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THE MORSE LEMMA IN INFINITE DIMENSIONS
VIA SINGULARITY THEORY*

MARTIN GOLUBITSKY' AND JERROLD MARSDEN#

Abstract. An infinite dimensional Morse lemma is proved using the deformation lemma from singularity
theory. It is shown that the versions of the Morse lemmas due to Palais and Tromba are special cases. An
infinite dimensional splitting lemma is proved. The relationship of the work here to other approaches in the
literature in discussed.

Introduction. This paper shows that when the singularity theory proof of the
Morse lemma is extended to infinite dimensions, it gives a result better than the best
available. The best available Morse lemma is that of Tromba [1976], [1981] which
improves upon the usual Morse—Palais lemma (cf. Palais [1963], [1969)) for the follow-
ing crucial reason: The Morse—Palais lemma assumes that the second derivative of the
function at its critical point is strongly nondegenerate in the sense of defining an
isomorphism between the space and its dual. Such a hypothesis is not satisfied in
standard elliptic variational problems; however, the hypotheses of Tromba’s Morse
lemma are normally verified in such problems. Specific examples are presented in
Buchner, Marsden and Schecter [1983]; for others see

(a) Tromba [1976], [1981] for geodesics and minimal surfaces;

(b) Choquet-Bruhat and Marsden [1976] and Arms, Marsden and Moncrief [1982]
for general relativity;

(c) Ball, Knops and Marsden [1978] and Marsden and Hughes [1983] for elasticity.

In conjunction with the Morse lemma are questions of

1. normal forms for more degenerate singularities and

2. a splitting lemma and reduction to finite dimensional catastrophe theory.

Such questions have been studied by Magnus [1976], [1978], [1979], Arkeryd [1979] and
Chillingworth [1980], but under hypotheses similar to those of the Morse—Palais lemma.
In view of the difficulties with these hypotheses, it is important to also carry this
program out under more applicable hypotheses. Such a setting is provided here. A
related setting for a normal form theory in infinite dimensions is presented in Beeson
and Tromba [1981]. Their situation is further complicated by the presence of a group
action. A closely related setting is given in Dangelmayr [1979] and Magnus [1980].

The plan of the paper is as follows:

1. Theorem A in §2 gives conditions under which two given functions are related
by a diffeomorphism in a neighborhood of a singular point.

2. Theorem B in §3 is the Morse-Tromba lemma and is shown to be a straightfor-
ward consequence of Theorem A.

3. Section 4 discusses the splitting lemma and the associated reduction to finite
dimensional catastrophe theory.

Finally, we note that the ideas in Theorem A below are useful in the study of
vector fields. In particular, the methods can be used to deal with some C*-flat
ambiguities in normal forms of vector fields at a singular point. These topics will be the
subject of other publications.
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1. The singularity theory method. To put the methods in perspective, we shall
recall some of the ideas of singularity theory with a view towards the Morse lemma.
The basic methods of singularity theory under the notion of k-determining are con-
tained in Mather [1970], Siersma [1974] and Wasserman [1974], though they are not
stated there in precisely the form we use here.

One of the goals of singularity theory is to bring functions into normal form in a
neighborhood of a singular point. The procedure for doing so involves two steps:

1. The analytical step. This step gives criteria for when two functions are related by
a diffeomorphism. This is done using what is called the deformation method and
involves the integration of ordinary differential equations.

2. The algebraic step. The verification of the hypotheses needed to guarantee that a
function is related to a specific normal form by a diffeomorphism usually reduces to a
problem in linear algebra.

Let us formalize these steps somewhat, with a view toward the Morse lemma in
R". Let g and & be smooth real valued functions defined on a neighborhood of the
origin in R” with g(0)=h(0)=0. We say that g and & are right equivalent if there is a
C* diffeomorphism ¢ defined on a neighborhood of 0 in R” with ¢(0)=0 such that
g(x)=h(¢(x)). If Dp(0)=I=identity, we say that g and & are strongly right equivalent.

The Morse lemma in R" states that if g is a C*® function satisfying g(0)=0 and
Dg(0)=0 and if D?g(0) is a nondegenerate symmetric bilinear form of index k then g is
strongly right equivalent to

h(x)=—(x2+ - +x2)+x2,, + - +x?

ne

The proof of the Morse lemma proceeds by two steps. First of all one shows that g
is strongly right equivalent to Q(x)=%D?%g(0) - (x,x) by writing g= Q+p and seeking a
diffeomorphism that eliminates p. The method for doing this is described below. Once
this is done, linear algebra is used to make a further coordinate change to diagonalize
Q. In this paper we shall concentrate on the first step; in infinite dimensions the second
step depends on having a suitable spectral theorem available.

Now we discuss the general procedure one uses to show that Q+p is right
equivalent to Q. Let O, denote the set of functions which are right equivalent to g. Let
Tg denote the formal tangent space to O, at g. More precisely, let ¢, be a curve of
diffeomorphism with ¢,(0)=0 and ¢,=1d; then ¢,(x)=g(¢,(x)) is a curve in O, with
Y, = 8. It follows from the chain rule that

(%%) ’,=O(X)2D8(x)'z4(x)

where A(x)=¢,(x)|,—o- Thus, a typical element of Tg has the form Dg(x)- A(x), where
A(0)=0.

The deformation lemma is as follows:

Let g,=Q+1tp. Assume

(DY pETY,

(D2) Tg,=TQ for all t€[0,1].

Then Q+p is right equivalent to Q.

For strong right equivalence one modifies 7g to include the condition DA(0)=0,
corresponding to D¢(0)=1. A complete proof of the deformation lemma in the infinite
dimensional case is given in the next section.

Next one uses the nondegeneracy hypotheses to show that indeed (D1) and (D2)
are satisfied. For the Morse lemma this can be done directly since DQ can be identified
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with an invertible linear transformation T by DQ(x)-y=(x,Ty). Then in order to
write p(x) in the form DQ(x)-A(x), one can use Taylor’s theorem to write p(x)=
(x,p(x)) and let A(x)=T"'p(x). This is how (D1) is checked. In fact, one has proved
that if p(x) vanishes at the origin, then p is in TQ. Thus TQ = { p(x)|p(0)=0}.

One verifies (D2) by showing that Tg,={ p(x)|p(0)=0} either by repeating the
construction above for Tg, or (preferably) by using a bit of algebraic machinery such as
Nakayama’s lemma. For more complicated singularities, the use of Nakayama’s lemma
is a practical necessity.

2. The deformation lemma. Let E be a Banach space. Let g,h: U— R be C* maps
(k=1) defined on a neighborhood U of 0 € E and satisfy g(0)=h(0)=0. For 1=/<k,
we shall say that g is C’ right equivalent to h at 0 if there is a C' diffeomorphism ¢:
V — W of neighborhoods of 0 in E such that

¢(0)=0 and g(x)=h(¢(x)) forallxeV.

Furthermore, if D$(0)=1I, the identity, we say that g is C' strongly right equivalent to h
at 0.

THEOREM A. Let f and p be C* real valued functions (k=1) defined on a neighbor-
hood of 0 in E and satisfy f(0)=p(0)=0. Make these assumptions:

(E1) There is an I=1, and a C' map A: U— E defined on a neighborhood of 0 in E
such that

A4(0)=0 and p(y)=—Df(y) A(y) foryeU.

(E2) There is a C' map R: U- L(E, E) (the bounded operators on E with the norm
topology) such that R(0)=0 and

Dp(y)=Df(y) > R(y).

Then f+p is C' right equivalent to f at 0. Furthermore, if in (E1), DA(0)=0, then
f+p is C' strongly right equivalent to f at 0.

Remarks. (a) Conditions (E1) and (E2) are precise versions of (D1) and (D2) in
the previous section, with Q replaced by f. Since Tf consists of functions of the form
Df(y)-A(y), clearly (E1) is expressing the same ideas as (D1). For ( E2), observe that

Dp(y)=Df(y)°R(y)
is equivalent to saying that for all ¢ €[0, 1],

Df(y)+tDp(y)=Df(y)+tDf(y) o R(y)
i.e., with f,=f+1p,
Df(y)=Df(y)° L,(y)

where

L(y)=I+tR(y).

Thus there is a linear map relating Df,( y) and Df(y). Since R(0)=0, L,(y) is invertible
on a neighborhood of zero. Thus ( E2) is expressing (D2). In fact the condition R(0)=0
can be replaced by || R(y)||<1 or invertibility of L, for the right equivalence conclusion.

(b) If f is homogeneous of degree «, i.e. f(ty)=1t“f(y) for a positive integer k, and
(E2) holds then (E1) holds. Also, if R(0)=0 then DA(0)=0 (so one has strong right
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equivalence). To see this use (E2) to write

p(y)=fole(fy)-defolDf(fy) °R(7y)-ydr
- folT"_‘Df(y) ° R(7y)-ydr.

Thus, (E1) holds with A(y)=— [; 7 'R(7y)-ydr. Note that A(0)=0 automatically
and R(0)=0 implies DA(0)=0.

(c) Theorem A readily generalizes to the case in which E is replaced by a Banach
manifold. Condition (E1) has intrinsic meaning independent of charts if 4 is a vector
field on E. Condition (E2) also makes intrinsic sense if R is a section of the bundle
over E whose fiber at x € E is the set of continuous linear maps of T, E to itself; this is
a standard vector bundle associated with a manifold.

Proof of Theorem A. We first show that f,=f+1p is C' right equivalent to f for
small z. We find a curve of diffeomorphisms ¢,(x)=¢(x,?) such that ¢,=1, ¢,(0)=0

and £,(¢,(x))=f(x). To do this, we seek a vector field 4,(x)=A(x,t) of class C' in x
and ¢ such that 4,(0)=0 and

p(»)=—Df(y)-4(y).

If A4, is found, we let ¢, be its evolution operator defined by ¢,(x)=4,(¢,(x)) and
¢o=1. Then we have

2 (8,0 =p($,())+ D(9,(x))- 4,(8,(x)) =0.

Thus we get f,(¢,(x))=f(x) as desired. Note that 4,(0) implies ¢,(0)=0 and DA4,(0)=0
implies D¢, (0)=1.

Note that ¢, can be defined (on some neighborhood of 0) for as long a t-interval as
A, is defined. Indeed this follows from the fact that 4,(0)=0 and the continuous
dependence of the solution curves on initial data. To construct 4,, we use ( E2) to write

Dp(y)=Df(y) > R(y).
Therefore,

Df(»)=Df(y)+Dp(y)=Df(y)(I+1R(y)).
Using this and ( E1), the equation Df,(y)-A4,(y)= —p(y) becomes

Df(y)(I+1tR(y))-4,(y)=Df(y)-A(y).

Since R(0)=0, I+tR(y) is invertible for y in a neighborhood of 0 and 0=¢=<1, so we
can take

A(y)=(I+R(»)) " 4(»). O

3. Tromba’s Morse lemma. This section shows that Tromba’s Morse lemma is a
direct and natural consequence of Theorem A. The setting is as follows.

Let E be a Banach space. Let ( -, - ) be an inner product on E and B: EXE—-R a
continuous symmetric bilinear form. Assume

h: E-RisCk, k=3,
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and satisfies:
h(0)=0, Dh(0)=0, D2h(0)(u,v)=B(u,v).

Consider the following conditions:
(T'1) There is a linear isomorphism T: E— E such that

B(u,v)={(Tu,v) for all u,v €E (nondegeneracy).
(T2) h has a C*~! gradient relative to {(*,-), Vh: U~E;i.e.,

(vh(y),u)=Dh(y) u.

Note. (T1) implies that T itself is symmetric (i.e. (Tu,v)={u,Tv)), since B is
symmetric.

THEOREM B. (Morse-Tromba lemma). If (T1) and (T2) hold, then h is C*~?
strongly right equivalent to f(x)=%B(x,x) at 0.

Proof. Note that Df(y)-u=B(y,u)={Ty,u), so Vf(y)=Ty. By Taylor’s theo-
rem, write h=f+ p where p is C¥, has a gradient and p(0)=0, Dp(0)=0 and D?p(0)=0.

Since f is quadratic, Remark (b) following Theorem A, shows that it suffices to
show that ( E2) holds with R(0)=0.

To do this, use the fact that p has a (-, -) gradient to write

Dp(y)-u={vp(y),u)

= <LIDVp(Ty)-yd7,u>.

However, differentiating Dp(x)-u={(vp(x),u) in x, we see that Dvp(x) is symmet-
ric. Thus

Dp(y)-u= <y, (fO'DVp(Ty)-yd'r)-u>.

Hence we can take R(y)= [; DVp(7y)-ydr.

Note that R(0)=0 so we have strong right equivalence, as required. O

Remarks. (a) There are versions of this theorem for which E is a Banach manifold.
The main difference is to let (-, - ) depend on the base point. These versions can also
be derived from Theorem A. Such generalizations are called for in minimal surfaces
(see Tromba [1981]) and in fluid mechanics where E is a coadjoint orbit (see Arnold
[1978, App. 5] and Ebin and Marsden [1970]).

(b) If the hypothesis (T1) of Theorem B holds and if R(y) exists and has a C*~?
adjoint R(y)* i.e.

(R(y)*u,0)=(u,R(y)v),
then (T?2) holds.
Indeed, Df(y) ° R(y)=Dp(y), so

(Ty,R(y)-u)=Dp(y)-u,
SO

vp(y)=R(y)* Ty.
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Thus, if (T1) and (E2) hold, the extra condition that Theorem B requires is the
existence of R(y)* - Ty. The R(y) chosen in the proof of Theorem B is symmetric, but
even when (7'1) holds it is possible to satisfy Theorem A even when R(y)*- Ty does not
exist. An example is given in the following paper.

(c) If (T'1) holds for two different inner products ¢ -, - », and { -, - ),, then (72)
will hold for (-, - ), if and only if it does for { -, - ),. Indeed, using obvious notation,
the two gradients are related by

Vih(y) =TT 'v,h(y).

Thus, changing the weak metric does not aid in the existence of the gradient. Likewise,
allowing ¢ -, - ) to depend on the base point, but assuming (u,v),=(T,u,v), for an
isomorphism T, (perhaps chart dependent) does not help with the existence of the
gradient.

In fact, (-, -) can be any continuous symmetric bilinear form, degenerate or not
and the proof still goes through. One can always choose (-, - Y=B(-, -) although it
may be computationally convenient to make a different choice. However, for the
splitting lemma considered below, where T need not be invertible, the choice of (-, - )
really will affect whether or not the gradient exists.

(d) Assume (7'1) holds for f(x)=3B(x,x) and let p(x)=h(x)—f(x), where h
satisfies the conditions preceeding (7'1). Then conditions ( E1) and ( E2) hold if and only
if there exists a C' map R: U— L(E, E) defined on a neighborhood U of 0 in E such that
R(0)=0 and

(R) Dp(y)-u=(y,R(y)-u) forallyeUandu€EE.

Indeed, if (R) holds, (E1) and ( E2) are verified with 4(y)=—T"'f{ R(ry)-tydr
and R(y)=T"'R(y). Conversely ( E2) gives condition (R) with R(y)=TR( ).

(e) If E is finite dimensional or admits a “C* duality mapping”, then Theorem B
can be improved to k=2 and the right equivalence is C*~! (and C* away from 0). In
finite dimensions this result is due to Kuiper [1972] and in infinite dimensions to Tuan
and Ang [1979]. The same result can be proved by the methods of this paper by using
the Whitney properties of the remainder term in the form given by Tuan and Ang
[1979].

4. The splitting lemma. We now briefly discuss the splitting lemma of Gromoll
and Meyer [1969], which enables one to reduce infinite dimensional catastrophe theory
to the finite dimensional case. As usual, we want hypotheses that will be applicable to
elliptic variational problems—see the following paper for specific examples. We shall
work in the context of Theorem B.

Let E be a Banach space and #: E—R be C*, k=3 defined in a neighborhood U
of 0. Suppose 4(0)=0 and write D?h(0)(u,v)=B(u,v). Let ( -, - ) be an inner product
on E and assume

(S1) there is a Fredholm operator T: E~ E of index 0 such that B(u,v)={(Tu,v) for
allu,v€E.

Since T is Fredholm of index 0, we can write E=K® L, where K=kerT and
L=rangeT (note that T is symmetric). Denote points in K® L as pairs (x,y). Also
assume:

(82)=(T2) h has a C*~" partial gradient v h: U~ L (i.e. {V,h(u),0)=Dh(u)v
forallve L) and v,h(0,0)=0.
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SPLITTING LEMMA. There is a change of coordinates x=x, y=n,(y)=n(x,y) such
that in a neighborhood of (0,0), h has the form

h(%,7)=14D;8(0,0)(7.7) +r(%),

where 1(0,0)=0, D,n(0,0)=0, D,1(0,0)=1 and r(0)=0, Dr(0)=0 and D?r(0)=0.
Proof. Consider

Vyh: U-L.

Let P be the projection of E— L whose kernel is K, and note that P o T restricted to L
is an isomorphism of L to itself. Observe that D,v,4(0,0): L— L is the operator P o T.
Thus, the implicit function theorem guarantees that the equation

v,h(x,y)=0, ie, Dh(x,y)=0

uniquely defines a function y = F(x) near (0,0); F(0)=0 and F'(0)=0.
Let g(x,y)=h(x,y+ F(x)) and note that

Dg(x. ) =Dh(xy+F) o iy 7))

An easy computation shows that Dg(x,y)=0 implies y=0 and D, g(x,0)=0 if and
only if Dh(x, F(x))=0.

Theorem B (with 4 depending on parameters) shows that there exists an x-depen-
dent change of coordinates y=® ( y) such that

g(x,9)=1D]g(x,0)(,5) +g(x,0).

Theorem A can now be applied in a similar way as in the proof of Theorem B to the
first term %Dyzg(x,O)( »,») showing that there is a further coordinate change =¥ ()
depending parametrically on x, which transforms this term to %Dyzg(O, 0)(7,7). Putting
these coordinate changes together gives the result. O

Remarks. 1. Letting m=dim K, this splitting lemma is a generalization of the usual
form of the splitting lemma: a function whose Hessian has corank m at a critical point
can be decomposed as the sum of a 2-flat function of m-variables and a nondegenerate
quadratic form in the remaining variables. See, for example, Wasserman [1974, p. 137].

2. The proofs we give are for k=3 and give coordinate changes of class k—2.
However, as in remark (e) following Theorem B, this can be improved to k=2 and
coordinate changes of class C*~! if the Banach space L admits a C* duality mapping.

3. To find the critical points of 4, it is enough to find the critical points of g
restricted to the finite dimensional space K=ker T.

4. To find a normal form for 4, it is enough to find one for g|K. Note that the
computation of g is not necessarily an easy matter as its definition depends on the
implicitly defined function F. However, using implicit differentiation one can in princi-
ple calculate the Taylor expression of g to any given order.

Since K is finite dimensional, ordinary catastrophe theory can be used to classify
generically what happens in these situations. If # depends on parameters, the splitting
lemma is to be used in a parametric way; a specific example is worked out in the
following paper (see Example 7). The general results of Chillingworth [1980] also
generalize to the present context. Finally, we refer to Magnus [1980] for a splitting
lemma under hypotheses similar to those described here.
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