

(b) Expanding the equation ¥(ge, ao + Aa,) = V(e, ao + Ag~'a,) in A, one

2

oV ov |4 o2V Lo
obtains = (ge, ao) (ar) = 7~ (¢7'ar), 77 (8¢, ao) (@) = 7z (g7'a))* etc. W

From this lemma, it is natural to perform another Liapunov-Schmidt reduc-
tion on f(g, v), by assuming that

ov
™M) 8—a(ge, ao) (a}) is a Morse function on Ge.

ov
Let ¢ be a critical point of a—a(g—la}“) on G. Recall that f(g,v) = f, (e, v)

ov
4 AH/(g,v) and H,= “a g~'a,)) + O() + O(A), a I-invariant function.

Let X be a cross-section of I'-¢ through ¢ in G. Thus (o,v)€XXV,—
o(e + v) € € provides a local diffcomorphism. By condition (M), we can uniquely
solve the equation

a

—(a V) = =0 for ¢ =0, a)cX with =00, a,).

Consequently

Sfilo(v, @), v) = fo (e, v) + AH,(o(v, a), V). (15)
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3.7 Theorem. Suppose conditions (F) and (M) are satisfied. Then for A small and
positive and for ||a; — af|| small, there exist at most (k + 1) h solutions, where

ov
h = the number of critical points of (ge ao) (af) on Ge.

Proof. Since the codimension of f, (e, v) is k, the function f,(o(v,a), v), which is
a small perturbations of £, (e, v), possesses at most (k + 1) solutions. The theorem
now follows from Lemma 3.6. [

ov
If Ha = a for some subgroup H in G, then V,, f,, and (ge ap) (aF) are

H-invariant functions. Thus it is natural to consider the followmg condition:

v
Mp) a—a(ge, ao) (af) is an H-Morse function on Ge.

14 —
Let o be a critical point of a (g'a¥) on G. Choose a cross-section 2 of Ho ™1
through ¢ in G. Thus (0, v) € XX V,— o(e + v) € ¥ provides a cross-section for

. . 24 w oV «
H-orbits. By condition (Mp), %(ae, ay) (ay) = a—a(a—lal) has a non-degener-

_ 0 _
ate critical point at ¢ = ¢ on X. Hence one can solve —af;a(a, v) =121

=0 for ¢ =o0(v,a)€X with o= 0(0, a,). The reduced function is
Slo(v, @), v) = fo (e, v) + AH,(o(v, a), v). (16)

3.8 Theorem. Suppose that conditions (F) and (My) are satisfied with Ha = a.
Then for A small and positive and for |a; — af| small, there exist at most (k + 1) h

%4
critical H-orbits, where h is the number of critical H-orbits of (ge ap) (af) in
Ge.

The proof of this result is similar to that of the preceding theorem and is thus
omitted.

For the sake of completeness, let us describe how our earlier work on
the traction problem fits into this general framework.

3.9 Example (cf. [1] and [II]). Denote by # a bounded open set with smooth
boundary 82 inR3. Let % = {¢: B —R3, $(0) = 0}, € = {¢p € % | det D$ > 0},
the space of deformations, and & = % = {(b,7) |b: #—R3, 7:08—R>
[bdu 4+ f'rdA 0} the space of loads. Let </,¢) = f(b &> dV + f(r o> dA,

for (b, r) =1 and ¢ U. Then G = SO(3) acts on U, s, and & by com-
position. Set V(¢) = f W(D¢) dV — <1, <I>>, where W is a stored energy function,
and choose (e, ap) = (I3, 0). Thus = {identity} and Y)(¢) = D(¢) — /.
Assume that the classical stability hypotheses on W holds at I Then the condi-
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tion (F) with ¥ = {0}, and the conditions (X) and (%) introduced in our case (B)
are satisfied. Condition (F) follows from classical linear stability, condition (X)
from Korn’s inequality, and condition (%) by direct computations. Indeed, the
loads af may be classified according to the type of critical manifolds .S; obtained
in condition (%B). Consequently, Theorem 3.4 can be applied. For parallel loads,
H = S', Theorem 3.5 becomes relevant.

3.10 Example. Let U, €, o, &£, {l, 5, and V have the same meaning as in the
preceding Example 3.9. Set (e, ap) = (I3, Iz). Thus we consider a traction
problem with initial load /4, which need not be zero. Let G be the isotropy group
of Iz in SO(3), and let it act on %, ¥ and &/ by composition as before. The veri-
fication of condition (®B) offers no problem; it is basically the same as in Ex-
ample 3.9. In § 2A, we introduced a condition (S) on W, and under this condition,
condition (F) with ¥ = {0} and condition (X) become valid. (See Proposition 2.5
and Lemma 2.12.) Therefore the results in case (B) can again be applied.

3.11 Remark. When comparing the results obtained by the general method with
what we got before, we need only replace g by Q7 in appropriate places. This
follows from the different ways of parametrizing the neighborhood of “trivial”
solutions, namely, by the parametrizations (Q, ¢)— Q¢ in §2 and (Q, ¢)+—
Qg in § 3.

§ 4. Signorini Series

In this section we present an abstract version of Signorini’s scheme for finding
a power series solution x = e + Au; + A%u, + ... of the equation ¥(x,a) =0
with a given in the form a = a, 4+ Aa; + A%a, -+ ... . Here we employ the ab-
stract context described in the previous section. When we specialize our results
to the traction problems as in Examples 3.9, 3.10, we recover the usual Signorini
scheme, as in TRUESDELL & NOLL [1965], MARSDEN & WAN [1983] (for zero initial
load) and BHARATHA & LEVINSON [1978] (for a general initial load).

Let x = e + Au; + A%u, + ... be a series solution. We wish to determine the
u; in a systematic way by solving linear problems. We have

V(e + Auy + APuy + ..., a0 + Aay + A%a, + ..) =

or
L(Au; + 22u, + .. )—[— (lal—l—laz—i— J+...=0.

Comparing orders in A, we get

order A:  L(u,) —l— (01) 0,

order 4™: L(un)+ (an)+=%”(u1,---,un_1)=0 L)

where 2 is a polynomial in uy, ..., u,_; of degree n.
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Since V(gx, a) = V(x, g~'a), by varying g near the identity in G, we obtain
ov
—é;(x, a)(wa) = 0 where w¢€ g, the Lie algebra of G. Therefore

v
—5;(e+lu1 4+ A%u, + ..., a0 + Aa; + A2a, + ..)) (Awa, + A*wa, +..) =0

(since wa, = 0). Thus

2

oV *V
3—(1-(}»wa1 + 2’wa, +..) + m(ﬂul + 22uy + ..., Awa, + A’wa, + ...)

2

o2V
+‘a‘;5(lal + 2%ay + ..., Away -+ APwa, + ..)

+...=0.

Comparing orders in A, we obtain the compatibility conditions:

ov
order A: a w,a,) =0, for all weg

‘d A" il A ad 0, for all C
ordaer 4-: é?a—a(un—b Wal)"l" (ula-"aun—2)+?‘a'(wan)— , forall we ga( n)s

where A (uy, ..., u,_,) denotes a polynomial in uy, ..., u,_, of deéree n. The con-
diti il 0 simpl hat the functi WV (g o
ition  — (way) = simply means that the function p (gta) (= %

(ge, ap) (a;)) on Ge has a critical point at e.
The following result gives a first-order sufficient condition for the existence of
such a series solution.

4.1 Theorem. Suppose condition (F) is fulfilled with ker L = T,Ge (case (B)).
v
Let a = ay + Aa, + A%a, + ... be given with the function 3_a(g_1 a,) having a

non-degenerate critical point on Ge at e. Then there exists a unique solution x(A)
of the equation ¥(x(2), a(A)) =0 with x(A)—e as 1— 0.

ov
Proof. From equation (10) or (12), £, = Ve, ao) + la—a(g“l(al + Aa, + ..))+
%4
OA?) = Ve, ay) + lla—a(g“al) 4+ O(A?). By the non-degeneracy condition on

oV
L the critical points of f,, ¥, depend on A smoothly so the result follows. [

. . v
Let us now examine the Hessian of the function a—a(g—lal) on Ge at «

For simplicity, we take G to be a subgroup of some ring M, of nXn matrice
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with the actions on %, & induced from actions of M, on %, s/. Thus for
ov

k,we g, kw— wkeg and (kwal) = — (Wka,). Consequently, the Hessian

“k » ¢ ov | . 6 "
H(ke, we) o %(g ay) is %( wa,).

2

42 L i k aVk k
.2 Lemma. m( e, wa;) = — aa( way) for k,we g.

2

t 12
Proof. Write h=1—[—tk+7k2—i—... o) h—lzl——tk—l—?kz—i—....Then

2k2
V(he, ap) = Ve, h™lay) = Vhe, ap) = V<(1 + th + ! > - ) e, a(,)

ov 12k? 1 2*V
—.:V(E,ao)—]—-a—x' (I]€+T+) > 2 ox Z(Zke)2

2

Thus ———(ke)"' = 0. Now write V(he, ap + tway) = V(e, ™' (ay + twa;)) =
Ve, ap + th~ wal). The left-hand side equals

ok ov
Ve, ao) —l— (tk + — ) + P (twa,)
1 (v ey F%
g | 0 + 2 e v + 2 s G+ 09,

while the right-hand side equals Ve, ay + twa; — t%kwa; + ...) = V(e, ao) +

ov 2% 1 02V 2 0 o i 3V " 1’k*
a—a(twal—t wal)—{—?—g;z—(twal) + O(t3). ince t *—TT...

2 2 P

v
(ke way) = ——— (kwal) B

=0, — s (ke)?> = 0, the terms of order ¢* nge

4.3 Theorem. (Abstract Signorini Scheme). Let the hypothesis be the same as in
Theorem 4.1. Suppose uy, ..., u,_ are determined by (L), (Cy), ..., (L,_1), (Cyr_1).
Then u, is determined by (L,), (C,).

Proof. Let x = e + Au; + A%u, + ... be the solution obtained in Theorem 4.1.

Thus uy, ..., u, satisfy the equations (L,), (C)), ..., (L), (C,). It suffices to

show for any m, that if ¢, ..., u satisfy the equations (L,), (C), ..., (L), (C,),

then uf = uy, ..., u}f = u,. To see this, suppose to the contrary that there exists

g, 1 < g =<m, such that uf =u; for i< ¢ and u, 5 u}. The condition (L,)
2

implies that u, — u} = ke, for some k€ g. Condition (C,) gives —— 7 (g way)

% o2V )
=% 7%a —— (u}, way) forall weg. Theref01e o (ke, wa;) =0 forall weg.

0x
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ov
By the non-degeneracy hypothesis on e g 'a;) and Lemma 4.2, we obtain

k = 0, which is impossible. [

When we specialize the theorem above to the traction problem for a stress-
free reference configuration, as in Example 3.9, the non-degeneracy condition

aV
on a—a(g*lal) = (g, l;> simply says that the load ['(0) = I, has no axis of

equilibrium. When we specialize the theorem above to the traction problem with
a general reference configuration, as in Example 3.10, the non-degeneracy con-
dition on {g, /;> holds if and only if (4; — tr A;) e; - e, 7% 0, where A, = k(l,)
and the load /5 is parallel to e,. This condition is the same as in BHARATHA &
LevinsoN [1978].

Our development here leads naturally to the study of linearization stability;
i.e. whether or not the solutions predicted by the linearized theory are the linear
terms in a convergent series expansion for solutions of the the nonlinear theory.
As in MARSDEN & WAN [1983], one can show that there are such series for the
nonlinear theory provided u, satisfies the compatibility conditions of second order,
namely (Cy), (L), (C»).

§ 5. The Pressure Problem

Here we examine a third variant of our basic problem studied in [I] and [II].
Instead of a (dead) traction field along 04, we consider a constant pressure bound-
ary condition along ¢(0%). Thus this boundary condition depends on the configu-
ration or the current position of the deformed body. This problem will be treated
as an application of the theory developed in § 3.

For simplicity, assume that the reference configuration is stress-free and that
the classical stability condition holds for the classical elasticity tensor ¢. These are
the same hypotheses as those in [I] and [II].) The equations for equilibrium solu-
tions are:

{—DivP =Ab in 4,

on = —Apn on $(0%) an

where P = JoF~T is the first Piola-Kirchhoff stress tensor, ¢ is the Cauchy
stress tensor, b is a dead body force, p is a constant pressure, and # is the outward
unit normal along ¢(0%).

5.1 Lemma. on = —Apn on $(0%) if PN = —IpJF~IN on 04.

Proof. It suffices to show

onda = —Apnda if and only if oJF INd4d = —ipJF TN dA,

which follows from the Piola identity: JF 'NdA = nda. B
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Therefore the equations for our pressure problem become:
—DivP =1b in 8, 8
PN = —JpJF'N on 04. (18)

Equation (18) implies that [AbdV + [ —ApJF "N dA = 0. Since [ JF™'N
dA = [ nda =0, one must have [ bdV = 0. In what follows, we assume that
[bdV =0 and we consider b near a given b* with [ b* ® X dV¢€ sym.

Set  V(#) = ¥'(4) — Ab, $)y+ Ap [det FdV, whete 7°(§) = [ W(F)dV
and F = Dé¢. % %

5.2 Proposition. A deformation ¢ is a solution of (18) with given b and Jp if and
only if ¢ is a critical point of V.

To see this, we first establish the following.
5.3 Lemma. D([ JdV) () = [ <JF "N, uydA for all uc . (19)

Proof. Since DJ(H)= Jtr (F~TH) for any H¢ Ms,
D(f Jdv) () = f]tr F ™Dwyav = [ (JF™T, Duy dv
= — [(DivJF~ T, uy dV + [ Div(JF-'u)dV.
Since Div(JF")=0 and [ Div(JF'u)dV = [ (JF "N, u)dd, we ob-
tain D([ JdV)(w) = [<JF 'N,uyd4. &
Using the divergence theorem, we obtain
DY (u) = [ —(Div P,u)dV + [ (PN, uy dA. (20)

Proposition 5.2 now follows easily from equations (19) and (20).

Now we want to put the pressure problem into the general framework of
§ 3. Denote the fixed pressure by p*.

Set % = the space of deformations as before C %:

o ={b,p)| [bdV =0},
& ={b,7) | [bdV+ [7d4d =0}, the space of loads,
oy = [ <bywy dV -+ [ (z,uy dA,
e=1Ig0a,=0,
af = (b*, p*),
a; = (b, p*),
Vi) = f W(F)dV — (b, ¢>V+g;fdethV with a = (b, p),

—DivP—b)

Yo9) = (PN + pJFTN

e2y)
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By equations (19) andb(20),
D Va(¢) (u) = <Yja(¢)a w.

Let G = SO(3) act on ¥, &, and & by compositions (Q(b, p) = (Q ° b, D).
Clearly,

<Q'l’Q 'u>:<l’u>, V(Q'¢,Q'a): V(¢,a), and FII.

Next we check, the appropriate conditions on V. At a, =0, ¥, (¢) =
—DivP —Dive . . ]
( PN ) and L(u) :( N ) Thus condition (F) holds as before, with
ker L = {KX | K€ skew.} Letus take Z = Skew = {(0, KN) | K€ skew} and %, —
Ugym ={u€ U | [u;dV = [ u;;dV}. Condition (X) follows from Korn’s in-

equality as before. From Theorem 3.3 we obtain

5.4 Theorem. For small 2> 0 and b near b*, the pressure problem has at least 4
solutions.

, oV oV
Now notice that —— (g~'a}) = -=(Q~'(b*, p*)) = —(Q'b*, Lp>y + p* [ dV
%

= const. — {[*, Qlz> with [* = (b*,0)€ ¥. Thus condition (B) can be
verified in exactly the same way as that for the traction problem considered in
Example 3.9 of § 3. Indeed, one may classify b* according to the critical manifold
S, ={0€ S0Q) | k(QTI*) € sym} of —(b* QIz>, on SO(3). There are five
different types as classified in [I].

ov ov
Next, observe that P (g71a,) = % (Q~1(b,, 0)) = —<Q~1b,, Iy where

o2V . v —Qb* L
(b5, 0) = a, and T 0. Since a—a(g*lai*) = ( £ ) , Lemma 3.2 implies
—Qb*

that u(Q) satisfies the equation L(u) + (p* N

) ¢ skew. Thus we obtain the

following result from Theorem 3.4:

5.5 Theorem. Let b = b* 4 Ab, + O(A?). Suppose that 0(Q) = —2{Q~1b,, Iz,
— LW(Q)), w(Q)) is a Morse function on S, having n critical points Q, ..., Q,.
Then, for A small and positive, the solution set near SO(3) is {x,(%), ..., x,(A)} with
x(N)—Q; as A—0 for i=1,...,n.

Exactly the same arguments as in [II] provide the same upper bound for n,
a task we leave to the reader.
§ 6. Relaxation of Condition (S)
Let us study the traction problem in general form once more. It has been

shown in [II], § 2 that for an isotropic, homogeneous hyperelastic material there
are no bifurcations near a stress-free reference state. On the other hand, many
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interesting cases are concerned with solutions near a state that has non-zero initial
loads and bifurcations do happen. Although the condition (S) introducedin § 2 A
is fulfilled in certain situations, it fails in many other cases. In particular, the kernel
of its linearized problem contains elements transversal to the (group orbit of)
trivial solutions. Often in such a problem, the reference configuration possesses
a non-trivial symmetry. In what follows, we show that such a traction problem
can, in principle, be put into our general framework.

Consider a homogeneous, isotropic material with reference configuration a
region 4 in R3. Just as in Examples 3.9 and 3.10 of Section 3, we let

% = the space of deformations C %,

o = ¥ = {(b, 7)} = the space of loads,
{, > = the non-degenerate pairing between .¥ and %,
V($) = [ W(F)dV — (I, $>, the potential function.

—DivP —b
Pn—1

Thus Y (¢) = ( ) with a = (b, 7),

e = Iy, a, = lz the initial load, af =1,, and a, =1.

Let G, be a symmetry group of %, i.e., Q,(B)= B for Q,€ G,. (In our
treatment of the traction problem given in Examples 3.9 and 3.10 in Section 3,
we took G, = {e}). The group SO(3)x G, acts on %, &, o/ by compositions:
©Q1,0) u=0,°u°07", (01,0, 1=0Q;°1-0;". Define G= {(Q1,02)
€ SOB)X G, [(Q1, Q2) * Iy = l}. Clearly, <Q-1,0-¢) =< ¢) and V(Q"¢,
Q-)=V(¢,]) for Q€ G. Thus with this choice of the group G, this problem
fits into our general setting. Clearly, I'={(Q,0)€ G} ={0Q€ G,|Qclg- Q0!
= Iz}, and the [-action on %, %, & becomes the usual conjugate actions. One
often encounters the situation Qo lzo Q! = Iz for Q¢ Gy; thus I' ~ G,

Usually the elasticity tensor A is assumed to be strongly elliptic. Thus the con-
dition (F) or the Fredholm alternative holds for the linear operator L(u) =

—Diva
( aN
of Ker L in the transversal direction (i.e., dim V) depends not only on the material,
but also on the geometry of the reference configuration. (For example for the
von Kdrmédn equation for the thin plate, the ratio between the lengths of the sides
enters into the determination the kernel of the linearized problem (¢f. GOLUBITSKY
& SCHAEFFER [1979]).

If the applied force maintains the same symmetry as that of the initial loads,
G -1 =1, then the studies in Case (A) of Section 3 become applicable. Indeed,
one needs to solve a bifurcation problem under [-symmetry. If the applied force
breaks the symmetry, then the studies in Case (C) of Section 3 become valid.

As an illustration, we examine the following.

) U — % (¢f. MARSDEN & HuGHES [1983, Ch. 6]). The dimension

6.1 Example. Consider a rectangular block B = [—1, 1]x[—/ []x[—h, h] of
a homogeneous isotropic hyperelastic material that is in equilibrium with an initial
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—1 0 0
[ = o,(oooN

\'0oo0 o0

load

We claim that

(1) Go={e,R, R, R}={R}D{R}=Z, ® Z, where R, stands for the
rotation by 180 degrees about the x-axis, efc.

10 0 ]
(2) G is a semi-direct product of {{ 0 a —b |{a®*+ b* = 1! x{e} ~ St
0 b a

and {(e, e), (R, R), (R, R), (R, R}~ Z, ® Z,.
(3) I'= {(e: 9), (Rx: Rx): (Ry: Ry): (Rz: -Rz)} ~ 2, D Zy,

110 0 X l
Ge=310|a —b ¥ a2+b2:1!.
0[b a z J

(4) Let (k;) = k(lo), the astatic load. Then condition (M) is satisfied if

and only if k,, + k3355 0 or k,; 7 ki,.
—1 0 0

(5) Let I, = 0 0 0JN,a#%0. Then H~ Z, ® Z,, and condition
0 0 a
(My) is fulfilled if and only if k,, + k354 0 or ki3 7~ kss.

Proof. These facts follow from straightforward computations. For (2), it suffices

110 0
to show that G = {yS'xn|n=e¢, R, R, or R}, with S'=10\|a —b
0|6 a

av
and for (4), it suffices to observe that a—a(g~1a;“) = —(g o, I = o, gI) =
—<k(lo), &, for ge S'. B
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