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Abstract

The symplectic and Poisson structures on reduced phase spaces are re-
viewed, including the symplectic structure on coadjoint orbits of a Lie group
and the Lie-Poisson structure on the dual of a Lie algebra. These results are
applied to plasma physics. We show in three steps how the Maxwell-Vlasov
equations for a collisionless plasma can be written in Hamiltonian form relative
to a certain Poisson bracket. First, the Poisson-Vlasov equations are shown
to be in Hamiltonian form relative to the Lie-Poisson bracket on the dual of
the (finite dimensional) Lie algebra of infinitesimal canonical transformations.
Then we write Maxwell’s equations in Hamiltonian form using the canonical
symplectic structure on the phase space of the electromagnetic fields, regarded
as a gauge theory. In the last step we couple these two systems via the reduc-
tion procedure for interacting systems. We also show that two other standard
models in plasma physics, ideal MHD and two-fluid electrodynamics, can be
written in Hamiltonian form using similar group theoretic techniques.
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Introduction

This paper describes some recent work of Morrison [1980] and Marsden and
Weinstein [1982a] on a Hamiltonian structure for the Maxwell-Vlasov equations of
plasma physics, similar structures for two-fluid electrodynamics found by Spencer
and Kaufman [1982] and Spencer [1982], and structures for magnetohydrodynamics
(MHD) found by Morrison and Greene [1980], Holm and Kupershmidt [1983], and
Marsden, Ratiu, and Weinstein [1983]. These different structures are all consistent:
one can pass from the Maxwell-Vlasov bracket to the fluid bracket by a Poisson map
constructed in a natural way using the momentum map of a group action, and it
is expected that one can pass to MHD by a limiting argument consistent with the
brackets in the framework of Weinstein [1983].

We shall include some of the necessary backgound material concerning symplectic
and Poisson manifolds, symmetry groups, and momentum mappings. For alternative
expositions and additional topics, see Abraham and Marsden [1978], Arnold [1978],
Guillemin and Sternberg [1980] and Marsden and Weinstein [1982a]. We have not
included in this paper discussions of Clebsch or canonical variables. We refer to
Holm and Kupershmidt [1983], Marsden and Weinstein [1982b] and Marsden, Ratiu
and Weinstein [1983] for this topic. We also have not included a rigorous function
space setting for the results. A third topic not included here is incompressible fluids.
For this, we refer to Marsden and Weinstein [1982b] and references therein.

Hamiltonian structures for classical systems are useful for several purposes. As
in Arnold’s original work [1966a, 1966b, 1969] on the rigid body and fluids, these
structures can be used for stability calculations. In doing so, one must take into
account the symmetry group and associated conserved quantities or constraints. A
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general context for such calculations is given in Marsden and Weinstein [1974]. There
should be several interesting examples of the same type for the systems considered
in this paper.

Another use for Hamiltonian structures is in studying perturbations of a given
system. The perturbation may introduce chaotic motions as in Holmes and Marsden
[1983]. Alternatively, one may wish to study the averaged effects of high frequency
interactions such as ponderomotive forces and guiding center motion (see, for exam-
ple, Kaufman, McDonald and Omohundro [1982]). These topics are currently under
investigation.

A third use for Hamiltonian structures is in understanding the classical-quantum
relationship. In fact, noncanonical brackets like ours, but for quantum observables,
were already introduced in the context of current algebras by Dashen and Sharp
[1968]. The corresponding semidirect product groups, as in our work in §9, were
identified by Goldin [1971], and their representations have been investigated recently
by Goldin, Menikoff, and Sharp [1980]. Dashen and Sharp remark that << Physical
theories which are written in terms of variables that are not canonical sometimes
lack a mathematical elegance possessed by canonical theories. However, physics,
rather than the elegance of canonical variables is the final test.>> We believe that
the developments of the last few years display noncanonical variables as being just
as elegant as canonical ones.

A Poisson bracket for special relativistic plasmas which agrees with ours in the
nonrelativistic limit has been recently obtained by Bialynicki-Birula and Hubbard
[1982]. They also point out that the brackets for electrodynamics go back to Pauli
[1933] and Born and Infeld [1935], and that Pauli also gives brackets for interacting
discrete particles and electromagnetic fields. A canonical formulation of relativistic
hydrodynamics was given by Bialynicki-Birula and Iwiński [1973]. In none of these
references are the Poisson brackets derived from canonical brackets as we do.

1 Momentum Mappings

Let (P, ω) be a symplectic manifold (possibly infinite dimensional), where ω is closed
and weakly nondegenerate, i.e., the map ωb : TP → T ∗P defined by ωb(v) · w =
ω(v, w), v, w ∈ TP , is one-to-one. Let G be a Lie group (possibly infinite dimen-
sional) which acts on P by maps Φg : P → P which are symplectomorphisms; i.e.,
Φ∗gω = ω for all g ∈ G. Let g be the Lie algebra of G. Each ξ ∈ g induces a
one-parameter subgroup gt = exp(tξ) ∈ G. The infinitesimal generator ξP of the
action Φ, corresponding to ξ ∈ g is defined by

ξP (x) =
d

dt
Φexp tξ(x)

∣∣∣∣
t=0

, x ∈ P.

Because Φ is symplectic Φgt is a one-parameter family of canonical transformations,
and so the vector field ξP is locally Hamiltonian. Suppose in fact that it has a global
Hamiltonian function which we denote Ĵ(ξ) (defined in this way up to a constant),
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and we write ξP = X bJ(ξ)
. We thus obtain a mapping Ĵ : g→ C∞(P ), such that

X bJ(ξ)
(x) = ξP (x) =

d

dt

∣∣∣∣
t=0

Φexp tξ(x)

or
d(Ĵ(ξ)) = iξPω.

The significance of this definition is the following:

Proposition 1.1. Let H : P → R be G-invariant, that is H(Φg(x)) = H(x) for all
x ∈ P, g ∈ G. Then Ĵ(ξ) is a constant of the motion for the dynamics generated by
H.

Proof

{H, Ĵ(ξ)}(x) = dH(x) ·X bJ(ξ)
(x) = dH(x) · d

dt

∣∣∣∣
t=0

Φexp tξ(x)

=
d

dt

∣∣∣∣
t=0

(H(Φexp tξ(x)) =
d

dt

∣∣∣∣
t=0

H(x) = 0.

QED
Since the condition d(Ĵ(ξ)) = iξPω is linear in ξ, there is often a map J : P → g∗,

where g∗ denotes the dual of the Lie algebra g, such that J(x) · ξ = Ĵ(ξ)(x). The
map J is called the momentum mapping for the action Φ.

Remarks

1. The existence of a symplectic action does not always imply the existence of
a momentum mapping; not every locally Hamiltonian vector field is globally
Hamiltonian.

2. Care is needed in the topology used to construct g∗ in the infinite dimensional
case. Usually g∗ is taken to be a convenient function space which is paired
with g, and is not necessarily the strict dual.

If ω = dθ is an exact symplectic structure, and the action Φ preserves the one
form θ, i.e., Φ∗gθ = θ, for all g ∈ G, then there exists a momentum map J given by
J(x) ·ξ = θ(ξP )(x). For example, this is the case for extended point transformations.
Indeed, let G act on a manifold Q by transformations Φg : Q → Q, and define the
lifted action to the cotangent bundle (Φg)∗ : T ∗Q → T ∗Q, by pushing forward one
forms: (Φg)∗(α) · v = α(TΦ−1

g · v) where α ∈ T ∗qQ and v ∈ TΦg(q)Q. The lifted
action preserves the canonical one-form on T ∗Q and the momentum mapping for
this (lifted) action is given by

J(αq) · ξ = αq · ξQ(q), αq ∈ T ∗qQ.

where ξQ is the infinitesimal generator of the action Φ on Q.
A basic fact about momentum mappings follows immediately from Proposition

2.1.
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Corollary 1.2. (Geometric Noether theorem): Let J be a momentum mapping for
the symplectic action Φ of G on (P, ω). Then J is a constant of motion for any
G-invariant Hamiltonian H; that is, if Ft is the flow of H, then

J(Ft(x)) = J(x), for all x ∈ P.

A Hamiltonian action is a symplectic action with an Ad∗-equivariant momentum
map J , that is

J(Φg(x)) = Ad∗g−1(J(x)) for all x ∈ P, g ∈ G,

where Ad∗g−1 = (Adg−1)∗ is the coadjoint action of G on g∗. For connected groups
the global condition of equivariance is equivalent to the local condition that the map
Ĵ : g→ C∞(P ) defined by Ĵ(ξ)(x) = J(x) · ξ be a Lie algebra homomorphism with
respect to the Poisson bracket on C∞(P ); that is

Ĵ([ξ, η]) = {Ĵ(ξ), Ĵ(η)} for all ξ, η ∈ g.

For example, extended point transformations automatically give Hamiltonian
actions.

Proposition 1.3. Let G act transitively on (P, ω) by a Hamiltonian action. Then
J(P ) ⊂ g∗ is a coadjoint orbit and J is a covering map from P onto J(P ).

Proof Since Φ is transitive, for every x, y ∈ P there is a g ∈ G such that Φg(x) =
y. Thus J(P ) = {J(x) | x ∈ P} = {J(Φg(x)) | g ∈ G} and Ad∗-equivariance implies
that J(P ) = {Ad∗g−1(J(x0)) | g ∈ G} is the coadjoint orbit through J(x0), where
x0 ∈ P arbitrary. QED

If G is not transitive, J(P ) will be a union of coadjoint orbits. For example if
P = T ∗G and G acts by left translation, then J is surjective (see §3 below).

Remark The material in this section appears in local form in Lie [1890]. The global
results are due to Kostant [1970] and Souriau [1970].

2 Reduction

Let Φ be a Hamiltonian action of G on (P, ω) and fix a point µ ∈ g∗. By Proposition
2.1, J−1(µ) = {x ∈ P | J(x) = µ} is invariant under the motion of any G-invariant
Hamiltonian, i.e., the motion stays in J−1(µ). For systems with symmetry, there-
fore, J−1(µ) ⊂ P is an invariant set for the dynamics. If µ ∈ g∗ is a regular value
of J : P → g∗, then J−1(µ) is a submanifold of P (with codim J−1(µ) = dim g, in
finite dimensions).

The phase space can be further reduced if we divide J−1(µ) by as much of G as
leaves J−1(µ) invariant, that is, by the coadjoint isotropy group {g ∈ G | Ad∗g−1(µ) =
µ} = Gµ. The quotient space J−1(µ)/Gµ is a smooth manifold provided that µ is a
regular value of J , and that Gµ acts properly and freely on J−1(µ). We shall assume
this here. The manifold Pµ = J−1(µ)/Gµ, called the reduced phase space, turns out
to be symplectic.
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Theorem 2.1. (Marsden and Weinstein [1974] and Meyer [1973]). There is a
unique symplectic structure ωµ on Pµ consistent with the structure ω on P ; that is

π∗µωµ = i∗µω,

where iµ : J−1(µ) → P is the inclusion and πµ : J−1(µ) → Pµ = J−1(µ)/Gµ is the
projection:

J−1(µ) (P, ω)

(Pµ, ωµ)

iµ

πµ

-

?

The symplectic structure ωµ on Pµ is constructed in the following way. Let s ∈ Pµ
and v, w ∈ TsPµ be two tangent vectors. To calculate ωµ(v, w) we select any x ∈
π−1
µ (s) ⊂ J−1(µ); then there exist tangent vectors v′, w′ ∈ Tx(J−1(µ)) such that
v = Txπµ(v′) and w = Txπµ(w′). We set ωµ(s)(v, w) = ω(x)(v′, w′), where ω(x) is
identified with the restriction of ω(x) to Tx(J−1(µ)). One can check that this gives
a well defined symplectic form ωµ with the desired property.

Description of the reduced form in terms of Poisson brackets

Since ωµ is a symplectic structure on Pµ, it defines a Poisson bracket {, }µ on
the space of C∞ functions C∞(Pµ). Let F,G ∈ C∞(Pµ); we want to compute their
Poisson bracket {F,G}µ. First define F̂ , Ĝ on J−1(µ), which are constant on Gµ-
orbits. Now smoothly extend F̂ , Ĝ, to functions F̂e, Ĝe on all of P . The Poisson
bracket {F̂e, Ĝe} ∈ C∞(P ) is defined in terms of ω; restrict it to J−1(µ). One finds
that this restriction {F̂e, Ĝe}|J−1(µ) is independent of the extension used, so that
it may be written as {F̂ , Ĝ}, and that furthermore as Φg is symplectic, {F̂ , Ĝ} is
constant along orbits. This implies that {F̂ , Ĝ} defines a function {F,G}µ on the
reduced phase space Pµ such that {F̂ , Ĝ} = {F,G}µ ◦ πµ. This defines a Poisson
bracket on Pµ, which may be shown to be that associated with ωµ.

Dynamics on the reduced phase space Pµ

Let H : P → R be a G-invariant Hamiltonian on P . There is a well defined
Hamiltonian Hµ : Pµ → R on Pµ such that Hµ ◦ πµ = H ◦ iµ. As real valued
functions, H and Hµ define flows Ft and Fµt on J−1(µ) and Pµ, respectively. From
this and the construction of ωµ, we get the following.

Theorem 2.2. The projection onto Pµ of the integral curves under H in J−1(µ)
are the integral curves for the dynamics in Pµ determined by Hµ. Thus we have
πµ ◦ Ft = Fµt ◦ πµ, i.e.,
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J−1(µ) J−1(µ)

Pµ Pµ

Ft

Fµt

πµ πµ

-

-
? ?

commutes.

In terms of the corresponding Hamiltonian vector fields XH on P and XHµ on
Pµ, this says that XH and XHµ are πµ-related:

TP TPµ

P Pµ

Tπµ ◦XH = XHµ ◦ πµ, i.e.,
Tπµ

πµ

XH XHµ

-

-

6 6

R
H Hµ

@
@
@
@R

�
�

�
�	

Equivalently, in terms of Poisson brackets we can write

{F,G}µ ◦ πµ = {F̂e, Ĝe} ◦ iµ,

using the notation above in our discussion of the description of the reduced form in
Poisson brackets.

Corollary 2.3. The equations of motion Ḟ = {F,H} on P reduce to the equations
of motion Ḟµ = {Fµ, Hµ}µ on Pµ.

3 Coadjoint Orbits

We shall now indicate how coadjoint orbits are a special case of reduced phase spaces;
their symplectic structure coincides with the classical Lie-Kirillov-Kostant-Souriau
form. The Lie group G acts on itself by left translations Lg : G → G,Lg(h) =
gh, g, h ∈ G. The induced lifted action on T ∗G is Hamiltonian and has the momen-
tum map

J : T ∗G→ g∗ : ηg 7→ (TeRg)∗ηg

for which each µ ∈ g∗ is a regular value. Because each fiber T ∗gG ⊂ T ∗G is (right)
translated onto g∗ by J , for a given µ ∈ g∗ there will be exactly one point ηg ∈ T ∗gG
that maps to µ. Thus

J−1(µ) = {ηg ∈ T ∗G | J(ηg) = (TeRg)∗ηg = µ}.
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Then, defining the right-invariant one-form ηµ on G according to ηµ(g) = ηg, where
ηµ(e) = ηe = µ, it follows that

J−1(µ) = {(g, ηµ(g)) | g ∈ G}

is the graph of ηµ. It is easy to see that the isotropy group Gµ of the coadjoint
action is

Gµ = {g ∈ G | L∗gηµ = ηµ},

so Gµ acts on J−1(µ) by left translation of the base points. Now J−1(µ) ∼= G
according to (g, ηµ(g)) 7→ g−1. Further, denoting by 0µ the orbit of µ under the
coadjoint action, G/Gµ ∼= 0µ via pµ(g) 7→ Ad∗g−1(µ) where pµ : G → G/Gµ is the
canonical projection. Hence

Pµ ∼= 0µ via πµ(ηµ(g)) 7→ Ad∗g(µ)

for all g ∈ G. That is, the reduced phase space Pµ can be identified with the
coadjoint orbit through µ. Thus, by Theorem 3.1, the coadjoint orbits are symplectic
manifolds. This is the statement of the Kirillov-Kostant-Souriau theorem. In order
to compute the symplectic structure ωµ on Pµ ∼= 0µ, note that tangent vectors to the
coadjoint orbit 0µ at β ∈ 0µ are given by (ad ξ)∗β for ξ ∈ g, where (ad ξ)∗ : g∗ → g∗

is the dual of the linear map (ad ξ) : g → g defined by (ad ξ)(η) = [ξ, η], η ∈ g,
where [, ] is the Lie algebra bracket on g. If one traces through the definitions, one
finds that (note the minus sign)

ωµ(β)((ad ξ)∗β, (ad η)∗β) = −〈β, [ξ, η]〉,

where ξ, η ∈ g, β ∈ 0µ, and 〈, 〉 denotes the pairing between g∗ and g. This is the
canonical Lie-Kirillov-Kostant-Souriau symplectic structure on coadjoint orbits. If
one begins with the right action of G on G then one arrives at the same formula
with << − >> replaced by << + >>. Finally, we remark that the reduced space
Pµ is naturally identifiable with J−1(0µ)/G; see Marle [1976].

4 Poisson Brackets on Duals of Lie Algebras

Let G be a Lie group, g its Lie algebra, and g∗ the dual space to g. The pairing
between g∗ and g is denoted by 〈, 〉. We wish to define a bracket {F,G} for functions
F,G : g∗ → R which was discovered by Lie [1890] and rediscovered by Berezin [1967]
and others. There are three ways to do this:

METHOD 1. (Direct). We just write down the formula {F,G}.
The formula depends on the notation of << functional >> derivatives defined

as follows. For F : g∗ → R, define δF/δµ ∈ g, where µ ∈ g∗, by

DF (µ) · ν =
〈
ν,
δF

δµ

〉
for all ν ∈ g∗,
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i.e., we formally identify g∗∗ with g so that DF (µ) ∈ g∗∗ becomes an element of g

(one has to take due precautions in infinite dimensions with the meaning of dual
spaces). Then the bracket is defined by

{F,G}(µ) = −
〈
µ,

[
δF

δµ
,
δG

δµ

]〉
,

where [, ] is the Lie algebra bracket on g. This bracket, called the << − >> Lie-
Poisson bracket defines a Poisson structure on g∗; that is {F,G} is bilinear and
antisymmetric, satisfies Jacobi’s identity, and is a derivation in each argument.

METHOD 2. (Restriction). We can use the Lie-Kirillov-Kostant-Souriau symplectic
forms on coadjoint orbits to define the bracket on g∗. From our discussion on
coadjoint orbits, it follows that g∗ is a disjoint union of symplectic manifolds. For
F,G : g∗ → R a Poisson bracket is thus defined by

{F,G}(µ) = {F |0µ, G|0µ}µ(µ)

where µ ∈ g∗, 0µ is the coadjoint orbit through µ, F | 0µ is the restriction of F to
0µ, and {, }µ is the Poisson bracket on 0µ defined by ωµ.

The bracket defined by Method 2 is clearly degenerate, (functions constant on
coadjoint orbits have zero bracket with every function); however, it determines a
symplectic << foliation >> : on each leaf {, }µ is nondegenerate. The leaves are
just the coadjoint orbits (0µ, ωµ), µ ∈ g∗.

METHOD 3. (Extension). Given functions F,G : g∗ → R, extend them to maps
F̂ , Ĝ : T ∗G→ R by left invariance, regarding g∗ as T ∗eG. Then, using the canonical
Poisson bracket {, } on T ∗G, form {F̂ , Ĝ}. Finally restrict {F̂ , Ĝ} to T ∗eG = g∗:

{F,G} = {F̂ , Ĝ}|g∗

Theorem 4.1. The formulas in methods 1, 2 and 3 define the same Poisson struc-
ture on g∗.

This result is implicit in the literature cited in the introduction and may be
readily proved by the reader.

If we reduced T ∗G using right rather than left translations, we would have
arrived at the << + >> Lie Poisson bracket:

{F,G}(µ) =
〈
µ,

[
δF

δµ
,
δG

δµ

]〉
.

If there is danger of confusion, we denote the respective brackets by {F,G}− and
{F,G}+.

The Lie-Poisson evolution equations for a function H− ∈ C∞(g∗) (for the <<
− >> Lie Poisson structure, say) are determined by

Ḟ = {F,H−}−.
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These equations are equivalent to the evolution equations

µ̇ = XH−(µ)

on g∗. To determine XH− , write

Ḟ (µ) = DF (µ) · µ̇ =
〈
µ̇,
δF

δµ

〉
and

{F,H−}−(µ) = −
〈
µ,

[
δF

δµ
,
δH−
δµ

]〉
=
〈
µ, ad δH−

δµ

δF

δµ

〉
where adξη = [ξ, η] is the adjoint operator. Thus we get

XH−(µ) = ad∗δH−
δµ

µ

where ad∗ξ : g∗ → g∗ is the transpose of adξ relative to the pairing between g∗ and g

(depending on the choice of function spaces, transposes may be taken in the sense
of unbounded operators, as in Chernoff and Marsden [1974]).

We summarize the calculations just given as follows:

Theorem 4.2. If H : T ∗G → R is a left invariant Hamiltonian and H− : g∗ → R
is the induced function on g∗, then the Hamiltonian evolution equations for H on
T ∗G induce the Lie-Poisson evolution equations

Ḟ = {F,H−}− on g∗

which are equivalent to
µ̇ = XH−(µ) = ad∗δH−

δµ

µ.

The coadjoint orbits in g∗ are invariant under this evolution. (For right invariant
systems, interchange + and −).

The notion of momentum map carries over to Poisson manifolds and in particular
to duals of Lie algebras as follows. A Poisson manifold is a manifold P together
with a Lie algebra structure {f, g} on C∞(P ) that is a derivation in each of f and
g. If P1 and P2 are Poisson manifolds with corresponding brackets {, }1 and {, }2,
a map φ : P1 → P2 is called a Poisson map if {f ◦ φ, g ◦ φ}1 = {f, g}2 ◦ φ for all
f, g ∈ C∞(P2). Now let a Lie group G act on a Poisson manifold P by Poisson
maps. A Hamiltonian for this action is a homomorphism Ĵ : g→ C∞(P ) such that
X bJ(ξ)

= ξP for all ξ ∈ g. The momentum map is J : P → g∗, 〈J(x), ξ〉 = Ĵ(ξ)(x).
Conservation properties are similar to the symplectic case. The quotient space P/G
is the reduced Poisson manifold with brackets defined as in the case of g∗ ∼= T ∗G/G.
Since Pµ ≈ J−1(0µ)/G, one sees that the symplectic leaves of P/G are the reduced
manifolds.

The next result will give a convenient way to generate Poisson maps. In it we
distinguish left and right actions and correspondingly g∗ with the ± Lie-Poisson



4 Poisson Brackets on Duals of Lie Algebras 11

bracket by writing g∗− and g∗+ in the respective cases. This left-right duality is
important and will be elaborated below. For example, the rigid body and heavy
top are left invariant systems, whereas the continuum systems treated here are right
invariant. As D. Fried pointed out to us, some interesting systems such as the
classical gravitating fluids (of Poincaré, Jacobi and Kirchhoff) have invariance on
each side.

Proposition 4.3. Let JL : P → g∗ be a momentum map for a left action of G on
P . Then

JL : P → g∗+ is a Poisson map.

Likewise, if JR is the momentum map for a right action, then

JR : P → g∗− is a Poisson map.

Proof By definition of the Lie-Poisson bracket,

{F,G}+(µ) =
〈
J(x),

[
δF

δµ
,
δG

δµ

]〉
= Ĵ

([
δF

δµ
,
δG

δµ

])
(x),

where µ = J(x). Since Ĵ is a Lie algebra homomorphism,

Ĵ

([
δF

δµ
,
δG

δµ

])
(x) =

{
Ĵ

(
δF

δµ

)
, Ĵ

(
δG

δµ

)}
(x).

The proof will be complete if we can show that

d

(
Ĵ

(
δF

δµ

))
= d(F ◦ J)

where δF/δµ is regarded as a constant element of g evaluated at µ = J(x). Indeed,
we have

d(F ◦ J)(x) · vx = dF (µ) · (dJ(x) · vx)

=
〈
dJ(x) · vx,

δF

δµ

〉
for vx ∈ TxP . Also,

d

(
Ĵ

(
δF

δµ

))
· vx = d

(〈
J(x),

δF

δµ

〉)
· vx

=
〈
dJ(x) · vx,

δF

δµ

〉
since δF/δµ is regarded as a constant element of g. QED

Note that Ad∗-equivariant momentum maps in the usual sense for actions on
symplectic manifolds, are also momentum maps in the Poisson sense. In what
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follows, most of the momentum maps we consider are standard ones from symplectic
geometry (see Abraham and Marsden [1978], §4.2).

A consequence of the formula

d

(
Ĵ

(
δF

δµ

))
= d(F ◦ J)

proved above is the following fact about collective Hamiltonians. (cf. Marle [1976]
and Guillemin and Sternberg [1980]). (This holds for momentum maps associated
with either left or right actions).

Corollary 4.4. Let F ∈ C∞(g∗). Then

XF◦J(x) =
(
δF

δµ

)
P

(x)

where δF/δµ is evaluated at µ = J(x).

It is convenient for later purpose to be more explicit about the map by which
the reduced space is identified with g∗, and the corresponding left-right duality. If
Lg and Rg denote left and right translation by g in G, these actions can be lifted to
left and right actions on T ∗G as follows. Define

L : G× T ∗G→ T ∗G,L(g, αh) = (TghLg−1)∗αh

and
R : T ∗G×G→ T ∗G,R(αh, g) = (ThgRg−1)∗αh.

These two commuting actions have the (Ad∗-equivariant) momentum maps

JL : T ∗G→ g∗, JL(αg) = (TeRg)∗(αg) for L

and
JR : T ∗G→ g∗, JR(αg) = (TeLg)∗(αg) for R.

Thus by 5.3,
JL : T ∗G→ g∗+

and
JR : T ∗G→ g∗−

are Poisson maps. Moreover JL is R-invariant and JR is L-invariant so that these
maps induce Poisson manifold diffeomorphisms on the corresponding quotient spaces

J̄L : R\T ∗G→ g∗+

J̄R : T ∗G/L→ g∗−

with inverses J−1
L (µ) = [µ]R, J−1

R (µ) = [µ]L. ([αg]R and [αg]L denote equivalence
classes in R\T ∗G,T ∗G/L). Denote the canonical projections by πL : T ∗G/L, and
πR : T ∗G→ R\T ∗G.
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The symplectic leaves of g∗ are the coadjoint orbits. In g∗± the orbit 0±µ through
µ ∈ g∗ has the Lie-Berezin-Kirillov-Kostant-Souriau symplectic form

ωµ(ν)((ad ξ)∗ν, (ad η)∗ν) = ±〈ν, [ξ, η]〉

where ν ∈ 0±µ and ξ, η ∈ g. Hence the symplectic leaves of T ∗G/L are of the form
J̄−1
R (0−µ ), and those of R\T ∗G are of the form J̄−1

L (0+
µ ). But it is easily seen that

J̄−1
R (0−µ ) = πLJ

−1
L (0+

µ ), J̄−1
L (0+

µ ) = πRJ
−1
R (0−µ )

and hence the symplectic leaves in T ∗G/L and R\T ∗G are the reduced manifolds
πLJ

−1
L (0+

µ ) and πRJ−1
R (0−µ ) , where 0±µ has the + or − Lie-Poisson symplectic form.

We summarize these results in the following theorem.

Theorem 4.5. The Ad∗-equivariant momentum maps JL and JR for the actions L
and R of G on T ∗G induce Poisson manifold diffeomorphisms

J̄L : R\T ∗G→ g∗+ and J̄R : T ∗G/L→ g∗−

where g∗± is endowed with the ± Lie-Poisson bracket. The symplectic leaves in
the quotient spaces T ∗G/L and R\T ∗G are the reduced manifolds J−1

L (0+
µ )/L, and

R\J−1
R (0−µ ), where µ ∈ g∗ and 0±µ is the coadjoint orbit of G in g∗ through µ with

the ± Lie-Poisson symplectic form.

In particular, note that the actions L and R form a dual pair in the sense that
the reduced spaces for one action are coadjoint orbits for the other, and we get the
diagram

R\T ∗G T ∗G

g∗+

J̄L JL

πR�

@
@
@
@R

�
�

�
�	

T ∗G/L

g∗−

JR J̄R

πL -

@
@
@
@R

�
�

�
�	

We can reformulate Theorem 5.2 in these terms as follows. Let H : T ∗G → R
be a Hamiltonian invariant under the lifted action L on T ∗G of the left translation
on G. Then H induces a smooth mapping HL : T ∗G/L → R, and hence the
function H− = HL ◦ J̄−1

R : g∗− → R defines Lie-Poisson equations on g∗. Since
Lie-Poisson equations have trajectories which remain in the coadjoint orbit of their
initial conditions, HL when restricted to the reduced manifolds J−1

L (0+
µ )/L where

µ ∈ g∗, define Hamiltonian systems on these manifolds. Moreover, if Ft denotes the
flow of XH and G−t is the flow of the Lie-Poisson equation defined by H−, we have
G−t ◦ J̄R ◦ πL = J̄R ◦ πL ◦ Ft. We summarize these results in the following theorem.

Theorem 4.6. A left invariant Hamiltonian H : T ∗G → R canonically induces
Lie-Poisson equations on g∗− defined by the Hamiltonian function H− = HL ◦ J̄−1

R
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where HL ◦ πL = H. If Ft denotes the flow of XH and G−t is the flow of the Lie-
Poisson equations for H− on g∗−, then G−t ◦ J̄R ◦πL = J̄R ◦πL ◦Ft. The Hamiltonian
HL|J−1

L (0+
µ )/L where µ ∈ g∗, induces a Hamiltonian system on the reduced manifold

J−1
L (0+

µ )/L. The same result holds if << left >> and << right >>, and << − >>
and << + >> are interchanged.

5 Plasma Physics

In this section we apply the theory of Hamiltonian systems with symmetry to plasma
physics. In subsequent sections, we shall derive a Hamiltonian formulation, relative
to certain Poisson brackets, for the equations of motion in three different models for
plasma physics: 1) the Maxwell-Vlasov equations, 2) compressible fluids and MHD
(magnetohydrodynamics) and 3) two-fluid plasma dynamics.

To motivate our derivation of the Hamiltonian structure for the equations of
plasma physics, we first discuss these equations here and provide a heuristic deriva-
tion rather than a detailed treatment. The reader may wish to consult a text on
the subject, such as Chen [1978] or Davidson [1972].

As a gas of electrically neutral molecules is heated, the molecules begin to dis-
sociate into atoms when the thermal energy exceeds the molecular binding energy.
Further heating produces dissociation of the atoms themselves, called ionization,
when even the binding energy of electrons to nuclei is exceeded by particle thermal
energies. The end product is called a (completely ionized) plasma. Thus a plasma
is a collection of various species, labeled by s, of charged particles with, say, mass
ms and charge qs.

According to the Lorentz force law of electrodynamics, the position xi and ve-
locity vi of the i-th charged particle of species s, are determined by

ẋi = vi

msẍi = qs(E + vi ×B)

where E and B are the electric and magnetic fields due to the positions and motions
of the other particles, possibly augmented by external fields. The particle motions
both determine and are determined by the electromagnetic fields. There are equa-
tions for each of the enormous number of particles in the plasma, and the system is
coupled through the Maxwell equations.

For notational simplicity only, we consider a plasma consisting only of one species
of particles with charge q and mass m moving in Euclidean space R3 with positions
x and velocities v. The plasma particle’s motion evolves with time in phase space
(x, v), which we denote by Ω. Since the number of particles is large, it is useful to
approximate their positions and velocities by a density on phase space which may
be a smooth function. Let f(x, v, t) be the plasma density at time t and denote
by u = (ẋ, v̇) the phase << velocity >> field of the plasma. Let Ω0 be a fixed
subregion of Ω, with boundary ∂Ω0, and let m(Ω0, t) be the mass in Ω0. Then
conservation of mass (and sufficient smoothness) leads in standard fashion to the
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equation of continuity:

∂f

∂t
(x, v, t) + div(x,v)(fu) = 0.

Rewriting this with u = (ẋ, v̇), we get

∂f

∂t
+

∂

∂x
(fẋ) +

∂

∂v
(fv̇) = 0

or
∂f

∂t
+ ẋ

∂f

∂x
+ v̇

∂f

∂v
+ f

(
∂ẋ

∂x
+
∂v̇

∂v

)
= 0

i.e.,
∂f

∂t
+ ẋ

∂f

∂x
+ v̇

∂f

∂v
+ f · div(x,v)u = 0.

Assuming the plasma to be << incompressible >> in phase space i.e., div(x,v)u = 0,
we obtain in the famous Boltzmann equation of kinetic theory:

∂f

∂t
(x, v, t) + ẋ

∂f

∂x
(x, v, t) + v̇

∂f

∂v
(x, v, t) = 0.

The incompressibility condition div(x,v)u = 0 is just the Liouville theorem which
states that phase space volumes are preserved and which applies to particles moving
under the influence of an electromagnetic field. Thus we find that it is a condition
appropriate for a collisionless plasma. Inserting the Lorentz force law

mv̇ = q(E + v ×B),

we get the (collisionless) Vlasov equation

∂f

∂t
(x, v, t) + v

∂f

∂x
(x, v, t) +

q

m
(E + v ×B)

∂f

∂v
(x, v, t) = 0.

For the Maxwell-Vlasov system, the dynamical variables are f(x, v, t), E(x, t)
and B(x, t), which satisfy a system of coupled nonlinear evolution equations, with
initial conditions on f,E and B. In appropriate units, the Maxwell-Vlasov equations
are:

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v ×B) · ∂f

∂v
= 0 (5.1)

∂B

∂t
= −curlE (5.2)

∂E

∂t
= curlB − Jf , where the current is Jf = q

∫
vf(x, v, t) dv (5.3)

divE = ρf , where the charge density is ρf = q

∫
f(x, v, t) dv (5.4)



6 Hamiltonian Formulation of the Poisson-Vlasov System 16

divB = 0. (5.5)

We think of this system as an initial value problem for f,E and B.
The restriction of the Maxwell-Vlasov equations to the Coulomb or electrostatic

case, in which B = 0 (or the velocity of light →∞) is also important, and leads to
the Poisson Vlasov equations

∂f

∂t
+ v

∂f

∂x
− q

m

∂φf
∂x
· ∂f
∂v

= 0 (5.6)

∆ϕf = −ρf , where ∆ = ∇2 is the Laplacian, and ϕf the scalar potential. (5.7)

6 Hamiltonian Formulation of the Poisson-Vlasov Sys-
tem

We first exhibit the Poisson-Vlasov equation as a Hamiltonian system on an appro-
priate Lie group by using the Lie-Poisson structure discussed in §4. To guess the
right group, consider the single particle energy, given by

Hf =
1
2
mv2 + qϕf .

This is called the self-consistent Hamiltonian. It is a direct verification that the
Poisson-Vlasov equation can be written as

∂f

∂t
= −{f,Hf}

where {, } is the standard Poisson bracket on (x,mv)-phase space. From this, we see
that f evolves by means of an infinitesimal canonical transformation at each time
t. Thus, the evolution of f can be described by

ft = η∗t f0

where f0 is the initial value of f, ft is its value at time t, and ηt is a canonical
transformation. This motivates a guess that the appropriate group for the Poisson-
Vlasov equation is S, the group of canonical transformations on phase space R6.
S is an infinite dimensional Lie group in the sense of diffeomorphism groups and
we shall not deal here with the delicate functional analytic issues needed to make
precise all the infinite dimensional geometry. We expect that this gap can be filled
by using techniques of Ebin-Marsden [1970] and Ratiu-Schmid [1981].

The Lie algebra s of S consists of all Hamiltonian vector fields on R6. We
can identify elements of s with their generating functions, so that s consists of the
C∞ functions on R6 and the (left) Lie algebra structure is given by {f, g}, the usual
Poisson bracket on phase space1. The dual space s∗ consists of the linear functionals
on s which can be identified with the distribution densities on phase space.

1Strictly speaking, S is the group of diffeomorphisms preserving the contact form Σpidq
i + dτ

on R6 × R.
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For fdx dv ∈ s∗+, h ∈ s+, the natural pairing is

〈f, h〉 =
∫
fh dx dv.

Applying the general definition of the Lie-Poisson bracket on the dual of a Lie
algebra to s∗, we get for F,G : s∗ → R

{F,G}(f) =
∫
f

{
δF

δf
,
δG

δf

}
dx dv.

(This is the bracket appropriate to right invariant systems).
We now verify that the Poisson-Vlasov equation is a Hamiltonian evolution equa-

tion with the Hamiltonian equal to the total energy:

H(f) =
1
2

∫
mv2f(x, v, t) dx dv +

1
2

∫
ϕfρf dx.

The second term can be written as 1/2
∫
|∇ϕf |2 dx, from which it follows that

δH/δf = Hf . By integration by parts one gets the following identity∫
g{h, k} dx dv = −

∫
k{h, g} dx dv; i .e., 〈g, {h, k}〉 = 〈{g, h}, k〉,

for g, h, k : R6 → R.

Proposition 6.1. The Poisson-Vlasov equation can be written in Lie-Poisson form

ḟ = −ad∗δH
δf

f

which is equivalent to ḟ = {f,H} (by Theorem 4.1).

Proof We have

〈ad∗gf, h〉 = 〈f, adgh〉
= 〈f, {g, h}〉

=
∫
f{g, h} dx dv

=
∫
{f, g}h dx dv.

Thus ad∗gf = {f, g} : Hence

−ad∗δH
δf

f =
{
δH

δf
, f

}
= −{f,Hf}.

Thus ḟ = −ad∗δH
δf

f is equivalent to ḟ = −{f,Hf} which, as remarked above, is

equivalent to the Poisson-Vlasov equation. QED
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7 Maxwell’s Equations and Reduction

We will describe Maxwell’s equations with a given charge density as a Hamiltonian
system and construct, in a natural way, a Poisson bracket for functions of the field
variables E and B. Two of Maxwell’s equations, namely Ė = curl B and Ḃ = −
curl E will be Hamilton’s equations relative to this bracket, while the remaining
Maxwell equations, namely, div E = ρ and div B = 0, will be associated with gauge
invariance and the reduction procedure.

The basic configuration variables we begin with are the vector potentials on R3,
i.e., the configuration space is A = {A : R3 → R3}. The corresponding phase space
is the cotangent bundle T ∗A with its canonical symplectic structure. Elements in
T ∗A may be identified with pairs (A, Y ), where Y is a vector field density on R3

(we do not distinguish Y and Y dx), i.e., T ∗A ∼= A × A∗. We have the L2 pairing
between A ∈ A and Y ∈ A∗ given by

〈A, Y 〉 =
∫
A(x) · Y (x) dx,

so that the canonical symplectic structure ω on T ∗A is given by

ω((A1, Y1), (A2, Y2)) =
∫

(Y2 ·A1 − Y1 ·A2) dx.

The associated Poisson bracket for F,G : T ∗A → R is given as follows

{F,G}(A, Y ) =
∫ (

δF

δA
· δG
δY
− δF

δY
· δG
δA

)
dx.

With the Hamiltonian

H(A, Y ) =
1
2

∫
(|curlA|2 + |Y |2) dx.

Hamilton’s equations are easily computed to be

∂A

∂t
=
δH

δY
= Y and

∂Y

∂t
= −δH

δA
− curl curlA.

By setting B = curl A and E = −Y , the Hamiltonian becomes the usual field energy

H(E,B) =
1
2

∫
(|B|2 + |E|2) dx

and Hamilton’s equations imply Maxwell’s equations

∂B

∂t
= −curlE and

∂E

∂t
= curlB.

The remaining two Maxwell equations will appear as a consequence of gauge invari-
ance.

Since H(A, Y ) depends on curl A, it is invariant under the gauge transformations
A 7→ A +∇ϕ for any ϕ : R3 → R. Consider the gauge group G = {ϕ : R3 → R},
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the group operation being addition; G acts on A by Φϕ(A) = A + ∇ϕ. This
translation of A extends in the usual way to a canonical transformation (extended
point transformation) of T ∗A, given by

Φ̃ϕ(A, Y ) = (A+∇ϕ, Y ).

This action is Hamiltonian and has a momentum map J : T ∗A → g∗, where g is
identified with G, the real valued functions on R3. The momentum map is given by
the formula:

〈J(A, Y ), ψ〉 = 〈Y, ψA(A)〉,

where ψ ∈ g and ψA is the corresponding infinitesimal generator of the action Φϕ

on A. One computes that ψA(A) = ∇ψ, which leads to

〈J(A, Y ), ψ〉 =
∫

(Y · ∇ψ) dx = −
∫

(div Y ) · ψ dx.

Thus we may write
J(A, Y ) = −div Y.

If ρ is an element of g∗ (the densities on R3), J−1(ρ) = {(A, Y ) ∈ T ∗A | div Y = −ρ}.
In terms of E, the condition div Y = −ρ becomes the Maxwell equation div E = ρ,
so we may interpret the elements of g∗ as charge densities.

Since the Hamiltonian is gauge invariant, i.e., H(Φ̃ϕ(A, Y )) = H(A, Y ), we can
pass to the reduced phase space J−1(ρ)/G, which we know by the general theory is
a symplectic manifold into which the motion can be projected.

Proposition 7.1. The reduced phase space J−1(ρ)/G can be identified with M =
{(E,B) | divE = ρ,divB = 0}, and the Poisson bracket on M is given in terms of
E and B by

{F,G}(E,B) =
∫ (

δF

δE
· curl δG

δB
− δG

δE
· curl δF

δB

)
dx.

Maxwell’s equations with an ambient charge density ρ are Hamilton’s equations for

H(E,B) =
1
2

∫
(|E|2 + |B|2) dx

on the space M.

Proof To each (A, Y ) ∈ J−1(ρ), we associate the pair (B,E) = (curlA,−Y ) ∈
M. Since two vector fields on R3 have the same curl if and only if they differ
by a gradient, and every divergence-free B is a curl, this association gives a 1-1
correspondence between J−1(ρ)/G and M.

Now let F,G : M→ R. To compute their Poisson bracket {F,G}, we pull them
back to J−1(ρ), extend them to T ∗A, take their canonical Poisson bracket in T ∗A,
restrict this to J−1(ρ), and finally << push-down >> the resulting G-invariant
function to M. The result does not depend upon the choice of extension made, and
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in fact we can do the computation without mentioning the extension again. Given
F (B,E) we define the pull back F̂ (A, Y ) to J−1(ρ) by

F̂ (A, Y ) = F (curlA,−Y ).

Notice that the chain rule gives

DAF̂ (A, Y ) ·A′ = DBF (B,E) · curlA′

i.e., ∫
δF̂

δA
·A′ dx =

∫
δF

δB
· (curlA′) dx

=
∫ (

curl
δF

δB

)
·A′ dx

(integrating by parts). Thus

δF̂

δA
= curl

(
δF

δB

)
.

Similarly
δF̂

δY
= −δF

δE
.

Using the canonical bracket on T ∗A, we thus have

{F,G}(B,E) = {F̂ , Ĝ}(A, Y ) =
∫ (

δF̂

δA
· δĜ
δY
− δĜ

δA
· δF̂
δY

)
dx

=
∫ (

δ

δA
F (curlA,−Y ) · δ

δY
G(curlA,−Y )

− δ

δA
G(curlA,−Y ) · δ

δY
F (curlA,−Y )

)
dx

= −
∫ (

curl
δF

δB
· δG
δE
− curl

δG

δB
· δF
δE

)
dx

=
∫ (

δF

δE
· curl

δG

δB
− δG

δB
· curl

δF

δE

)
dx.

The rest of the proposition follows from the general theory of reduction. QED

The Maxwell-Vlasov equations in terms of potentials

We will now combine our results for the Maxwell equations and the Poisson-
Vlasov system to obtain the Poisson structure for the Maxwell-Vlasov system. The
Hamiltonian will be given by the total energy, which is the sum of the particle kinetic
energy and the field energy. For simplicity, we set m = 1, q = 1 :

H(f,E,B) =
1
2

∫
|v|2f(x, v, t) dx dv

+
1
2

∫
(|E(x, t)2 + |B(x, t)2) dx.
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The calculation is simpler if we choose as our variables (A, Y ) ∈ T ∗A and densities
fmom on (x, p)-space, where p is the particle canonical momentum, rather than
densities f on (x, v)-space. The relation p = v+A leads to fmom(x, p) = fmom(x, v+
A) = f(x, v) and of course, replacing f by fmom and v by p in the Lie-Poisson bracket
on s∗ still defines a Poisson structure on s∗.

The Poisson bracket on s∗ × T ∗A is just the sum of those on s∗ and T ∗A. For
functionals F̄ , Ḡ : s∗ × T ∗A → R set

{F̄ , Ḡ}(fmom, A, Y ) =
∫
fmom

{
δF̄

δfmom
,
δḠ

δfmom

}
dx dp

+
∫ (

δF̄

δA

δḠ

δY
− δḠ

δA

δF̄

δY

)
dx (7.1)

and the Hamiltonian expressed in these variables becomes

H̄(fmom, A, Y ) =
1
2

∫
|p−A(x)|2fmom(x, p) dx dp

+
1
2

∫
(|Y |2 + |curlA|2) dx = Hmatter +Hfield. (7.2)

Notice that at this stage (pre-reduction), there is no coupling of particles and fields
in the Poisson bracket, but there is coupling in the first term of H̄.

Theorem 7.2. The evolution equations Ḟ = {F̄ , H̄} for a function F̄ on s∗ × T ∗A
with H̄ and {, } given above, are equations 5.1, 5.2 and 5.3 of the Maxwell-Vlasov
equations.

The proof of this theorem is a straightforward verification. The constraints 5.4
and 5.5 of the Maxwell-Vlasov equations are subsidiary equations which are con-
sistent with the evolution equations. Equation 5.4 holds since B = curl A and
equation 5.5 expresses the fact that we are on the zero level of the momentum map
generated by the gauge transformations. (If an external charge density is present,
we replace J−1(0) by J−1(ρext); see §10). The corresponding reduced space decou-
ples the energy, while coupling the Poisson structures. We turn to this in the next
section.

8 The Poisson Structure for the Maxwell-Vlasov Equa-
tions

The final form of the Poisson structure for the Maxwell-Vlasov system will now be
obtained by applying the reduction procedure to the formulation of the previous
sections.

First we must specify an action of the gauge group G = {ϕ : R3 → R} on
s∗ in such a way, that when combined with the action of G on T ∗A, Φ̃ϕ(A, Y ) =
(A+∇ϕ, Y ) it will leave the Hamiltonian invariant. Furthermore, it must preserve
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the Poisson structure on s∗×T ∗A. A natural choice for this extended action, which
satisfies the first requirement is:

Φψ(fmom, A, Y ) = (fmom ◦ τ−dψ, A+∇ψ, Y )

where τ−dψ : R6 → R6 is the momentum translation map defined by

τ−dψ(x, p) = (x, p− dψ(x)).

Proposition 8.1. The above action of G on s∗ × T ∗A has a momentum map J :
s∗ × T ∗A → g∗ given by

J(fmom, A, Y ) = −
∫
fmom(x, p)dp− div Y.

Proof The second term is the momentum map for the action of T ∗A, so it suffices
to calculate the momentum map for the action of G on s∗. This can be done by
observing that the action on s∗ is the restriction of an extended point transformation
on T ∗S to the fiber at the identity T ∗e S ∼= s∗, or by the following direct computation.
The infinitesimal generator ψs∗ : s∗ → s∗ of the action (ψ, fmom) 7→ fmom ◦ τ−dψ is
given by

ψs∗(f)(x, p) =
d

dt

∣∣∣∣
t=0

Φexp(tψ)f(x, p)

=
d

dt

∣∣∣∣
t=0

(f ◦ τ−tdψ)(x, p) =
d

dt

∣∣∣∣
t=0

f(x, p− tdψ),

hence ψs∗(f) = −dpf · dxψ = {f, ψ}.
Let Js∗(fmom) = −

∫
fmom(x, p)dp, so Js∗ : s∗ → g∗. We need to verify that

X〈J∗s ,ψ〉 = ψs∗ .

But 〈Js∗ , ψ〉(fmom) = −
∫
fmom(x, p)ψ(x) dx dp and by Theorem 4.2,

−X〈Js∗ ,ψ〉(fmom) = ad∗δ〈Js∗ ,ψ〉
δfmom

(f) = ad∗−ψ(f) = −ad∗ψ(f).

But ad∗ψ(f) = {f, ψ} since

〈ad∗ψ(f), h〉 = 〈f, ad−ψh〉
= 〈f, {ψ, h})
= 〈{f, ψ}, h〉.

Thus X〈Js∗ ,ψ〉 = ψs∗ and the result follows. QED

An alternative proof of this proposition, suggested by S. Sternberg, proceeds as
follows. We use the following.
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Lemma 8.2. Let g and h be Lie algebras and α : g → h a Lie algebra homomor-
phism. Regarding h ⊂ C∞(h∗) as linear functions, then α : g → C∞(h∗) is a Lie
algebra homomorphism i.e., a Hamiltonian action with g acting on h∗ by −ad∗α(ξ).
The associated momentum map is the dual α∗ : h∗ → g∗.

Proof If η1 and η2 ∈ h are regarded as linear functions on h∗, their (+) Lie-Poisson
bracket is

{η1, η2}(ν) =
〈
ν,

[
δη1

δν
,
δη2

δν

]〉
= 〈ν, [η1, η2]〉.

So {η1, η2} = [η1, η2]. Thus α : g → C∞(h∗) is a Lie algebra homomorphism. To
check that α∗ is the momentum map, note that 〈α∗(ν), ξ〉 = 〈ν, α(ξ)〉. Thus we
must verify that for ξ ∈ g,

Xα(ξ) = ξh∗ .

But ξ∗ = −ad∗α(ξ) by assumption and Xα(ξ) = −ad∗α(ξ) by Theorem 4.2. QED

This proof also shows that the dual of a linear map α : g→ h is a Poisson map
if and only if α is a Lie algebra homomorphism.

To get the proposition, let g = C∞(R3) and h = s = C∞(T ∗R3) with α : g→ h

given by mapping the function ψ of x to −ψ regarded as a function of (x, p). The
dual of α is minus integration over the fiber, so we just need to check that α gives
the correct action of g on s∗, namely

(ψ, f) 7→ ad∗ψ(f).

Now

ad∗ψ(f)(h) = 〈f, ad−ψh〉
= 〈f, {ψ, h}〉
= 〈{f, ψ}, h〉

so ad∗−ψ(f) = {f, ψ}.
On the other hand, the infinitesimal generator of the action, computed above is

ψs∗(f) = −dpf · dxψ = {f, ψ}.

QED

We may describe the reduced Poisson manifold in terms of densities f(x, v) on
position-velocity space. We reduce at an element µ ∈ g∗.

Proposition 8.3. The reduced manifold (s∗×T ∗A)µ = J−1(µ)/G may be identified
with the Maxwell-Vlasov phase space.

MV =
{

(f,B,E) | divB = 0,divE = µ+
∫
f(x, v) dv

}
.
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Proof To each (fmom, A, Y ) in J−1(µ) we associate the triple (f,B,E) in MV
where

f(x, v) = fmom(x, v +A(x)), B = curl A and E = −Y.

Then the proposition follows from the momentum map construction above, and a
simple verification that two elements of J−1(µ) are associated to the same triple in
MV if and only if they are related by a gauge transformation. (Note that µ ∈ g∗

can be interpreted as an external charge density). QED

By a general theory of reduction, MV inherits a Poisson bracket from the one
on s∗× T ∗A. Since the Hamiltonian H is invariant under gauge transformations, it
follows from Theorem 2.2 that the Maxwell-Vlasov equations 5.1, 5.2, and 5.3 are
a Hamiltonian system on MV with respect to this Poisson structure. It remains
now to compute the explicit form of the Poisson bracket in terms of the reduced
variables (f,B,E).

Theorem 8.4. For two functions F,G of the field variables (f,B,E), i.e., F,G :
MV → R, the Poisson bracket is given by :

{F,G}(f,B,E) =
∫
f

{
δF

δf
,
δG

δf

}
dx dv

+
∫ (

δF

δE
· curl

δG

δB
− δG

δE
· curl

δF

δB

)
dx

+
∫ (

δF

δE
· ∂f
∂v

δG

δf
− δG

δE
· ∂f
∂v

δF

δf

)
dx dv

+
∫
fB ·

(
∂

∂v

δF

δf
× ∂

∂v

δG

δf

)
dx dv. (8.1)

Proof Given F (f,B,E) on MV , define F̄ (fmom, A, Y ) by

F̄ (fmom, A, Y ) = F (f,B,E),

where the relation between the two sets of variables is as in the previous proposition.
Then {F,G}(f,B,E) is given by computing {F̄ , Ḡ}(fmom, A, Y ) according to the
last section and expressing the result in terms of the variables (f,B,E) on MV .

By definition of the functional derivative we see that

δF̄

δfmom
(x, p) =

δF

δf
(x, p−A).

The first term of 8.1 therefore becomes∫
f(x, p−A)

{
δF

δf
(x, p−A),

δG

δf
(x, p−A)

}
dx dp. (8.2)

Using the formula for the Poisson bracket under a change of variables and B =
curlA, we have for two functions g(x, v), h(x, v):

{g(x, p−A), h(x, p−A)}(x,p) = {g(x, v), h(x, v)}(x,v) +B ·
(
∂g

∂v
× ∂h

∂v

)
.
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Letting g(x, v) = δF/δf(x, v) and h(x, v) = δG/δf(x, v), and making the substitu-
tion v = p−A, 8.2 becomes

∫
f(x, v)

{
δF

δf
(x, v),

δG

δf
(x, v)

}
(x,y)

dx dv

+
∫
f(x, v) ·B

(
∂

∂v

δF

δf
(x, v)× ∂

∂v

δG

δf
(x, v)

)
dx dv. (8.3)

This is the first and the last term in 8.1. For the second term in 8.1 we use

Lemma 8.5.
δF̄

δA
= curl

δF

δB
+
δF

δf

∂f

∂v
and

δF̄

δY
= −δF

δE
.

Proof By the chain rule and definition of the functional derivative,∫
δF̄

δA
A′dx = DAF̄ (fmom, A, Y ) ·A′

= DfF (f,B,E) ·DAf ·A′ +DBF (f,B,E) · curlA′.

But
DAf ·A′(x, p) =

∂fmom

∂p
(x, v +A) ·A′ = ∂f

∂v
(x, v) ·A′.

Thus, ∫
δF̄

δA
·A′ dx =

∫
δF

δf

∂f

∂v
A′dx+

∫
δF

δB
curlA′ dx

=
∫
δF

δf

∂f

∂v
A′ +

∫
curl

δF

δB
A′ dx.

QED

Substituting this into the second term of 7.1 yields the second and third term
of 8.1. Thus Theorem 8.4 is proved. QED

Observe that the first term of 8.1 is the bracket for the Poisson-Vlasov system and
involves only f , the second term is the bracket for the vacuum Maxwell equations and
involves only the electromagnetic fields, and the third and fourth terms provide the
coupling between the Vlasov system and the Maxwell system. This Poisson bracket
automatically satisfies the Jacobi identity, by the way it is constructed from general
methods of symplectic geometry using the Lie-Poisson bracket and reduction.

The final ingredient in the Hamiltonian structure is the Hamiltonian expressed
in the reduced manifold variables:

H(f,B,E) =
1
2

∫
|v2|f(x, v) dx dy

+
1
2

∫
|B(x)|2 dx+

1
2

∫
|E(x)|2 dx.



9 Semi-Direct Products, Fluids and Magnetohydrodynamics 26

Theorem 8.6. The Maxwell-Vlasov equations of motion 5.1, 5.2, and 5.3 may be
written as

Ḟ = {F,H},

where {, } is given by 8.1.

This follows from Theorem 7.2 by reduction, and can also be checked directly
by a straightforward calculation.

There is an analogous bracket to 8.1 in (fmom, E,B) variables. For an interpre-
tation of this in terms of semidirect products and additional results, see Marsden,
Ratiu and Weinstein [1983].

9 Semi-Direct Products, Fluids and Magnetohydrody-
namics

In the preceding sections we saw that the Vlasov variable f is regarded as an element
of s∗ the dual of the Lie algebra of the group of canonical transformations and that
the bracket on C∞(s∗) is the Lie-Poisson bracket for this group. One can view s∗

as arising from T ∗S by reduction by the action of S by right translations.
Now we consider reducing T ∗G not by G but by a subgroup. In doing so we

shall arrive not at g∗ but at the dual of the Lie algebra of a semi-direct product. We
shall then apply this result to compressible fluids and to MHD and indicate briefly
the relationship of the structures obtained to the Lie-Poisson bracket on C∞(s∗)
and the Maxwell-Vlasov bracket.

The results described below are due to Marsden, Ratiu and Weinstein [1983],
which should be consulted for detailed proofs. They are a consolidation and exten-
sion of earlier results of Vinogradov and Kupershmidt [1977], Ratiu [1980], Guillemin
and Sternberg [1980], Morrison and Greene [1980], Dzyalozhinskii and Volovick
[1980], Holm and Kupershmidt [1983], Holmes and Marsden [1983] and Kuper-
shmidt [1982]. These references also consider the heavy top, elasticity and other
systems which are not discussed here.

We first apply the results on reduction of T ∗G by left and right translations
to the case of semidirect products. Let ρ : G → Aut(V ) denote a left Lie group
representation of G in the vector space V and ρ′ : g → End (V ) the induced Lie

algebra representation. Denote by S = G
×
ρ V the semidirect product group of G

with V by ρ with multiplication.

(g1, u1)(g2, u2) = (g1, g2, u1 + ρ(g1)u2).

Let s = g
ρ
× V be the Lie algebra of S. The Lie bracket on s is given by

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], ρ′(ξ1)v2 − ρ′(ξ2)v1).

The adjoint and coadjoint actions of S on s and s∗ are given by

Ad(g,u)(ξ, v) = (Adgξ, ρ(g)v − ρ′(Adgξ)u)
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and

[Ad(g,u)−1 ]∗(ν, a) ≡ Ad∗(g,u)−1(ν, a)

= (Ad∗g−1ν + (ρ′u)∗(ρ∗(g))a, ρ∗(g)a)

where g ∈ G, u, v ∈ V, ν ∈ g∗, and a ∈ V ∗; ρ′u : g → V is given by ρ′u(ξ) = ρ′(ξ)u
and (g, u)−1 = (g−1,−ρ(g−1)u). The ± Lie-Poisson bracket of F,G : s∗ → R is

{F,G}±(µ, a) = ±
〈
µ,

[
δF

δµ
,
δG

δµ

]〉
±
〈
a, ρ′

(
δF

δµ

)
· δG
δa

〉
∓
〈
a, ρ′

(
δG

δµ

)
· δF
δa

〉
(9.1)

where δF/δµ ∈ g and δF/δa ∈ V . Also from Theorem 4.2, we compute the Hamil-
tonian vector field of H : s∗ → R to be

XH(µ, a) = ∓
(

ad∗δH
δµ

µ− ρ′δH
δa

∗a, ρ′δH
δµ

∗a

)
(9.2)

where ρ′δH/δa : g → V is given by ρ′δH/δa(ξ) = ρ′(ξ) · δH/δa, and ρ′δH/δa∗ is its
adjoint.

We shall explicitly compute the left and right actions L and R of S on T ∗S.
Since

L(g,u)(h, v) = (gh, u+ ρ(g)v),

we have
T(h,v)L(g,µ)(vh, v, w) = (ThLg(vh), u+ ρ(g)v, ρ(g)w)

for (vh, v, w) ∈ T(h,v)(G× V ). Thus

T(g,u)(h,v)L(g,u)−1(vgh, u+ ρ(g)v, w)

= (TghLg−1(vgh), v, ρ(g−1)w)

for (vgh, u+ ρ(g)v, w) ∈ T(g,u)(h,v)(G× V ), and hence

L((g, u), (αh, v, a)) = (T(g,u)(h,v)L(g,u)−1)∗(αh, v, a)
= ((TghLg−1)∗αh, u+ ρ(g)v, ρ∗(g)a)

for (αh, v, a) ∈ T ∗(h,v)(G× V ). Since R(g,u)(h, v) = (hg, v + ρ(h)u), we have

T(h,v)R(g,u)(vh, v, w) = (ThRg(vh), v + ρ(h)u,w + Thρ(vh) · u)

for (vh, v, w) ∈ T(h,v)(G× V ). Thus

T(h,v)(g,u)R(g,u)−1(vhg, v + ρ(h)u,w)

= (ThgRg−1(vhg), u, w − Thgρ(vhg) · ρ(g−1)u)

for (vhg, v + ρ(g)u,w) ∈ T(h,v)(g,u)(G× V ) and hence

R((g, u), (αh, v, a)) = (T(h,v)(g,u)R(g,u)−1)∗(αh, v, a)
= ((ThgRg−1)∗αh − dfaρ(g−1)u(hg), v + ρ(h)u, a)
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where fau(g) is the << matrix elements >> 〈a, ρ(g)u〉. The last equality is obtained
by applying the left hand side to (vhg, v + ρ(g)u,w) ∈ T(h,v)(g,u)(G × V ) and using
the easily verifiable formula

〈a, Tkρ(vk)z〉 = dfaz (k)vk

for a ∈ V ∗, k ∈ G, z ∈ V, vk ∈ TkG.
The corresponding momentum mappings are

JL : T ∗S → s∗+, JL(αg, v, a) = (T(e,0)R(g,v))
∗(αg, v, a)

= ((TeRg)∗αg + (ρ′v)
∗a, a) (9.3)

and

JR : T ∗S → s∗−, JR(αg, v, a) = (T(e,0)L(g,v))
∗(αg, v, a)

= ((TeLg)∗αg, ρ∗(g)a) (9.4)

Theorem 4.5 applies to this situation to give:

Proposition 9.1. Let JL and JR be given by 9.3 and 9.4. Then

1. JL and JR are Poisson maps.

2. JL (resp. JR) induces a Poisson diffeomorphism of R\T ∗S (resp. T ∗S/L) with
s∗+ (resp. s∗−).

3. The reduced spaces for the L (resp. R) action are coadjoint orbits in s∗− (resp.
s∗+).

In many physical examples a Hamiltonian system on T ∗G is given whose Hamil-
tonian function Ha depends smoothly on a parameter a ∈ V ∗. In addition, Ha is left
invariant under the stabilizer Ga = {g ∈ G | ρ∗(g)a = a} where ρ∗(g) = [ρ(g−1)]∗,
the dual of the linear transformation ρ(g−1). The Lie algebra of Ga is ga = {ξ ∈ g |
ρ′(ξ)∗a = 0}. Denote by T ∗G/Ga the orbit space of the lift to T ∗G of left translation
of Ga on G. We wish to study the motion on the Poisson manifolds T ∗G/Ga for all
a ∈ V ∗. We shall prove below that this is equivalent to the study of the motion on

s∗− where s = g
ρ
× V .

For fixed a ∈ V ∗, the lift to T ∗G of the left translation of Ga on G has the
Ad∗-equivariant momentum map JaL : T ∗G → g∗a, J

a
L(αg) = (TeRg)∗αg | ga. The

mapping iaL : T ∗G → T ∗S, iaL(αg) = (αg, 0, a) is an embedding of Poisson manifolds
inducing a Poisson embedding of the quotients īaL : T ∗G/Ga → T ∗S/L. Thus the
symplectic leaves in T ∗S/L pull back to symplectic leaves in T ∗G/Ga. The natural
candidates for these leaves are the reduced symplectic manifolds (JaL)−1(0+

µa)/Ga,
where µ ∈ g∗, µa = µ|ga and 0+

µa ⊂ g∗a denotes the coadjoint orbit of Ga in g∗a with
the << + >> Lie-Poisson symplectic structure.

For Hamiltonians that are right invariant under Ga one proceeds exactly as
above, interchanging << left >> and << right >>, and << − >> and << + >>,
and replacing the mapping iaL by iaR(αg) = (αg, 0, ρ∗(g)a). The mappings iaL and iaR
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are necessarily different; if one would use iaL for the right actions, īaL would fail to
be injective. Summarizing: we have the following sequence of Poisson embeddings,
the last arrow being a diffeomorphism.

(JaL)−1(0+
µa)/Ga ↪→ T ∗G/Ga ↪→ T ∗S/L→ s∗−

Ga\(JaR)−1(0−µa) ↪→ Ga\T ∗G ↪→ R\T ∗S → s∗+.

Moreover

(J̄R ◦ īaL)((JaL)−1(0+
µa)/Ga) = (JR ◦ iaL)((JaL)−1(0+

µa))
= {(v, b) ∈ s∗| there exists g ∈ Ga such that ρ∗(g)a
= b,Ad∗gv ∈ 0µa

}
=

⋃
χ|ga=µa

S · (χ, a)−

as a simple verification shows; here S · (χ, a)− ⊂ s∗− denotes the coadjoint orbit of
S through (χ, a) with the << − >> Lie-poisson structure. But

{(ρ′u)∗a | u ∈ V } = {µ ∈ g∗|µ|ga ≡ 0}

implies that S · (χ, a) = S · (µ, a) for all χ ∈ g∗ such that χ | ga = µa and so we have
proved the following theorem.

Theorem 9.2.

1. J̄R ◦ īaL maps the reduced space (JaL)−1(0+
µa)/Ga in a symplectically diffeomor-

phic way to the coadjoint orbit S · (µ, a)− in the dual of the semidirect product
s∗−. Similarly,

2. J̄L ◦ īaR maps the reduced space Ga\(JaR)−1(0−µa) in a symplectically diffeomor-
phic way to the coadjoint orbit S · (µ, a)+ in the dual of the semidirect product
s∗+.

Next we shall explain how to use Theorem 9.2 in examples. This will allow
one to begin with the standard phase space T ∗G and then to reduce a Hamiltonian
system on T ∗G to a Lie-Poisson system on s∗.

Let Ha : T ∗G → R be a Hamiltonian depending smoothly on the parameter
a ∈ V ∗ and assume that Ha is invariant under the lift to T ∗G of the left translations
of Ga on G. Thus Ha induces a Hamiltonian on T ∗G/Ga. Via the symplectic diffeo-
morphism J̄R ◦ īaL, we may regard it as being defined on S · (µ, a)−µ,∈ g∗, and now
varying a ∈ V ∗ we obtain a smooth Hamiltonian H on s∗− ; thus H ◦ JR ◦ iaL = Ha,
i.e., H((TeLg)∗αg, ρ∗(g)a) = Ha(αg). Thus the family of Hamiltonians Ha on T ∗G
induces a single Hamiltonian on s∗−, and the original problem has been embedded
in a larger one which yields Lie-Poisson equations on s∗−. For right invariant Hamil-
tonians, interchange << left >> and << right >>, and << − >> and << + >>.
However, since the maps iaL and iaR are different, we have H((TeRg)∗αg, ρ∗(g)a) =
Ha(αg).
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It is of interest to investigate the evolution of a ∈ V ∗. Let ca(t) ∈ T ∗G denote
an integral curve of Ha and let ga(t) be its projection on G. Then the curve t 7→
(JR◦iaL)ca(t) is an integral curve of XH on s∗− and thus t 7→ ρ∗(ga(t)) is the evolution
of the initial condition a in s∗−. We summarize these results in the following theorem.

Theorem 9.3. Let Ha : T ∗G→ R be a Hamiltonian depending smoothly on a ∈ V ∗
and left invariant under the action on T ∗G of the stabilizer Ga. The family of
Hamiltonians {Ha | a ∈ V ∗} induces a Hamiltonian function H on s∗−, defined by
H((TeLg)∗αg, ρ∗(g)a) = Ha(αg) thus yielding Lie-Poisson equations on s∗−. The
curve t 7→ ca(t) ∈ T ∗G is a solution for Hamilton’s equations defined by Ha on
T ∗G iff t 7→ (JR ◦ iaL)ca(t) is a solution of the Hamiltonian system XH on s∗−. In
particular, the evolution of a ∈ V ∗ is given by t 7→ ρ∗(ga(t))a, where ga(t) is the
projection of ca(t) on G. For right invariant systems, interchange everywhere <<
left >> and << right >>, << − >> and << + >>, and replace the formula for
H by H((TeRg)∗αg, ρ∗(g)a) = Ha(αg).

This theorem is sometimes not applied directly, since ρ and V may not be given
but need to be discovered in the course of analyzing the system. In the process of
finding V one also discovers whether left or right actions of G are involved. The
determination of ρ and V usually is done by means of the evolution of a ∈ V ∗. We
shall elaborate on this remark in the context of the examples. Our first example is
ideal compressible flow and the second is MHD.

Ideal compressible isentropic fluids2. Let Ω be a compact submanifold of R3

with smooth boundary, filled with a moving fluid free of exterior forces. Denote by
x(t) = ηt(X) = η(X, t) where X ∈ Ω, the trajectory of a fluid particle which at time
t = 0 is at X. As is customary in continuum mechanics, capital letters will denote
entities in the reference configuration, i.e., in << body >> coordinates; lower case
letters denote spatial entities (see Marsden and Hughes [1983]).

Given ηt : Ω → Ω, a time dependent diffeomorphism of Ω, denote by vt(x) =
v(x, t) the spatial velocity field of the fluid, i.e.,

∂η(X, t)
∂t

= v(η(X, t), t);

vt is thus a time dependent vector field with flow ηt. Let ρt(x) = ρ(x, t), denote
the mass density of the fluid at time t and ρ0 the mass density in the reference
configuration. Thus the physical problem of fluid motion has as configuration space
the group D of diffeomorphisms of Ω, and ρt is determined by the configuration
when ρ0 is known.

The equations of motion are derived from three fundamental principles: conser-
vation of mass, momentum, and energy. It will be useful to recall these well-known
derivations, as they are relevant to understanding how Theorem 9.3 is applied.

2For expository reasons, technical details on function spaces are omitted. See Ebin and Marsden
[1970] for what is needed. The velocity fields are at least C1. For incompressible fluids, see Marsden
and Weinstein [1982b].
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(a) The principle of conservation of mass stipulates that mass can be neither
created or destroyed, i.e.,∫

ηt(W)
ρt(x) dx =

∫
W
ρ0(X) dX

for all compactW with nonempty interior having smooth boundary. Changing
variables, this becomes∫

W
η∗t (ρt(x)dx) =

∫
W
ρ0(X) dX (9.5)

which is equivalent to
(η∗t ρt)J(ηt) = ρ0 (9.6)

where J(ηt) = dx/dX is the Jacobian of ηt. Using the relation between Lie
derivatives and flows, this is equivalent to the continuity equation

∂ρ

∂t
+ div(ρtv) = 0. (9.7)

The present derivation of conservation of mass shows that the physical entity
to be dealt with is the density ρ dx rather than the function ρ and that 9.5
is more convenient than the standard fluid mechanics formulation 9.7. This
observation will be crucial later on.

(b) The balance of momentum is described by Newton’s second law: the rate of
change of momentum of a portion of the fluid equals the total force applied
to it. Since we assume that no external forces are present, the only forces
acting on the fluid are forces of stress. The assumption of an ideal fluid means
that the force of stress per unit area exerted across a surface element at x,
with outward unit normal n at time t, is −p(x, t)n for some function p(x, t)
called the pressure. With this hypothesis, the balance of momentum becomes
Euler’s equations of motion

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p (9.8)

with the boundary condition v||∂Ω (no friction exists between fluid and bound-
ary) and the initial condition v(x, 0) = v0(x) on Ω.

(c) The kinetic energy of the fluid is 1/2
∫

Ω ρ||v||
2 dx. The assumption of an

isentropic fluid means that the internal energy of the fluid is
∫

Ω ρw(ρ) dx and
p = ρ2w′(ρ) for some real valued function w of ρ. These hypotheses imply that
the total energy, which should be the Hamiltonian of the system, is conserved.

The configuration space of this problem is D, and so the corresponding phase
space is T ∗D. For η ∈ D we have TηD = {Vη : Ω → TΩ | Vη(X) ∈ Tη(X)Ω} and
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T ∗ηD = {αη : Ω → T ∗Ω ⊗ Λ3(Ω) | αη(X) ∈ T ∗η(X)Ω ⊗ Λ3
X(Ω)}; the pairing between

the velocity V in TηD and the momentum density αη in the dual space T ∗ηD is

〈αη, Vη〉 =
∫

Ω
αη(X) · Vη(X).

For later use, we shall express the energy on T ∗D by passing to material coordinates.
Let Vt(X) = ∂η(X, t)/∂t be the material velocity. Then Vt = vt ◦ ηt, showing that
Vt is not a vector field but an element of TηtD. The metric on Ω and the density
ρ0(X)dX establish an isomorphism of TηD with T ∗ηD given by Vη(X) 7→ αη(X) =
ρ0(X)V b

η (X)dX where b : TΩ → T ∗Ω is the bundle isomorphism induced by the
metric on Ω. Finally, D has a smooth metric defined by

〈〈Vη,Wη〉〉η =
∫

Ω
Vη(X) · Wη(X)ρ0(X) dX

which determines a length function on T ∗D, denoted by || ||.
To apply Theorem 9.3 directly, use a simple change of variables to express the

energy on T ∗D as

Hρ0(αη) =
1
2
||αη||2 +

∫
Ω
ρ0(X)w(ρ0(X)J−1

η (X)) dX. (9.9)

Hρ0 clearly depends smoothly on ρ0, and again the change of variables formula shows
that is it right invariant under the action of the subgroup

Dρ0 = {ϕ ∈ D | ρ0 = (ρ0 ◦ ϕ−1)Jϕ−1}

where Jϕ denotes the Jacobian of ϕ. This shows that we should work with the
density ρ0(X)dX and not with the function ρ0, and consider the representation of
D on F(Ω) = C∞(Ω) to be the push-forward, i.e., (η, f) 7→ η∗f . Then the induced
left representation on F(Ω)∗ = densities on Ω, is again push-forward and

Dρ0 = {ϕ ∈ D | ϕ∗ = (ρ0(X)dX) = ρ0(X)dX}.

Let S = D × F (Ω) be the semidirect product of D with F (Ω) by the push-forward
representation and s = X×F (Ω) its Lie algebra. By Theorem 9.3 for right invariant
systems the family of Hamiltonians Hρ0 determines a unique Hamiltonian system
on s∗+. If M̄ = (TeRη)∗αη ∈ T ∗eD = X∗ = one-form densities, for every W ∈ X

〈M̄,W〉 =
∫

Ω
αη(X) · W(η(X)) dX

=
∫

Ω
ρ0(X)V b

η (X) · W(η(X)) dX =
∫

Ω
ρ(x)v(x) · W(x) dx,

i.e., M̄ = ρ(x)vb(x) dx. Thus the HamiltonianH on s∗+ has the expressionH(M̄, ρ(x)dx) =
H((TeRη)∗αη, η∗(ρ0(X)dX)) = Hρ0(αη) = 1/2

∫
Ω ρ(x)||v(x)||2dx+

∫
ρ(x)w(ρ)(x) dx
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which is the physical energy function. Thus, identifying M̄ with the momentum
density M(x) = ρ(x)v(x) and ρ(x)dx with ρ(x), the physical energy function

H(M,ρ) =
1
2

∫
Ω

1
ρ(x)
||M(x)||2dx+

∫
Ω
ρ(x)w(ρ)(x)dx

defines Lie-Poisson equations on X∗ × F (Ω)∗+; we shall determine them later on.
We now apply Theorem 9.3 backwards. Start with the configuration space D,

the physical energy function H(M,ρ), conservation of mass 9.7, balance of momen-
tum 9.8, and p = ρ2w′(ρ). Then notice that 9.7 is equivalent to Lv(ρ(x)dx) = 0,
i.e., η∗t (ρ(x)dx) = ρ0(X)dX, for ρ0 the initial mass density. Hence the dual of the
representation space is the space of densities, i.e., the representation space is F (Ω).
Moreover, ηt∗(ρ0(X)dX) = ρ(x)dx shows that the induced left representation on
F (Ω)∗ is push-forward, so that by the general formula on the evolution of the param-
eter a ∈ V ∗ in Theorem 9.3, the representation of D on F (Ω) is also push-forward.
We now identify M with M̄ and ρ(x) with ρ(x)dx, so that the physical energy func-
tion H(M̄, ρ(x)dx) is defined on X∗ × F (Ω)∗. Since H(M̄, ρ(x)dx) = Hρ0(αη) for
(TeRη)∗αη = M̄, η∗(ρ0(X)dX) = ρ(x)dx, and Hρ0 is right invariant under Dρ0 , The-
orem 9.3 for right invariant systems can be applied yielding Lie-Poisson equations
on s∗+.

Having seen how Theorem 9.3 was applied backwards let us make some general
remarks. In many examples, one is given the phase space T ∗G, but it is not obvi-
ous a priori what V and ρ should be. The phase space T ∗G is often interpreted
as “material” or “Lagrangian” coordinates, while the equations of motion may be
partially or wholly derived in “spatial” or “Eulerian” coordinates. This means that
the Hamiltonian might be given directly on a space of the form g∗ × V ∗, where the
evolution of the V ∗ variable is by “dragging along” or “Lie transport” i.e., it is of
the form t 7→ ρ∗(g(t))a for left invariant systems (or t 7→ ρ∗(g(t))a for right invari-
ant ones), where a ∈ V ∗ and g(t) is the solution curve in the configuration space
G. This then determines the representation ρ and shows whether one should work
with left or right actions. The relation between H and Ha in the theorem uniquely
determines Ha, which is automatically Ga-invariant, and 9.1 and 9.2 give the corre-
sponding Lie-Poisson bracket and equations of motion. The parameter a ∈ V ∗ often
appears in the form of an initial condition on some physical variable of the given
problem.

Let us now return to ideal compressible isentropic fluids. To write the bracket
and the Lie-Poisson equations explicitly, remark first that the induced Lie algebra
representation ρ′ : X→ End (F (Ω)) is given by ρ′(v)f = −Lvf , where Lv is the Lie
derivative. To see this, denote by ηt the flow of v and obtain

ρ′(v)f =
d

dt

∣∣∣∣
t=0

ρ(ηt)f =
d

dt

∣∣∣∣
t=0

(ηt)∗f

=
d

dt

∣∣∣∣
t=0

f ◦ η−t = −df(v) = −Lvf.
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The bracket is hence given by 9.1:

{F,G}+(M,ρ) =
∫

Ω
M ·

[
δF

δM
,
δG

δM

]
dx

−
∫

Ω
ρ

(
L δF
δM

δG

δρ
− L δG

δM

δF

δρ

)
dx.

But the left Lie bracket on X which shows up in the first term is minus the standard
Lie bracket of vector fields (Abraham and Marsden [1978], Example 4.1 G), so this
becomes explicitly

{F,G}+(M,ρ) =
∫

Ω
M ·

((
δG

δM
· ∇
)
δF

δM
−
(
δF

δM
· ∇
)
δG

δM

)
dx

+
∫

Ω
ρ

(
δG

δM
·
(
∇δF
δρ

)
− δF

δM
·
(
∇δG
δρ

))
dx. (9.10)

This bracket agrees with that of Morrison and Greene [1980]. From the Lie-Poisson
equations Ḟ = {F,H}+ we can obtain the equations of motion directly by choos-
ing F =

∫
M1 dx,

∫
M2 dx,

∫
M3 dx,

∫
ρ dx; the last one represents the equation of

continuity and the first three the balance of momentum. We can also get the same
result by using 10.2 directly, but with more computations. For example, the term
ρ′δH/δµ∗a corresponds to div M , as an easy integration by parts argument shows, so
that the second component of XH on s∗+ yields ρ = −divM , which is the continuity
equation.

Remarks

1. In the same manner, one can treat the case of an incompressible inhomoge-
neous fluid. The semidirect product in question is now Dvol × F (Ω), where
Dvol denotes the volume preserving diffeomorphisms of Ω. For the technical
details regarding the correct choices of function spaces, see Marsden [1976].

2. We can also allow σ, the entropy per unit volume, to be variable. The ther-
modynamics equation of entropy advection

∂σ

∂t
+ div

(
σ

ρ
M

)
= 0 (9.11)

has to be added to the compressible fluid equations. In addition, the internal
energy is w = w(ρ, σ) and the pressure is

p = ρ2

(
∂w

∂ρ
+
σ

ρ

δw

δσ

)
.

Thus our system of partial differential equations is 9.7, 9.8, 9.11, with Hamil-
tonian 9.9 for w = w(ρ, σ).



9 Semi-Direct Products, Fluids and Magnetohydrodynamics 35

In our framework, this system is Hamiltonian on the dual of the Lie algebra of
D × F (Ω) × F (Ω), where D acts on F (Ω) × F (Ω) by push-forward in each factor.
Hence the bracket is given by, 9.10) to which the term∫

σ

((
δG

δM
· ∇
)
δF

δσ
−
(
δF

δM
· ∇
)
δG

δσ

)
dx (9.12)

has been added. In this way Ḟ = {F,H}+ for F =
∫
M1dx,

∫
M2dx,

∫
M3dx,

∫
ρdx,

∫
σdx

becomes the system 9.7, 9.8, 9.11. One can also see the form of the Lie-Poisson
equation directly from 9.2 by remarking that the term ρ′δH/δµ∗a corresponds to
(divM,div((σ/ρ)M)).

To finish this example, let us describe the relationship between the Lie-Poisson
bracket on s∗

{F,G} =
∫
f

{
δF

δf
,
δG

δf

}
dx dv

and that on (X× F )∗ given by 9.10.

Proposition 9.4. The map

f 7→
(
M =

∫
vf(x, v) dv, ρ =

∫
f(x, v) dv

)
is a Poisson map from s∗+ to (X× F )∗+.

Proof One may use a direct calculation, but it is more in context to observe that
D × F acts on s∗ by the left action

(η, h) · f = f ◦ η∗ ◦ τdh

where η∗ : T ∗R3 → T ∗R3 is the induced pull-back canonical transformation on
T ∗R3 : η∗(x, p) = (η−1(x), p · Tη(x)) and τdh is fiber translation by dh, as in 8.1.
(This action corresponds to regarding D×F as a subgroup of S by (η, h) 7→ τ−dh◦η∗).
The momentum map may be computed to be the given map f 7→ (M,ρ) as in 8.1.
The result now follows from Proposition 4.3. QED

In summary, the map from the plasma variable f to the fluid variables (M,ρ)
is the momentum map for a group action naturally occurring in the problem and
therefore this map collapses the bracket for the Poisson-Vlasov equation to that for
the Euler equations.

Our second example which involves semi-direct products is MHD.

Magnetohydrodynamics of an ideal compressible perfectly conducting fluid.
We keep the same hypotheses and notations as above but in addition we assume
that the fluid consists of charged particles in a quasi-neutral state. The configu-
ration space remains D, and conservation of mass is unchanged. In the balance of
momentum law, one must add the net Lorentz force of the magnetic field created
by the fluid in motion. In addition, the hypothesis of infinite conductivity leads
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one to the conclusion that magnetic lines are frozen in the fluid, i.e., that they are
transported along the particle paths. If ρ is the mass density, v the spatial velocity,
M = ρv the momentum density,, and B ∈ Λ2(Ω) the magnetic field regarded as a
2-form, then the equations of motion are

Ṁi = −
∑
j

∂

∂xj

(
MiMj

ρ
+ δij

(
p− 1

4
TrB2

)
−
∑
k

BikBkj

)
ρ̇+ divM = 0 i .e., ρdx+ Lv(ρ(x)dx) = 0

and
Ḃ + LvB = 0

where ρ = ρ2w′(ρ) is the pressure and Lv the Lie derivative. The last equation just
says that B is << frozen >> in the fluid. As before, the initial mass density ρ0, is
given. In addition, the initial magnetic field B0 must now be specified. The energy
of this fluid is given by

H(M,ρ,B) =
1
2

∫
Ω

||M(x)||2

ρ(x)
dx

+
∫

Ω
ρ(x)w(ρ)(x) dx+

1
2

∫
Ω
||B(x)||2 dx (9.13)

where ||B||2 = B2
12 + B2

13 + B2
23. Since the last two equations of motion are Lie

transport equations, the pattern of the previous example shows that the relevant
semidirect product is S = D × F (Ω) × Λ1(Ω), where D acts on F (Ω) × Λ1(Ω) by
push-forward on each factor. The Lie algebra is s = X×F (Ω)×Λ1(Ω), and its dual
is s∗ = X∗ × F (Ω)∗ × Λ2(Ω), the pairing between α ∈ Λ1(Ω) and β ∈ Λ2(Ω) being
〈α, β〉 =

∫
Ω α ∧ β.

To H(M,ρ,B) there corresponds the Hamiltonian

Hρ0,B0(αη) =
1
2
〈〈αη, αη〉〉+

∫
Ω
ρ0(X)w(ρ0(X)J−1

η (X)) dX

+
1
2

∫
Ω
||(η∗B0 ◦ η)(X)||2Jη(X) dX

on T ∗D which is right invariant under the action of

Dρ0,B0 = {ϕ ∈ D | ρ0 = (ρ0 ◦ ϕ−1)Jϕ−1 , ϕ∗B0 = B0}.

Thus Theorem 9.3 for right actions applies, and we conclude that H(M,ρ,B) defines
Lie-Poisson equations in s∗+ = (X∗ ×F (Ω)∗ ×Λ2(Ω))+. Recall again that X has the
left Lie bracket which is minus the usual one. The semidirect product Lie group
is S = D × F (Ω) × Λ1(Ω) where D acts on F (Ω) × Λ1(Ω) by push forward. As
in the previous example, X act on F (Ω) × Λ1(Ω) by minus the Lie derivative on
each factor. The variables (M̄, ρ(x) dx,B) ∈ s∗+ are of the following geometric type:
M̄(x) = ρ(x)v[(x) dx ∈ X∗ is a one-form density, ρ(x) dx ∈ F (Ω)∗ is a density, and
B ∈ Λ1(Ω)∗ = Λ2(Ω) is a two-form.
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To write out the Lie-Poisson bracket 10.1 of two functions F,G : s∗+ → R, we
again identify M̄(x) with M(x) = ρ(x)v(x), ρ(x) dx with ρ(x), and proceed as in
the previous example. We get

{F,G}+(M,ρ,B) =
∫

Ω
M ·

[
δF

δM
,
δG

δM

]
dx

−
∫

Ω
ρ

(
L δF
δM

δF

δρ
− L δG

δM

δF

δρ

)
dx

−
∫

Ω
B ∧

(
L δF
δM

δG

δB
− L δG

δM

δF

δB

)
.

The first two terms coincide with 10.10. To bring the third term into a more familiar
form, identify B ∈ Λ2(Ω) with the vector field B = (B1, B2, B3) by B1 = B23, B2 =
B31, B3 = B12, and identify any one form α = α1dx

1 + α2dx
2 + α3dx

3 with the
vector field (α1, α2, α3). A straight-forward computation shows that

B ∧ L δF
δM

δG

δB
= B12

[(
δF

δM

)
i

∂

∂xi

(
δG

δB

)
3

+
(
δG

δB

)
i

∂

∂x3

(
δF

δM

)
i

]
dx1 ∧ dx2 ∧ dx3

+B31

[(
δF

δM

)
i

∂

∂xi

(
δG

δB

)
2

+
(
δG

δB

)
i

∂

∂x2

(
δF

δM

)
i

]
dx1 ∧ dx2 ∧ dx3

+B23

[(
δF

δM

)
i

∂

∂xi

(
δG

δB

)
1

+
(
δG

δB

)
i

∂

∂x1

(
δF

δM

)
i

]
dx1 ∧ dx2 ∧ dx3

= B ·
[(

δF

δM
· ∇
)
δG

δB
+
(
∇ δF

δM

)
· δG
δB

]
dx1 ∧ dx2 ∧ dx3

by identifying the one-form δG/δB with the corresponding vector field with com-
ponents (

δG

δB

)
1

,

(
δG

δB

)
2

,

(
δG

δB

)
3

.

The Lie-Poisson bracket thus becomes

{F,G}+(M,ρ,B) =
∫

Ω
M ·

[(
δG

δM
· ∇
)
δF

δM
−
(
δF

δM
· ∇
)
δG

δM

]
dx

+
∫

Ω
ρ

[
δG

δM
·
(
∇δF
δρ

)
− δF

δM
·
(
∇δG
δρ

)]
dx

+
∫

Ω
B ·
[(

δG

δM
· ∇
)
δF

δB
−
(
δF

δM
· ∇
)
δG

δB

]
dx

+
∫

Ω
B ·
[(
∇ δG

δM

)
· δF
δB
−
(
∇ δF

δM

)
· δG
δB

]
dx. (9.14)
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This bracket coincides with the one derived by Morrison and Greene [1980], Holm
and Kupershmidt [1983], and Morrison [1982]. With respect to this bracket, the
equations are in Lie-Poisson form Ḟ = {F,H}+. The equations of motion are
obtained by putting F =

∫
Midx,

∫
ρ dx,

∫
Bidx, i = 1, 2, 3.

If entropy is variable, equation 10.11 must be added to the magnetohydrody-
namics equations, where w = w(ρ, σ) and p = ρ2(∂w/∂ρ + (σ/ρ)∂w/∂σ). The
Lie-Poisson bracket for this case lives on the dual of the Lie algebra of D × F (Ω)×
Λ1(Ω) × F (Ω), the action of D being push forward. The bracket has the expres-
sion 9.14 to which 9.12 is added.

To obtain the Lie-Poisson description of the magnetohydrodynamic equations
when div B = 0 and B = dA, we proceed in the following way. There are two
obvious group homomorphisms

projection
on last factor

Exterior derivative
on last factor

D × F (Ω)Λ1(Ω)

?

-

D × F (Ω)Λ2(Ω)

D × F (Ω)Λ2(Ω)/exact 1-forms

Dualizing the induced Lie algebra mappings, we obtain Poisson maps

X∗ × F (Ω)∗ × Λ2(Ω)→ X∗ × F (Ω)∗ × {α ∈ Λ2(Ω) | dα = 0}
→ X∗ × F (Ω)∗ × Λ1(Ω).

In this way we obtain the Lie-Poisson formulation for magnetohydrodynamics in
physical variables (M,ρ,B), with div B = 0 (variables: M,ρ,B), or with a magnetic
potential (variables: M,ρ,A, for B = dA). For the case div B = 0 the bracket is
still, 9.14, whereas for the case B = dA the same bracket takes the form

{F,G}+(M,ρ,A) =
∫

Ω
M ·

[(
δG

δM
· ∇
)
δF

δM
−
(
δF

δM
· ∇
)
δG

δM

]
dx

+
∫

Ω
ρ

[
δG

δM
·
(
∇δF
δρ

)
− δF

δM
·
(
∇δG
δρ

)]
dx

+
∫

Ω
(∇×A) ·

(
δF

δA
× δG

δM
− δG

δA
× δF

δM

)
dx

+
∫

Ω
A ·

[(
∇ · δG

δA

)
δF

δM
−
(
∇ · δF

δA

)
δG

δM

]
dx.

where we identified the one-form A with A = (A1, A2, A3). If variable entropy is
present, the term 9.12 is added to the bracket.

In the next section we shall describe the Euler-Maxwell equations (fluid elec-
trodynamics), which incorporates the full Maxwell equations rather than just the
magnetic field B. The way one makes the transition is as follows.
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Vlasov-Maxwell

?
Euler-Maxwell

?

Poisson map generated by the action of
D × F (see 9.4 and 10.3)

limiting operations that eliminate the
electric field (and possibly modify multi-species
to a single species).

MHD
The last step is analogous to other limiting operations in physics such as c→∞

(Maxwell-Vlasov → Poisson-Vlasov) and three body problem → restricted three
body problem. We expect that the convergence of Poisson structures for these
limits can be understood in the context of Weinstein [1983].

10 Multi-Species Fluid Electrodynamics

The next system we consider is multispecies fluid electrodynamics following Spencer
and Kaufman [1982] and Spencer [1982]. Our treatment will hold for an arbitrary
number of species although the case of two oppositely charged species is most com-
monly discussed.

Each fluid species, labelled with subscripts s, is composed of particles of mass
ms and charge qs. We define as = qs/ms. Then, in terms of the fluid velocities us,
mass densities ps, specific entropies σs, electric field E, and magnetic field B, the
equations of ideal multi-fluid dynamics, in rationalized units, are

Ė = ∇×B −
∑
s

asρsus Ḃ = −∇× E (10.1)

∇ · E =
∑
s

asρs + ρext∇ ·B = 0 (10.2)

ρ̇s = −∇ · (ρsus) (10.3)

σ̇s = −us · ∇σs (10.4)

u̇s = −(us · ∇)us + as(E + us ×B)− ρ−1
s ∇ps (10.5)

where the specific internal energy Us(ρs, σs), expressed as an equation of state, yields
the (partial) pressure ps according to

ps = ρ2
s∂Us/∂ρs. (10.6)

Equations (10.1)– (10.5) are the Maxwell equations, which we have already encoun-
tered in §5, equations 5.2- 5.5. The only difference between the two versions is the
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set of dynamical variables in which the current and charge densities are expressed.
In addition, we have allowed here for the presence of a static external charge density
ρext. It can be shown that the inclusion of this term does not upset the conservation
of energy, while an analogous term Jext to allow for an external current density does.
Equation 10.3 is the continuity equation in physical space for the fluid species s,
and may be derived in essentially the same fashion as was equation 5.1, which is
a continuity equation in phase space. We neglect heat flow, and therefore express
entropy convection by the adiabatic equation 10.4, which states that the convective
derivative of the entropy is zero. Hence the entropy of each fluid element is constant.
Equation 10.5 is the equation of motion. The force is comprised of two terms, due
to electromagnetic effects (the Lorentz force term) and stress effects (the pressure
gradient term).

As we have seen in the preceding sections, our constructions are made more
natural by using momentum variables, rather than velocity variables. We therefore
replace the velocity fields us by the corresponding momentum densities Ms ≡ ρsus.
Then the phase space consists of the set of dynamical variables (Ms, ρs, σs, E,B),
and the energy of the system is

H(Ms, ρs, σs, E,B) =
∑
s

∫ (
1
2
ρ−1
s |Ms|2 + ρsUs

)
d3x

+
∫ (

1
2
|E|2 +

1
2
|B|2

)
d3x (10.7)

(We shall sometimes use the notation Ms ≡ (M1, . . . ,Mk) for k species. Whether
this is the case, or whether Ms refers to the single species s, will always be clear
from context). The first integral has terms for the kinetic energy of the fluid and for
the internal energy of each species. The internal energy term is absent in the Vlasov
formulation because of our assumption there of a collisionless plasma. It is present
here and in MHD in order to take into account conservative particle interactions
which, in contrast to the case of a plasma described by the Vlasov model, are
important and often dominate fluid motion. The second integral in 10.7 represents
the energy content of the electromagnetic field.

In accordance with our general scheme, the vacuum Maxwell equations, discussed
fully in §7, and the equations for ideal fluid flow, discussed in §9, must now be
coupled, in order to yield equations 10.1 and 10.3 in the form

Ḟ = {F,H}, (10.8)

where F represents a function of the dynamical variables.
The Hamiltonian, written in terms of the canonical momenta Ns = Ms + asρsA

and the other pre-reduction variables, is

H(Ns, ρs, σs, A, Y ) =
∑
s

∫ [
1
2
ρ−1
s |Ns − asρsA|2 + ρsUs

]
d3x

+
1
2

∫
[|∇ ×A|2 + |Y |2] d3x. (10.9)
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To apply reduction to the full phase space P = {(Ns, ρs, σs, A, Y )} ≡ g∗s × T ∗A,
the action of the gauge group G on T ∗A, A 7→ A+∇ϕ,ϕ : R3 → R, must be extended
to an action Φϕ of G on all of P. We require that H ◦Φϕ = H, and that Φϕ preserves
Poisson brackets of functionals F,G on P, i.e., {F ◦ Φϕ, G ◦ Φϕ} = {F,G} ◦ Φϕ. It
is obvious from Equation 10.9 that the action

Φϕ(Ns, ρs, σs, A, Y ) = (Ns + asρs∇ϕ, ρs, σs, A+∇ϕ, Y ) (10.10)

satisfies the first requirement, and one can show that it also satisfies the second.
Indeed, the action of ϕ on the fluid variables is just a piece of the left action on
D × F on (X× F )∗ described in 9.4, where G is identified with F .

To obtain the momentum map J : P → g∗ for the action Φ, it suffices to calculate
Js : g∗s → g∗, the momentum map on g∗s ≡ {(Ns, ρs, σs)}. This is a straightforward
calculation which is similar to 8.1; we get

Js(Ns, ρs, σs) = −asρs. (10.11)

Therefore, the momentum on all of P, obtained by summing

J(Ns, ρs, σs, A, Y ) = JA(A, Y ) +
∑
s

Js(Ns, ρs, σs)

is
J(Ns, ρs, σs, A, Y ) = −∇ · Y −

∑
s

asρs. (10.12)

With E = −Y as in §7, reduction at the external charge density ρext then specifies
that the dynamics takes place on the level set of constant external charge:

J−1(ρext) = {(Ns, ρs, σs, A, Y ) ∈ P|

∇ · E = ρext +
∑
s

as, ρs, E = −Y

}
.

Coordinates on the reduced phase space J−1(ρext)/G are now given by :

Proposition 10.1.

J−1(ρext)/G = {(Ms, ρs, σs, B,E)|

∇ · E = ρext +
∑
s

as, ρs∇ ·B = 0

}
.

Proof To elements (Ns, ρs, σs, A, Y ) of P, associate quintuples (Ms, ρs, σs, B,E),
where Ms = Ns − asρsA,B = ∇ × A, and E = −Y . Then the proposition follows
from the momentum map constructed above, and from a simple verification that
two elements of J−1(ρext) are associated to the same quintuple if and only if they
are related by the gauge transformation, 10.10. QED

It remains now to compute the Poisson structure on J−1(ρext)/G.
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Theorem 10.2. For two functionals F,G of the field variables (Ms, ρs, σs, E,B),
the Poisson bracket is given by

{F,G}(Ms, ρs, σs, E,B)

=
∑
s

{F,G}(Ms, ρs, σs) + {F,G}(E,B)

+
∑
s

∫ (
δF

δMs
· δG
δE
− δG

δMs
· δF
δE

+B ·
[
δF

δMs
× δG

δMs

])
asρsd

3x(10.13)

where the first term is the sum of equations 10.9 and 9.12 and the second is defined
by Proposition 7.1.

Proof Given F andG, define F̄ on P according to F̄ (Ns, ρs, σs, A, Y ) = F (Ms, ρs, σs, B,E).
Define Ḡ similarly. Then {F,G} is found by computing {F̄ , Ḡ} as the sum of equa-
tions, 9.10 and , 9.12, written for unreduced variables, and the canonical bracket on
T ∗A, and by expressing the result in terms of the variables on J−1(ρext)/G. QED

We observe that the first term of equation, 10.12 involves only the fluid variables
and that the second is purely electromagnetic, while the third provides the coupling
of the fluids to the electric and magnetic fields. Bilinearity, skew symmetry, and the
Jacobi identity all follow for equation 10.12 by the method used in its derivation.
In addition it is readily verified that the correct evolution equations for the phase
space variables follow from equations 10.12 and 10.7. Note that the set of evolution
equations so obtained will not be precisely equations 10.1 and 10.3, but rather
equivalent equations involving the Ms as dynamical variables. Additional body
forces, such as gravity, can easily be incorporated by the inclusion of an appropriate
term in the Hamiltonian. Finally, equations 10.2, rather than being postulated
separately as initial conditions, follow from the gauge invariance of electromagetism.

Finally we note that the gauge group for the variables (A, Y ) in both the
Maxwell-Vlasov case and here commutes with the D × F action described in 9.4.
Thus, as D × F clearly induces a Poisson map (f,A, Y ) 7→ (M,ρ,A, Y ) before re-
duction, it must also induce one after reduction. Thus we arrive at :

Theorem 10.3. The map (fs, E,B) 7→ (Ms, ρs, E,B) from the multispecies Maxwell-
Vlasov phase space to the (isentropic) Euler-Maxwell phase space given

Ms =
∫
vfs(x, v)dv, ρs =

∫
fs(x, v) dv

is a Poisson map with respect to the symplectic structures 9.1 and 10.12 (with
entropy deleted).

Thus one can arrive at the same fluid electrodynamic bracket either by the direct
reduction construction given by 10.1 and 10.2 or by collapsing the Maxwell-Vlasov
bracket by a naturally occuring momentum map. For the bracket in (N,E,B)
variables and another connection with semi-direct products, see Marsden, Ratiu
and Weinstein [1983].
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