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Synopsis

This paper uses previous results of Chillingworth, Mansden and Wan on symmetey and bifurcation for
the traction problem in three dimensiona) clastostatics to establish new results on the Signorini
expansion. We show that the Sj ini compatibility fiti ure y and suflicient for
lincarization stability and analogics with results known for other ficld theorics are pointed out, Under
an explicit non-degeneracy condition, a new serics expansion s given in which successive terms are
inductively determined in pairs rather than singly. Our results include as special cases, classical results
of Signorini, Tolowi and Stoppelli.

1. Introduction

This paper studies lincarization stability of the equations of non-linear clastosta-
tics and the closely related notion of the expansion of the solution in a series
whose terms are found by solving a hicrarchy of linear problems. The latter topic
was developed cxtensively by Signorini starting in [12] and is thoroughly de-
seribed in Grioli [10] and Truesdell and Noll (16}, Lincarization stability origi-
nated in perturbation theory for the Einstein equations of gencral relativity by
Fischer and Marsden {7, 8] but is a notion that is useful in the study of non-lincar
partial differential equations rather generally.

Chillingworth, Marsden and Wan [4, 5] studied the bifurcation of solutions of
the traction problem for small loads, as the loads are varicd. Some of the results
obtained there will be used in an cssential way here. In particular, those papers
used the Liapunov-Schmidt procedure to study the bifurcations near a given load
1; this process reduced the problem to studying the critical points of a reduced
potential function on a manifold S,, where A is the associated astatic load. The
manifold $, is either four points, two points and a circle, one point and RP?, two
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disjoint circles or RP*, depending on the type (cither 0, 1. 2.3 or 4) of the load.
Crucial in this bifurcation study is the Benti form. a function on S, closcly related
to the symmetric bilincar form on lincarized solutions that occurs in the Betti
reciprocity theorem {see for instance, Marsden and Hughes [11)).

This paper contains three principal theorems. First of all, in Theorem 1, we
relate the Signorini compatibility conditions 1o the critical points of the Betti form
on S,. This has, as a consequence, an extension of a theorem of Tolowi [18].
Sceondly, in Theorem 2, we show that the Signorini compatibility conditions are
necessary and sufficient for lincarization stability. This is analogous 10 the
theorem in general refativity which states that the Taub conditions are necessary
and sufficient for lincarization stability, a result of Fischer, Marsden and Moncricf
[9] and Arms, Marsden and Moncrief [1, 2). However, the technical details in the
two theorems seem to have little if anything in common, Thirdly, in Theorem 3,
we establish a generalization and modification of the classical Signorini-Stoppelli
schemes for a power series solution which is valid cven when the loads have axcs
of cquilibrium. Our scheme is different from and is not restricted by the special
series used by Stoppelli [14] in his analysis of the bifurcation of solutions for type
1 loads.

As in (4, 8], we assume the material is hyperelastic, materially frame indifferent,
the reference configuration is stress free and the lincarized clasticity tensor ¢ at
the identity is stable (and hence strongly elliptic).

2. Ligearization stability and critical points of the Betti form
We begin with the definition of linearization stability.

DefINTION. Suppose a pair (4, 1) (displacement, load) satisfies the cquations
of clastostatics lincarized about the (stress free) reference state 1 (= Identity); i.c.

Lu,=1,.

Here, Lu, = DI(1) - u; and () =(-DIV P, P. N), where ¢: 8 —R* is a config-
uration of the body B, P is the first Piola-Kirchhoff stress at ¢ and N is the unit
outward normal on @. Lect us call the pair (uy, I,) linearization stable (or
integrable) if there exists a C™ curve (&(A), I(A)) € € x £ (configuration, loads)
such that

(i) #(0)=11(0)=0,

(it) ¢'(0)—u,eker DO, I'(0)=1,,
and

(i} M(H(A)) =1(A).

Here, (@{A). i{A)) should be defined in some interval; say [0, €), € >0,

For 1, € &, (ihe equilibrated loads), tet us say that I, is linearization stable when
there is o curve (GAN. HA) e € x &L satislying (i) and (i) above with I'(0) = 1,.
Then, DA - (M = 1, is avtomatic and we can take 1, = $'(0).

A classical result of Signoring and Stoppelli is the (ollowing:

Prorosiiton 1, Suppese 1 e %, has no axis of equilibrium and Dd(Du, = 1.
Then (u,, 1)) is linearization stable.
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Proof. Let H(A) < Aly. Then there is a unique smooth curve ¢(A) through I such
that B(H(A)) = IA) by [4, Theorem 5.1). By differentiating a1 A =0, we obtain
DB . () =1, s0 () —u,eker DD, O

In this proposition and clsewhere in the paper, the spatces of loads and
configurations are appropriate Sobolev spaces; see [4, 5] for details. We note,
however, that clements of the space € of configuration are at least C'.

The following Signorini compatibility conditions producc a potential obstruc-
tion to lincarization stability. Let us write

I uxl for I u(X)XB(X)dV(XHI u(X)x (X)) dA(X),
n i .

L2

where { =(B, 1) = (body force, surfuce traction),

Provosition 2. Suppose 1, € &, is linearization stable with 1(A) ¢ &£,. On letting u,
be as above, we have

I fixu, =0 (C)
A

Proof. We have identity fz HA) X &(A) = 0 from balance of moment of momen-
tum. By differentiating twice in A and setting A = 0, we obtain

J (0yx 1+ ZI rOyx¢'0)=0.
¢ | ]

Since (M) e &, we have I"(0) e &,, so the first integral is zero. Thus (a fixu, =0,
o

If we write

A=Al + A3+, ..
and
S(A) =1+ Auy +A%uy 4+, .,

and assume NA)e %, then JHA)X G{A) =0 gives a hierarchy of conditions:
order A: Il. xX{=0 (ic. Le%),
order A™: Il, Xu, =0 (using l,eZ,),
order A" Jl1Xu,.-,+Jl,xu,.-z+.. .+Jln.|Xll| =0.
Stoppelli [13] proved that the curve $(A) needed for Proposition 1 can be
obtained by the preceding Signorini scheme with 1A) = Y
We shall now reformuliie the compatibility condition (C) in geometric terms.,
Let A = k(l)esym (the symmetric 3x 3 matrices) be the astatic load defined by

ki I Il(X)@.\':IV(.\’HI HNIQ XN dA(XN),
s .4

and et wo(l)e A, the 1.7 orthogonal complement 10 Skew in % 176, the
space of lincarized displacenments, be defined by the linear problem Lug(l) - QF
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when QeS,, ic. when Qle .. (By the linear theory, L: U, — &, is an
isomorphism: sce Fichera [6]) or Marsden and Hughes {11, Chapter 6]) Let
B(Q) = (c(Vug(), Vug(D)), the Betti form, defined on S,.

Lemva 1. D restricted to Sa has a critical point at Qe Sa. if and only if
{e(Vuwg(D), Vug{D)y=0 for all Weskew (the 3x3 skew matrices) such that
WQk(l) esym.

Proof. This follows from the definition of ®. O
The following is readily verified.

Limva 2, Let Aesym he fixed and let p:skewxskew —R be defined by
p(K, W) =(KA, W), Then p is a symmetric bilinear form with kemel {Ke
skew | KA esym}.

Note that (KA, W) is the Hessian of —(I, Q"I = —(QL ) at Q =, where

&)= L B(X)- $(X)dV(X)+ L 7(X) - (X) dA(X).

Here is our first main result.

TueoreMm 1. Let 1, € &,. Then there exists a u, €U such that L(u,))=1, and
§1,xu, =0 if and only if the Beui from {for 1,) restricted to S, has a critical point
at the identity I.

Proof. First assume u, cxists, Thus, f§,xu, =0, so (W, ,)=0 for all We
skew., We can write u,(X) = u,{X)+ KX for some K eskew. Then

{c(Vuw), Vud= (W1, u,)

=(Wl,, u,+ KX) ={Wi,, KX) = (k. k(W1,))=0, when
k(W1,)esym.

Thus, B has a critical point at ! by Lemma 1. For the converse, we niced to find
K eskew, so that, with u, = 4, - KX, we have (W, 4,) =0 for all Weskew. Now
(W, uy) = (e (Vuy), u;) is a linear function of Weskew, vanishing for Wk(l))e
sym (by hypotheses). Thus, by Lemma 2, there is a K € skew such that (W1, i) =
(WA, K) for all Weskew. Therefore, (W1, u,)=(W, u,)—-(Wil,, KX)=
(Wi, u,)— (WA, K)=0 for all Weskew, O

The next corollary is an extension of results of Tolotti [15).

Conowanry. There exist at least 4 rotations Q in SO(3) such that the Signorini
Oth and st order compatibility conditions hold for Ql,=1", ie. 1*c £, and
§I*xu* =0 for some u* satisfying L(u*)=1".

Praof. et Q be a critical point of (€(Vug(l))), Vuy(l))) on S, By Lemma |,
(€(Vuwo()), Vug(1,) =0 when  WQ{I))esym. Since  uwgll)) = uw(Ql) =
(1%, and ug(l)) = u(QI) = u(1*), we get (€(Vuy(1*), Vi, (I*)y=0 for all
WQ(I*) e sym. By Lemma 1 and Theorem | with Q=1 and [ =I*, we sce that
this critical point has the desired property. Since, by critical point theory, at least
4 such critical points can always be found, the corollary follows. O
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3. Linearization stability and the compatibility conditions

Besides the case of no-axis of equilibrium, Stoppelli also showed that the
Signorini scheme can be made to work for parallel loads. In fact this result, which
we now recall, follows directly from [5, Theorem 4.7

Prorosmon 3 (Stoppelli). Let I(A) = AMl,, where U, is a non-trivial load paralilel
to the z-axis. Then there is a solution curve &(A), which can be obtained by
Signorini's scheme supplemented by the condition u, 5(0) - 3 ,(0) = 2¢(A), where
c(A) = 0 but is otherwise an arbitrary given function.

We now recall some developments that combine the classical cases of Proposi-
tions 1 and 3, following Capriz and Pedio-Guidugli [3].

Desinimion. Let 8 € £, and set ¢(A) = k(. I+ Au) for u € U. The load I, is said
to be infinitesimally stable when, for any ue ¥, there exists a smooth curve
Q(A)e SO(3). with Q()) = I such that Q(A)d(A) € sym.

This is motivated by the following. One sceks a solution in the form ¢ =
Q '(I+Au); where Q=Q(A) and u=ua(r). Thus, k(l,. Q '(I+Au)esym or
QA)k(l. I+ u(A)esym. Requiring a solvability condition depending on the
load only, leads 10 the notion of an infinitesimally stable load. The next result
follows readily; see the aforementioned reference for details.

Prorosimon 4. A load 1, € &, is infinitesimally siable if and only if

I, has no axis of equilibriton

or. 1, is a non-wivial parallel load.

Thus, the load 1, is linearization stable if it is infinitesimally stable.

The next theorem generalizes the classical results by showing that the necessary
condition (C) is also suflicient. No special non-degencracy hypotheses are re-
quired.

Throres 2. Let e &,. If there is @ u e YU such that {1y xu, =0, then I, is
linearization stable.

Proof. By Theorem 1, (€(Vug). Vg ) has a critical point al @ = F. Choose 1, so
that —2(1,. Q"I - (c(Vug). Vuy) restricted 1o Sa, is non-degencerate at I For
example, we can choose Iy = {0, aN) for @ large, a >0, Let HA)Y = A1, + ALy, Then
the reduced bifurcation potential on S4 is, by [S, formula (30)],

f~-Ad,. Q"l)-'r: {€(Vug). Vig) + O(AY).

Thus f has non-degencrale critical points which vary smoothly in A and thus, from
them, &(A) can be reconstructed by the Liapunov-Schmidi procedure (see [5,
§21) O

Notice that the sccond order term A%l is necessary 10 allow construction of
&(A).

An cxample duc (o Signorini of a type 4 load I, for which no u, exists satisfying
(C) is described in Capriz and Podio-Guidugli [3, §9).
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Two specific cases in which the construction of a cusve ¢(A) corresponding 1o
1A} = Al, is possible and which employ non-degencracy hypotheses on the Betti
form, are as follows,

Cororrary, (a) Let I, € &, and suppose (¢(Vug), Vug) is non-degenerate along
Sa, at Q=1 There is a unique solution curve ¢(A) with &(0)=1 such thas
D(P(A)) = AL, (here one can choose I =0 by examination of the preceding proof).

(b) Let l,e &£, be a “wivial" load (i.e. A, =0) parallel to the z-axis. Suppose
that (¢(Vug), Vug) on SO(3) has a critical point at I which is non-degenerate
transversal to ' ={Q | QI, =1,}. Then there is a solution curve d(A) with $(0) =1
and ©{H(A)) = AL,

The classical results Propaositions 1 and 3 arc also corollarics of Theorem 2.

4. Sipnorini expansions

Now we turn to the problem of finding a generalization of the Signorini scheme
which will work in the generality of Theorem 2. We begin by setting up the
perturbation series using slightly different notation.

We consider the problem of solving ®{d(A)) = I(A), where HA)e & is a given
curve and [(0)=0. (Note that I(A) is not assumed to lic in &£..) Write the Taylor
expansion of ¢ in u at I as =P +d,+ @+, ., (Thus &=L, and b, is
quadratic in u, ctc.) and cxpand I as a secries in A by sctting I{A)=
AL+A LN+ .. Write the unknown @A) as d=T+Au+A%u,+....
Hence,

DI+ Ay + A%+ )= L+ A2y ) DA, + A%up+, L Auy + A 20+ ., )
=Al +AM,+. ...
By comparing orders in A, we get
order A:  L{u)=1,, (solie%,),
order A% L(ug)+by(uy, u,) = Ly,

or&cr A% L{w,)+20;(uy, &, -4) +a polynomial in
Uy .. =L, (n23), (L)

Therefore, one hopes to determine u,,. .., u, inductively, with the help of the
compatibility conditions:

Il,x:a,.+...+Jl"xu.+‘|'l,,.xl=0‘ {C.)

Theorem 1 shows that if 1, = I'(0) € &, and has no axis of equitbriwm, then there is
@ unique solution &(A), and can be obtained by Signorini's scheme. Indeed, suppose
y..... %, are determined, then (L) and (C,) define u,. The uniqueness and
existence of the formal Signorini’s scheme follows from a special case of the next
two lemmas.

Lesua 3. Let Keskew, then [ L x KX =0 if and only if Kk({l,)esym (i.e.
KeTS,).
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Lemva 4. Suppose w,, ..., u, -y satisfy (L,), (Cy),...,(L,.,). Then (C.._,) is the
solvability condition for u, in (L.,).

These simple facts are discussed and proved in [16].
Let us state the results obtained in Theorems 1 and 2 in a slightly different and
more general form.

Theorem 1'. Let L€ Z,. Then there exists a u,e ¥ such that L(u,} =1, and
Thxuy+§lxI=0if and only if 2(1,, Q")+ (¢(Vug), Vug) restricted to Sa, has a
non-degenerate critical point at 1.

Tutorest 2°. Consider the problent d(d(A)) - (A}, with 1, e £, and HA)e &
given. Suppose that 2(8,, Q') + (c(Vug). uy) restricted 10 S4, has a non-degencrate
critical point at 1. Then therc is a unique ¢(A) such that S{H(A)) = HA), where
sO)=1

These theorems are proved in the same way as Theorems | and 2.

We claim that ¢(A) determined by Theorem 2° can be obtained by a modifica-
tion of Signorini’s scheme. The new scheme determines the solutions in pairs.

TuroReM 3. Suppose u,,.... 4, ,(n22), and u,., mod KX, ke TiSa, are de-
termined; then, equations (L,) and (C,) define u,., and v, mod KX, where
KeTSa,

From Theorem 1, onc can see readily that w, mod KX, with K € TiSa,. 15
determined by equations (L,) and (C,), provided that the non-degeneracy
hypothesis in Theorem 2' is fulfilied. Thus, starting from u, mod KX with K¢
TiSa,. onc can find u,, u,. . ... inductively by Theorem 3.

Our proof of Theorem 3 consists of a brute force computation. Lemmas §, 6.
and 7 are collections (and exiensions) of relevant facts we have already cstab-
lished, in [4, §).

Leswa 5. (a) The function 2(t Q7 X)+(c(Vug), Vug) has a critical point on
Sa, at bif and only if 0=(l,, K"X)+(c(Vuy), Vuy), for all Ke TiSa,-

(b) The Hessian of this function is {lz, K*X)+{c(Vuy), Vi) +(c(Vaty), Vuyes),
for Ke T;Sa,.

Write the first Piola-Kirchhoff tensor in a perturbation scries P=
P+ P+ Py+..., with P, =a and wrile, as above,

D=@, +dy+dy+..., with ®,=L.

LEMMA 6,
{a) (L{u), w) = (a(Vu).Vw).
(b) (Do), w)=(Py(Vu?), VW), forall w wci,

where ®,(u’) = hy(u. u). etc.
Now, wrile the stored encrgy function as W= W(D), where D = (F'F- 1), and
F=D¢ is the deformation gradient. Thus

aw 4

P= F° S§= 3D (the second Piola-Kirchhoff stress),

P(F) = F$(D).

and
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Computations show that:

Lenaa 7
IiS

(a) — (H) =— (H) (i.e.a=c).
2 Li L{
b) aF‘:(H.K) "-—('0+K (ln+Ls(K'm+ )S(H K).
Lemma 8.
(a) B, (KX = LOK"KX).
(b) 20,(uy, KX) = Kl, + L(K"w,), for KeTiSa,
Proof.
(a)
(2d,(KX, KX), w) = <-;%(K‘r K, Vw) (by Lemmas 6(b) and 7(b))
= (L(K"KX). w) (by Lemmas 6(a) and 7(a)).
(b)

29,(u;, KX), wy= <K9§(m+ (KTHD, Vw) {(by Lemmas 6(b) and 7(b))

=(Kl, + L(K"u,). w) (by Lemma 6(a)). O

LemMMA 9. (W, K"u,)— (W1, KX) is symmetric in W and K where W, K¢
TiSa,

Proof flyxu, +fl,xI=0 means that  k(l, u)+ k(L Nesym.  Thus
(K7, k(l,, 2,))+(K7, k(l;, )= 0 for all K eskew, or (Ki,, u,)+ (KL, X)=0. Let
K=WK-KW. Then one obtains (WKl u)+ (WKL, X)=(KW,, u,)+
(KW1,, X) or (KT,, WTu,)—{Kl,, WX)=(WI,, KTu,)—(WI,, KX). O

Now, we are ready to prove Theorem 3.

(A) Let n>2, We need to show that there is a unique Ke TiS4,, such that
#,.,=u’_,+ KX (u¥., is given by hypotheses) and a corresponding «,, obtaincd
by Lemma 4, which solve (L,) and (C,). For cach K e T;S,,, from (L,)) for u,, and
u} given by Lemma 4,

L, —ul)+20,(u,, KX)=0.

By Lemma 8, u,—ul+ux+K'u, + KX =0 for some Keskew (10 be deter-
mined). On substituting in (C,) onc has

Jl.x(u:—u.‘—KTu.—RXHJI,x(u:_m KX)+ ]l‘Xu., ,+...+Il....><l-~n
or , _

~k(l,, ux + K"u,+ KX)+ k(1;, KX)+ Mesym, (1)
where

M=k(ly, up)+ kil ul_ )+ k(b u,_2)+. ..+ k(l,.y, T).
Since (W, k(l,, KX))=(-WI,, KX)=(~WA,, K)=0 for We TeSa,
(W, —k(l, ug + KTu ) +(W, k(;, KX)+(W, M) =0 forall WeTS,, (2
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Now, (W, —k(l,, ux + K7u))+ (W, k(l,, KX))= (W1, ux)+(WI,, K'u,)~ (WL,
KX} is a non-degenerate form, by Lemmas 9 and 5(b). Thus, there is a unique
K ¢ T;S4,, such that cquation (2) holds, Now, choose this K and consider the
equation (1) for K, i.c.
k(y, KX) = -k(l,. uy + K"a)) + k(ly, KX)+ M mod sym
:=N mod sym.

From (K, k(W)= k1, KX), W), the solv:lhility condition for K becomes
(W.N)=0, for We T,54,. Therefore, for the unique solution K determined by

equation (2), one can obtain a K so that equation (1) holds. In other words, for
such a K (unique) and K (modulo TySa)

4, =un  +KX
u,=ut-uy-K"u -KX
have the desired propertics.

(B) The proof for n =2 is basically the same as in (A), where one needs Lemma
8. O
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