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-

A method developed by Arnold to prove nonlinear stability of certain steady states for ideal incompressible flow in
two dimensions is extended to the barotropic compressible case. The results are applicd to planc shear flow,

This paper uses a convexity method due to Arnold [1] to provea priori stability estimates for smooth solu-
tions of planar ideal barotropic fluid flows. The estimates obtained give L2 bounds on perturbations of momen.
tum density, mass density and vorticity for a given stationary solution whose Bernoulli function and internal
energy density satisfy certain inequalitics. The estimates are global in time and are valid as long as the solutions
being estimated remain smooth and, in a sense made precise, do not undergo cavitation. Arnold used this method

results ccase to apply.

The idea for the method depends on the hamiltonian structure for compressible flow which has recently been
developed by Morrison and Greene [2], Holm and Kupershmidt [3] and, in a way corresponding to Arnold’s
method for incompressible flow, by Marsden, Ratiu and Weinstein [4]. One finds that the cquations are Lie—
Poisson equations on the dual of the Lie algebra of the semi-direct product of vector ficlds and functions, On each
coadjoint orbit (the **Lin constraint”) the equations are hamiltonian in the classical sense, and critical points of
the hamiltonian restricted to an orbit correspond to stationary solutions. Arnold [5 6] developed a formal stability
criterion by demanding that the second variation of the hamiltonian restricted to the orbit be definite. We call
this formal because in the infinite-dimensional case of concern to us, this method does not give a rigorous proof
of nonlinear stability due to difficulties with the topologies involved. This was pointed out in Marsden and
Abraham (7] and Ebin and Marsen (8] and must have been known to Arnold. There are similar difficulties with
stability in elasticity and it is known that the second-variation method can, in a certain sense, fail [9,10]). The
formal stability method gives stability for linearized solutions but does not, as formulated, prove nonlinear stabilj-
ty. This method has been used for example by Benzi et al, [11] to prove formal stability of certain Planetary
vortices.

Arnold [1] developed a convexity method which overcomes the difficultics with formal stability. The method
is motivated by the formal stability arguments, but docs not, strictly speaking, depend on them. The crucial
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point is to add to the hamiltonian £ a conserved functional £ which plays the rolc of a Lagrange multiplier con.
straint for the orbit. Then one uses convexity methods to estimate £ + F for finite perturbations of a given
stationary solution,

It is interesting to note that formal stability criteria similar to Arnold's were developed for plasma theory by

Kruskal and Oberman [12] and that a nonlinear stability method similar to Arnold's convexity method was
developed by Newcomb [13] and by Rosenbluth [14].

Our results are limited to smooth compressible flows. It is known that w/p = vorticity/density is not transported

across shocks, and additional w/p can be created by the skocks. It is not known how to deal with this problem,

In a forthcoming paper, we shall deal with additional examples: adiabatic three-dimensional compressible flow,
two-dimensional magnetohydrodynamics, the Poisson—Vlasov equations for one-dimensional plasmas, and multi-
layer quasigeostrophic systems.

We shall denote stationary solutions with a subscript s. Thus, v,. A and w are the velocity, density and vorti-
city of a stationary solution. The finite perturbations are denoted v = Vs +Av,p=p,+48pand w = w, + Aw.
Note that A denotes a finite perturbation and not the laplacian,

Consider compressible fluid flow taking place in a domain D C R2 with smooth boundary. The barotropic

fluid cquations define 2 dynamical system in the space of fluid velocitics y (x,», ) and mass densities p(x, y, 1)
by

dv/de = -Vi(p), dp/dt= —p divy , )

where d/d¢ = 3/d¢ +v - Vis the material derivative and h(p) is the specific enthalpy, a given function, related to
the barotropic pressure, p(p), by dii/dp = p=! dp/dp.

Planar fluid Nlow is thought of as taking place in the (x, v) plane of R3, Denoting by a the positively oriented
unit vector along the z axis, the vorticity w is defined to be the real-valued function on R? given by w = sr-curl
V=Uyy — Uy, where £, = af/ox andfy = 9f/dy denote the partial derivatives of the real-valued function f. Using
the relations V(v2/2) = (v-¥) v — wn X v and div(pv)= (v-V)p + p div(v)in cqs. (1) and applying the operator
n-curl to the first equation yields dw/dr = —w divy , which combined with the second equation of (1) implics
d(w/p)/dt = 0, so that for every real-valued function of a real variable <b(¢), the functional

Fa(io): = [f pt(wip) dx dy
b

is a conserved quantity of the system (1) (provided the integral exists and the solutions are smooth). Another
conserved quantity is the total energy

E: =ff[pv2/2+ e(p)] dx dy ,
D

where €(p) is the internal cnergy density of the fluid, related to the specific enthalpy by de/dp = h(p).
The equilibrium states of the system (1) are the stationary, two-dimensional, barotropic flows. For such sta-
tionary flows, the gradient vectors V(uf/ 2+ hpy)) and V(w/p,) can be shown to be orthogonal to the velocity.

Consequently, these gradient vectors are collinear, provided they do not vanish. A sufficient condition for this
collinearity is the functional relationship

v212+ h(p,) = k(wlp,) ()

for some function k(%), £ € R, defined wherever V(w¢/p,) does not vanish: & is called the Bernoulli function and
relation (6) represents Bemoulli's law. Applying the operator (p/w,) 1 X V to (2) we get

psl’g = (psl’ws) nX Vk(ws/ps) = (pslws) (_ky(ws/ps)’ k,q:(wslps)) . (3)
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We shall now prove the following proposition:

Proposition. Within the framework of smooth solutions with velocity fields parallel to the boundary and fixed
circulation on the boundary, a stationary solution v, p, of the ideal compressible barotropic fluid equations (1)
is a conditional extremum point of the total energy £ for fixed vorticity integral Fy and an absolute extremum
point of = E + I, where

¢
k(1) )
= _—7 + t
6(®) i‘( f 2 dr+const ),
k being the function constant on streamlines given by Bernoulli’s law,

After integration by parts, the derivative of A at (v, p) in the direction Av, Ap is

DIf(v. p)-(Av, 80 = [ [ {[v2/2 + (o) + b} — (cofp) &' (wolp) A
D

+[pv—nXVd'(w/p)]-Av} dx dy + f P'(w/p) Av-dl . 4)
8D

For a stationary solution. the connected components of the boundary 3D are streamlines. Since for stationary
solutions, flow lines and streamlines coincide, and wy/p, is constant along the flow, it follows that ‘b'(ws/ps)
is constant on the components of aD. Thus, the boundary term becomes

V(wdolyp $ du-dr.
oD

Since the variations satisfy § Av+d/ = 0 for each connected component C; of 3D, the boundary term C; vanishes.
Eq. (4) shows that Dif(v, p,) vanishes for a stationary flow obeying (2), provided that & is related to the
Bernoulli function by £(¢) + P() = $P'(}) = 0, from which the proposition follows. Differentiating with respect
to ¢ implies ¢ 1 &'(¢) — 4"(¢) = 0. The second term in the double integral of (4) vanishes since V' (w,/p) = (o,/
w,) Vi(wq/p,).

In a finite-dimensional hamiltonian system, it is a classical result of Lagrange that definitcness of the second
derivative of the hamiltonian at a fixed point of the flow implies the Lyapunov stability of the fixed point [15].
In the infinite-dimensional case, there are dif; ficulties with this idea due to the inconsistency between the func-
tion-space topology necded for the infinite-dimensional calculus to work and the topology of the second variation,
(See. e.g. refs. [9,10) and ref. [4], Ch. 6 for relevant examples in elasticity.) However, it is instructive to carry
out a formal stability argument for an infinite-dimensional system to see what kind of expressions one might
hope to bound by use of a rigorous stability argument. Since the compressible ideal barotropic fluid equations
are hamiltonian [2—4] such a formal analysis is applicable in this case,

We start with the remark that instead of the energy, one can use // = £ + F,as the hamiltonian, This is because
® is such that the stationary flows are critical points of /f and F, Poisson-commutes with any function since it
is an orbit invariant (F,,, is, thus, a Casimir function in the sense of Weinstein [17)).

In the class of smooth solutions with fixed circulations on the boundary components, we have

DH(,p)-(av, 80) = [ [{[v2/2+ k(o) - (walp)] 2p + [ov = (p/ew) 1t X Vi(ew/p)]-Av) dx dy .

The quadratic form defined by the second derivative at the stationary solution is
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)

D2H(vy, py)+(Av, Ap)? =ff {ogav+v ap/p |2+ [e"(p,) ~ v2/ng) (Ap)?
D

tart Koy (08w — w ApYp,] 2}dx dv . )

This form is positive definite if and only if:
B €(y)-vilpg= (2 - vd)p, >0,

where ¢, is the sound speed of the stationary solution defined by Ps€"(pg) = c? is the sound speed of the station-
ary solution defined by pse"(p,) = csz, i.e., the stationary flow is everywhere subsonic, and

() (gl K'(wylpg)= ¥ (wyfn,) = V212 + h(p Y)Y v (welp)?)> 0

(recall that these two gradients are collinear), i.e., these two gradient vectors point in the same direction through-
out the stationary flow.

Formally stable flows are also possible when the expression (5) is negative definite. This can happen only if
the flow is supersonic enough that the middle temm overcomes the first and third terms. For pPs=1,and Ap =0,
formula (5) reduces to Arnold's result [5]..

We shall now make a modified stability argument rigorous in the context of smooth solutions, and shall ad-.
dress the question of non-linear (Lyapunov) stability. This will be done by finding a priori estimates on the per-
turbations which wiil be expressed only in terms of the Bernoulli function k. We hasten to add that our analysis
holds only for the smooth regime; for if shocks occur, and this is cxpected to happen generically, the quantity
w/p need not be conserved along the flow lines (cf..ref, (18] pp. 221, 222).

Theorem 1. Assume that the Bernoulli function k and the internal energy density satisfy

0<a<t~ K< A <o, : (6) ™
where @ and A are positive constants and similarly,
0<e; <€'(r)<ey <oo, ¢)

with constants €1, 29, and for all values of the arguments. Let (Av, Ap) be a smooth perturbation of a stationary
solution (vg, £) and denote its value at ¢ = 0 by (Avy, Apg). Assume that the circulation of 4Avgy on each com-
ponent of 3D is zero. Then the perturbation (4v, &p) of the stationary solution (vg, 05) at any time ¢ is estimated
in terms of (Avug, 8py) by

2 ——

{f [ﬁ??}: + ("l ‘;ST_A,,)(AP)Z +a(p, + Ap) [A(w/p)lz] dx dy

2

1A(p v), 12 v
<fo [m% *("2 - ,,s:,*,g,,,o)(ﬂpo)2 *Alpg + Apg) IA(w/p)olz] dx dy . ®)

Proof. Since the circulation of Avg is zero initially on the components of 3D, the circulation of Av at any
later time will also be zero on the components of 3D, by Kelvin’s circulation theorem. Since £ and F,, are con-
served along the flow of (1),s0is H(v + Av,p. + Ap) — H(vg, p,). With the choice of P of our proposition,
DH(vg, p,) = 0 so that //(Av, Ap): = Hv + Av,p + Ap) - H(v,, p) — DH(vg, p.)(Av, Ap) is also conserved,
We shall estimate each summand of /7. We have, after a short computation,
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E(av, 8p): = E(v; + 8v, pg + Ap) — E(ug, p,) - DE(v,, p,)(Av, Ap)

= ff {(3 £,1a012 + (v,-A0)ap + § AplAvI?] +e(p, + Bp) — €(p,) — €'(p,) AP} dx¢ dv
D

[Apv)|2 1 2 (Ap)? + + ' )
= S AN —3 VU —— Ap) — e —-€ ApJidx dy .
{f(z@s ¥ Ap) PR oyt Ap [E(ps P) (ps) (ps) pl Iy
According to the convexity hypotheses on ¢, we have the following inequalities, for all Ap:
€1 (80)2/2 S e(og + Ap) — €(p,) — €'(p,)0p < e5(Ap)Y2 .

Consequently, E is bounded from above and below by

. 2 v2
2£(Av, Ap)?ff[% +(el - o ) (Ap)z] dx dy ,
D
2
. 2 v
2£(Av, Ap) <ff["f:(f;22 +( 2= 5 s )(Ap)z] dx dy .
D

Next, we need to estimate the functional
f’,»(Au, Ap) = Fy (v, + Av, ps + Ap) - Fg(vg, ) — DFy (v, o) (Av, Ap)
for b given by our proposition. We have

A A )
F'b(Auv Ap) =ff[(ﬂs + Ap) ¢ (c':s:-_—A(: ) —ps‘p(ws/ps) - [‘p(“’s/ps) - (ws/ps)(b (ws/ps)] Ap
D H

ws+A

~@'n) | dx av =1 oy a0) [H(Z02) b oy <0y, aGwlp) ] ax ay
D S

because

A(w/p) = (w, + Aw)/(py + Ap) - wlps = (pAw - wBp)p (o + Ap).

From (6), convexity of ({) implies - -

1 3[8(w/p)]2 < Dlwyp, + Awlp)) — Dluylpg) — ¥ (wylp,) Awlp) < b A [Awlp)]? .
since {1 £'(¢) = d"(¢). Consequently, F, isbounded by

aff (6, + 80) [8(lp))? dx dy < 26,4 (A0, Ap) < 4 JS o, + 8p) (Al 2 dx dy .
D D
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By (10) and (11) we find that 2H(A v, Ap) [= 2!?(;300, 4pg)] is bounded from below (above) by the left (right)

hand side of (8), which proves the theorem.

The a priori estimate in the theorem implies stability for smooth solutions, provided p, + Ap remains bounded

away from zero. Under these hypotheses, for ey big enough, the left-hand side of the inequality can serve as 2

measure of *“‘smallness™ with respect to which solutions sta rting “‘near’* the stationary solution remain *‘close™
to it. Qur hypothesis requiring p = p¢ + Ap to stay bounded away from zcro excludes specifically the phenomenon
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of cavitation. In any case, the inequality in the theorem shows that, up to the first shock time, the perturbed
solution cannot stray too far away from the stationary solution in the L2 type norm of the perturbed momentum
density A(pv), the perturbed density, and perturbed “vorticity” A(w/p) given by the left-hand side of (8). Note
that we do not have an L2 bound on the divergence of the momentum density. This is to be expected, since such
a bound does not even occur in the linearized situation [see eq. (5)].

An expedient way to exclude cavitation is to strengthen hypothesis (7) in the theorem by replacing it with

0<e; py(A0)%/2(p, + Ap) < €lpg + 8p) - e(p) — €'(p;) Ap €30, (80)2/2(p, + Ap) <o, (12

In this case of an “elastic fluid” (so-called, since such inequalities appear in elasticity, indicating that it would
take an infinite amount of energy to tear the fluid apart) the a priori estimate becomes (8), with ) and ¢, replaced
by ey py/(p; + Ap) and eyp /(p + Apy).

The bound (12) is satisfied by an equation of state of Mie—Griineisen type [19]. Namely, e(p)= A/p + Bp + C;
the constants 4, B, C, are 4 = epd2, B = €'(pg) +ep /2,C= €(p,) — pee'(p,) — epi, ande; <e<e,.

When inequalities (6) are reversed and estimates are made of the concavity of F,,, one can treat the case where
" <0.

Theorem 2. Under the same hypotheses as in Theorem | but with (6) replaced by
0<a<-¢-1k@})<A <o,
an cstimate of the perturbation (Av, Ap) of the stationary solution (v, o) (with the circulation of Avg vanishing
on each connected componcent of aD) is given in terms of the initial perturbation (Aug, Apg) by
2

{f (260, + 8 18y ? - L (es- o ) @02 | ax

YPTNE vl
< Ap, + Apy) (A 2-——-(c———)A 2:Idxd'. 13)
.{f[ (og + 8pg) [A(w/p)p)! P, + Bog | = p % apg ) AP0 ) (
The proof is similar to that of theorem 1, except working with —I?, and the same comments hold regarding
cavitation. However, in order to get a stability estimate, one must now require that the left hand side of (13) be
positive definite. This could conceivably happen for a sufficiently supersonic flow,

Example: Shear Flow, A stationary solution of (1) in the strip {(x,y) € RZIY, <y < Yz}, is given by the
plane parallel flows with arbitrary velocity profile v (x,y) = (u(»), 0) and constant density P = 1. We can allow
X to be unrestricted in R or to be periodic. In the former case, we require that the perturbations allowed be
initially square integrable in the sense that the right-hand side of (13) be finite. Note that (wy/pg) (e, )= —1' ).
Let ¢ denote the sound speed of this stationary solution. By our eatlicr analysis this flow is formally, hence
linearized, stable if and only ifcsz - u(¥)? > 0and u(r)u"(y)> 0. By cxploiting the translational symmetry of
the problem, one finds that linearized stability also holds if [e(¥) — ug) /1" (y) > 0O for a constant 1y. The hypo-
thesis on the existence of the Bernoulli function & is in this case u"(») # 0. In other words, plane paralicl flows
with constant density and velocity profile with no inflection point are formally, hence linearly, stable, The anal-
ogous result in the incompressible problem is called Rayleigh’s theorem [20]. Subsequent developments in the
incompressible case are discussed, e.g., by Drazin and Reid [21].

We turn now to the study of our a priori estimates for this shear flow. For this, we must compute the Bernoulli
function k& from its defining relation (2) under the hypothesis V(wg/p)=-u"@()#0, Denoting by ¢ the inverse of

u, we get k(§) = u[6($)]2/2 + 11(1) and thus K@) = —@@)u"@C)n" @) = Su(@@)/u"@()), so that condition

(6) of theorem 1 becomes
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0<a<u(y)u" () <A <o, (14) g

To get the a priori estimate (8), one imposes condition (7), which bounds €”(r). Condition (7), for example, is

satisfied for an ideal gas with =2, i.e., a monatomic gas in two dimensions, The a priori estimate (8) then results, 3
with o, = 1 and velocity profile, u(y), satislying (14), but arbitrary othernwise it

3

For the Mie—Grilncisen equation of state condition (14) is sufficient for the a priori estimate for the “elastic
Mluid™, again with p=1

Parallel shear flows with one inflection point taking place at ¥ = 0 [u"(0) = 0] can also be considered, under
the assumption that the velocity profile is antisymmetric about the inflection point, #(-v) = —u(»). For the case
in which the ratio u(y)/u"(y) is positive and bounded as in (14), onc again obtains a priori bounds. For example,
one may take u(v) = arectanh y.

Compressible shear low in the plane can aiso be stationary ifv (e, y)= (), 0) and p(x, y) = f(»), for arbi-
trary functions u(y), f(»). In this case, wlx,y)o, = —u'(¥)/f() and the assumption on the existence of the
Bernoulli & is [1'(v)//(»)]" + 0. This flow is formally stable provided csz(}’) —ul(y)>0and &1 K'(F)> 0, where
¢s(¥) is the sound speed. Thus, the stationary flow must be subsonic everywhere, and k({) must be increasing as
a function of §2/2. The a priori estimate (8) holds, if ¢ and & satisfy (6) and (7), respectively.

We are grateful to Ron DiPerra, Tom Beale, Andy Majda, D. ter Haar, and Steve Wan for their helpful com-
ments on various aspects of this work.
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